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Preface

It is a well-known fact that there exist functions that have nowhere first order
derivative, but possess continuous Riemann-Liouville and Caputo fractional
derivatives of all orders less than one, e.g., the famous Weierstrass function, see
Chap. 1, [9, 18], p. 50.

This striking phenomenon motivated the authors to study Newton-like and other
similar numerical methods, which involve fractional derivatives and fractional
integral operators, for the first time studied in the literature. All for the purpose
to solve numerically equations whose associated functions can be also non-
differentiable in the ordinary sense.

That is among others extending the classical Newton method theory which
requires usual differentiability of function.

In this monograph we present the complete recent work of the past three years
of the authors on Numerical Analysis and Fractional Calculus. It is the natural
outgrowth of their related publications. Chapters are self-contained and can be read
independently and several advanced courses can be taught out of this book. An
extensive list of references is given per chapter. The topics covered are from A to Z
of this research area, all studied for the first time by the authors.

The list of presented topics of our related studies follows.

Newton-like methods on generalized Banach spaces and applications in fractional
calculus.
Semilocal convergence of Newton-like methods under general conditions with
applications in fractional calculus.
On the convergence of iterative methods with applications in generalized fractional
calculus.
A fixed point technique for some iterative algorithm with applications to general-
ized right fractional calculus.
Approximating fixed points with applications in k-fractional calculus.
Generalized g-fractional calculus and iterative methods.
A unified convergence analysis for a certain family of iterative algorithms with
applications to fractional calculus.
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A convergence analysis for extended iterative algorithms with applications to
fractional and vector calculus.
A convergence analysis for a certain family of extended iterative methods with
applications to modified fractional calculus.
A convergence analysis for secant-like methods with applications to modified
fractional calculus.
Semilocal convergence of secant-type methods with applications to modified g-
fractional calculus.
On the convergence of secant-like algorithms with applications to generalized
fractional calculus.
Generalized g-fractional calculus of Canavati-type and secant-like methods.
A convergence analysis for some iterative algorithms with applications to fractional
calculus.
Convergence for iterative methods on Banach spaces of a convergence structure
with applications to fractional calculus.
Local convergence analysis of inexact Gauss–Newton method for singular systems
of equations under majorant and center-majorant condition.
The asymptotic mesh independence principle of Newton’s method under weaker
conditions.
Ball convergence of a sixth order iterative method with one parameter for solving
equations under weak conditions.
Improved semilocal convergence of Broyden’s method with regularly continuous
divided differences.
Left general fractional monotone approximation theory.
Right general fractional monotone approximation.
Univariate left general high order fractional monotone approximation.
Univariate right general high order fractional monotone approximation theory.
Advanced fractional Taylor’s formulae.
Generalized Canavati type fractional Taylor’s formulae.

The last two topics were developed to be used in several chapters of this
monograph.

The book’s results are expected to find applications in many areas of applied
mathematics, stochastics, computer science, and engineering. As such this mono-
graph is suitable for researchers, graduate students, and seminars in the above
subjects, also to be in all science and engineering libraries.

The preparation of the book took place during 2014–2015 in Memphis,
Tennessee and Lawton, Oklahoma, USA.

We would like to thank Prof. Alina Lupas of University of Oradea, Romania, for
checking and reading the manuscript.

October 2015 George A. Anastassiou
Ioannis K. Argyros
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Chapter 1
Newton-Like Methods on Generalized
Banach Spaces and Fractional Calculus

We present a semilocal convergence study of Newton-like methods on a generalized
Banach space setting to approximate a locally unique zero of an operator. Earlier
studies such as [6–8, 15] require that the operator involved is Fréchet-differentiable.
In the present study we assume that the operator is only continuous. This way we
extend the applicability of Newton-like methods to include fractional calculus and
problems from other areas. Moreover, we obtain under the same or weaker condi-
tions: weaker sufficient convergence criteria; tighter error bounds on the distances
involved and an at least as precise in formations on the location of the solution. Spe-
cial cases are provided where the old convergence criteria cannot apply but the new
criteria can apply to locate zeros of operators. Some applications include fractional
calculus involving the Riemann-Liouville fractional integral and the Caputo frac-
tional derivative. Fractional calculus is very important for its applications in many
applied sciences. It follows [5].

1.1 Introduction

We present a semilocal convergence analysis for Newton-like methods on a gen-
eralized Banach space setting to approximate a zero of an operator. A generalized
norm is defined to be an operator from a linear space into a partially order Banach
space (to be precised in Sect. 1.2). Earlier studies such as [6–8, 15] for Newton’s
method have shown that a more precise convergence analysis is obtained when com-
pared to the real norm theory. However, the main assumption is that the operator
involved is Fréchet-differentiable. This hypothesis limits the applicability of New-
ton’smethod. In the present studywe only assume the continuity of the operator. This
may be expand the applicability of these methods. Our approach allows the exten-
sion of Newton-like methods in fractional calculus and other areas (see Sect. 1.4) not
possible before (since the operator must be Fréchet-differentiable). Moreover, we

© Springer International Publishing Switzerland 2016
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2 1 Newton-Like Methods On Generalized Banach Spaces …

obtain the following advantages over the earlier mentioned studies using Newton’s
method:

(i) Weaker sufficient semilocal convergence criteria.
(ii) Tighter error bounds on the distances involved.
(iii) An at least as precise information on the location of the zero.

Moreover, we show that the advantages (ii) are possible even if our Newton-like
methods are reduced to Newton’s method.

Furthermore, the advantages (i–iii) are obtained under the same or less computa-
tional cost.

The rest of the chapter is organized as follows: Sect. 1.2 contains the basic concepts
on generalized Banach spaces and auxiliary results on inequalities and fixed points.
In Sect. 1.3 we present the semilocal convergence analysis of Newton-like methods.
Finally, in the concluding Sects. 1.4 and 1.5, we present special cases, favorable
comparisons to earlier results and applications in some areas including fractional
calculus.

1.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [6–8, 15], and the references there in.

Definition 1.1 A generalized Banach space is a triplet (x, E, /·/) such that

(i) X is a linear space over R (C) . (ii) E = (E, K , ‖·‖) is a partially ordered
Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(iii3) The norm ‖·‖ is monotone on K . (iii) The operator /·/ : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/.
Remark 1.2 The operator /·/ is called a generalized norm. In view of (iii) and (ii3)
‖·‖i , is a real norm. In the rest of this paper all topological conceptswill be understood
with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
. (1.2.1)
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Definition 1.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, /·/) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E, E) , /Qx/ ≤ P/x/ for each x ∈ X} . (1.2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (1.2.3)

is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn. (1.2.4)

We need some auxiliary results on inequations.

Lemma 1.4 Let (E, K , ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M, N ∈ L+ (E, E).

(i) Suppose there exists r ∈ K such that

R (r) := (M + N ) r + ξ ≤ r (1.2.5)

and

(M + N )k r → 0 as k → ∞. (1.2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller
than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there
exists r ≤ q satisfying (i).

Proof (i) Define sequence {bn} by bn = Rn (0). Then, we have by (1.2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, . . . , n.
Then, we have by (1.2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M + N ) bn +ξ ≤ (M + N ) r +ξ ≤ r ⇒ bn+1 ≤ r . Hence,
sequence {bn} is bounded above by r . Set Pn = bn+1 − bn . We shall show that

Pn ≤ (M + N )n r for each n = 1, 2, . . . (1.2.7)

We have by the definition of Pn and (1.2.6) that

P1 = R2 (0) − R (0) = R (R (0)) − R (0)

= R (ξ) − R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M + N ) r,
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which shows (1.2.7) for n = 1. Suppose that (1.2.7) is true for k = 1, 2, . . . , n.

Then, we have in turn by (1.2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0) − Rk+1 (0) = Rk+1 (R (0)) − Rk+1 (0) =

Rk+1 (ξ) − Rk+1 (0) = R
(
Rk (ξ)

) − R
(
Rk (0)

) =
∫ 1

0
R′ (Rk (0) + t

(
Rk (ξ) − Rk (0)

)) (
Rk (ξ) − Rk (0)

)
dt ≤

R′ (Rk (ξ)
) (

Rk (ξ) − Rk (0)
) = R′ (Rk (ξ)

) (
Rk+1 (0) − Rk (0)

) ≤

R′ (r)
(
Rk+1 (0) − Rk (0)

) ≤ (M + N ) (M + N )k r = (M + N )k+1 r,

which completes the induction for (1.2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that

R (b) = R
(
lim

n→∞Rn (0)
)

= lim
n→∞Rn+1 (0) = b ⇒ b solves the equation R (t) = t .

We have that bn ≤ r ⇒ b ≤ r , where r a solution of R (r) ≤ r . Hence, b is smaller
than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (1.2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q.
We also get by (1.2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as n → ∞. ��

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 1.5 Let (X, (E, K , ‖·‖) , /·/) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X, X) . Suppose there exist y ∈ X and q ∈ K
such that

Pq + /y/ ≤ q and Pkq → 0 as k → ∞. (1.2.9)

Then, z = T ∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P/z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X |∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [15, Lemma 3.2].
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1.3 Semilocal Convergence

Let (X, (E, K , ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by a Newton-like method starting at a point x0 ∈ D.
The results are presented for an operator F = J G, where J ∈ L (Y, X). The iterates
are determined through a fixed point problem:

xn+1 = xn + yn , A (xn) yn + F (xn) = 0 (1.3.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x − x0/ ≤ r}

for some r ∈ K .

Next, we present the semilocal convergence analysis of Newton-like method
(1.3.1) using the preceding notation.

Theorem 1.6 Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − A (x) (y − x) / ≤ N/y − x/.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /F (x0) / ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (1.3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.
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(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,

where
an−1 := /xn − xn−1/ for each n = 1, 2, . . .

Proof Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 1.4 and (H3),
(H5) there exists q ≤ r such that:

Mq + /F (x0) / = q and Mkq ≤ Mkr → 0 as k → ∞.

Hence, by Lemma 1.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) + Nr0

≤ Mr − Mq + Nr = R0 (r) − q

≤ R0 (r) − q = r − q.

It follows with Lemma 1.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (I j ) is true for each j = 1, 2, . . . , n. We need to show the existence of
xn+1 and to obtain a bound q for an . To achieve this notice that:

Mrn + N (rn−1 − rn) = Mrn + Nrn−1 − Nrn = Pn (rn) − Nrn ≤ rn.

Then, it follows from Lemma 1.4 that there exists q ≤ rn such that

q = Mq + N (rn−1 − rn) and (M + N )k q → 0, as k → ∞. (1.3.3)
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By (I j ) it follows that

bn = /xn − x0/ ≤
n−1∑

j=0

a j ≤
n−1∑

j=0

(
r j − r j+1

) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn) .

We can write by (H2) that

/F (xn) / = /F (xn) − F (xn−1) − A (xn−1) (xn − xn−1) /

≤ Nan−1 ≤ N (rn−1 − rn) . (1.3.4)

It follows from (1.3.3) and (1.3.4) that

Mq + /F (xn) / ≤ q.

By Lemma 1.5, xn+1 is well defined and an ≤ q ≤ rn . In view of the definition of
rn+1 we have that

Pn+1 (rn − q) = Pn (rn) − q = rn − q,

so that by Lemma 1.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain
in turn that

/xm+1 − xn/ ≤
m∑

j=n

a j ≤
m∑

j=n

(
r j − r j+1

) = rn − rm+1 ≤ rn. (1.3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M + N ) rn ≤ · · · ≤ (M + N )n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence
in a Banach space X by (1.3.5) and as such it converges to some x∗ ∈ X . By letting
m → ∞ in (1.3.5), we deduce that x∗ ∈ U (xn, rn). Furthermore, (1.3.4) shows that
x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn
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the apriori, bound of (C3) is well defined by Lemma 1.4. That is sn is smaller in
general than rn . The conditions of Theorem 1.6 are satisfied for xn replacing x0. A
solution of the inequality of (C2) is given by sn (see (1.3.4)). It follows from (1.3.5)
that the conditions of Theorem 1.6 are easily verified. Then, it follows from (C1) that
x∗ ∈ U (xn, sn) which proves (C3). ��

In general the aposterior, estimate is of interest. Then, condition (H5) can be
avoided as follows:

Proposition 1.7 Suppose: condition (H1) of Theorem 1.6 is true.
(H ′

3) There exists s ∈ K , θ ∈ (0, 1) such that

R0 (s) = (M + N ) s + /F (x0) / ≤ θs.

(H ′
4) U (x0, s) ⊂ D.

Then, there exists r ≤ s satisfying the conditions of Theorem 1.6. Moreover, the
zero x∗ of F is unique in U (x0, s) .

Remark 1.8 (i) Notice that by Lemma 1.4 R∞
n (0) is the smallest solution of Rn (s) ≤

s. Hence any solution of this inequality yields on upper estimate for R∞
n (0). Similar

inequalities appear in (H2) and (H ′
2).

(ii) The weak assumptions of Theorem 1.6 do not imply the existence of A (xn)
−1.

In practice the computation of T ∞
n (0) as a solution of a linear equation is no problem

and the computation of the expensive or impossible to compute in general A (xn)
−1

is not needed.
(iii) We can used the following result for the computation of the aposteriori esti-

mates. The proof can be found in [15, Lemma 4.2] by simply exchanging the defin-
itions of R.

Lemma 1.9 Suppose that the conditions of Theorem 1.6 are satisfied. If s ∈ K is a
solution of Rn (s) ≤ s, then q := s −an ∈ K and solves Rn+1 (q) ≤ q. This solution
might be improved by Rk

n+1 (q) ≤ q for each k = 1, 2, . . ..

1.4 Special Cases and Applications

Application 1.10 The results obtained in earlier studies such as [6–8, 15] require
that operator F (i.e. G) is Fréchet-differentiable. This assumption limits the applica-
bility of the earlier results. In the present study we only require that F is a contin-
uous operator. Hence, we have extended the applicability of Newton-like methods
to classes of operators that are only continuous. Moreover, as we will show next by
specializing F to be a Fréchet-differentiable operator (i.e. F ′ (xn) = A (xn)) our
Theorem 1.6 improves earlier results. Indeed, first of all notice that Newton-like
method defined by (1.3.1) reduces to Newton’s method:
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xn+1 = xn + yn, F ′ (xn) yn + F (xn) = 0 (1.4.1)

⇔ yn = Tn (yn) := (
I − F ′ (xn)

)
yn − F (xn) .

Next,we present Theorem2.1 from [15] and the specialization of ourTheorem1.6,
so we can compare them.

Theorem 1.11 Let F : D → X be a Fréchet-differentiable operator and x0 ∈ D.
Suppose that the following conditions hold:

(H 1) There exists an operator M0 ∈ B
(
I − F ′ (x0)

)
.

(H 2) There exists an operator N1 ∈ L+
(
E2, E

)
satisfying for

x, y ∈ D, z ∈ X : /
(
F ′ (x) − F ′ (y)

)
z/ ≤ 2N1 (/x − y/, /z/) .

(H 3) There exists a solution c ∈ K of the inequality

R0 (c) := M0c + N1c2 + /F (x0) / ≤ c.

(H 4) U (x0, c) ⊆ D.

(H 5) (M0 + 2N1c)k c → 0 as k → ∞.

Then, the following hold
(C1) The sequence {xn} generated by (1.4.1) is well defined and converges to a

unique zero of F in U (x0, c) .

(C2) An a priori bound is given by the null-sequence {cn} defined by

c0 = c, cn := P
∞
n (0) ,

Pn (t) : = M0t + 2N1 (c − cn−1) t + N1c2n−1.

(C3) An a posteriori bound is given by sequence {dn} defined by

dn = R
∞
n (0) ,Rn (t) := M0t + 2N1bnt + N1t2 + N1a

2
n−1,

where sequences {an} and {bn} we defined previously.

Theorem 1.12 Let F : D → X be a Fréchet-differentiable operator and x0 ∈ D.
Suppose that the following conditions hold:

(H̃1) There exists an operator M1 ∈ B
(
I − F ′ (x)

)
for each x ∈ D.

(H̃2) There exists an operator N2 ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − F ′ (x) (y − x) / ≤ N2/y − x/.

(H̃3) There exists a solution r̃ ∈ K of

R̃0 (t) := (M1 + N2) t + /F (x0) / ≤ t.
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(H̃4) U (x0, r̃) ⊆ D.

(H̃5) (M1 + N2)
k r̃ → 0 as k → ∞.

Then, the following hold:
(C̃1) The sequence {xn} generated by (1.4.1) is well defined and converges to a

unique zero of F in U (xo, r̃) .

(C̃2) An appriori bound is given by r̃0 = r̃ , r̃n := P̃∞
n (0), P̃n (t) = M1t + N2̃rn−1.

(C̃3) An a posteriori bound is given by the sequence {̃sn} defined by s̃n := R̃∞
n (0),

R̃n (t) = (M1 + N2) t + N2an−1.

We can now compare the two preceding theorems. Notice that we can write

/F (y) − F (x) − F ′ (x) (y − x) / =
/ ∫ 1

0

[
F ′ (x + θ (y − x)) − F ′ (x)

]
(y − x) dt

/
.

Then, it follows from (H 2), (H̃2) and preceding estimate that

N2 ≤ N1/p/, for each p ∈ X,

holds in general. In particular, we have that

N2 ≤ N1c. (1.4.2)

Moreover, we get in turn by (H 1), (H 2) and (H 5) that

/1 − F ′ (x) / ≤ /I − F ′ (x0) / + /F ′ (x0) − F ′ (x) / (1.4.3)

≤ M0 + 2N1/x − x0/ ≤ M0 + 2N1c.

Therefore, by (H̃1) and (1.4.3), we obtain that

M1 ≤ M0 + 2N1c (1.4.4)

holds in general.
Then, in view of (1.4.2), (1.4.4) and the (H ), (H̃ ) hypotheses we deduce that

R0 (c) ≤ c ⇒ R̃0 (̃r) ≤ r̃ (1.4.5)

(M0 + 2N1c)k c → 0 ⇒ (M1 + N2)
k r̃ → 0 (1.4.6)

but not necessarily vice versa unless if equality holds in (1.4.2) and (1.4.4);

r̃ ≤ c, (1.4.7)

r̃n ≤ cn, (1.4.8)
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and
s̃n ≤ dn. (1.4.9)

Notice also that strict inequality holds in (1.4.8) or (1.4.9) if strict inequality holds
in (1.4.2) or (1.4.4).

Estimates (1.4.5)–(1.4.9) justify the advantages of our approach over the earlier
studies as already stated in the introduction of this study.

Next, we show that the results of Theorem 2.1 in [15], i.e. of Theorem 1.11 can
be improved under the same hypotheses by noticing that in view of (H 2).

(H
0
2) There exists an operator N0 ∈ L+

(
E2, E

)
satisfying for x ∈ D, z ∈ X,

/
(
F ′ (x) − F ′ (x0)

)
z/ ≤ 2N0 (/x − x0/, /z/) .

Moreover,

N0 ≤ N1 (1.4.10)

holds in general and N1
N0

can be arbitrarily large [4, 6–8].

It is worth noticing that (H
0
2) is not an additional to (H 2) hypothesis, since in

practice the computation of N1 requires the computation of N0 as a special case.

Using now (H
0
2) and (H 1) we get that

/I − F ′ (x) / ≤ /I − F ′ (x0) / + /F ′ (x0) − F ′ (x) / ≤ M0 + 2N0/x − x0/.

Hence, M0 + 2N0bn, M0 + 2N0 (c − cn) can be used as a bounds for I − F ′ (xn)

instead of M0 + 2N1bn , M0 + 2N1 (c − cn), respectively.
Notice also that

M0 + 2N0bn ≤ M0 + 2N1bn (1.4.11)

and

M0 + 2N0 (c − cn) ≤ M0 + 2N1 (c − cn) . (1.4.12)

Then, with the above changes and following the proof of Theorem 2.1 in [15], we
arrive at the following improvement:

Theorem 1.13 Suppose that the conditions of Theorem 1.11 hold but with N1

replaced by the at most as large N0. Then, the conclusions (C1)–(C3),

cn ≤ cn (1.4.13)

and

dn ≤ dn, (1.4.14)
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where the sequences {cn}, {dn} are defined by

c0 = c, cn := P
∞
n (0) , Pn (t) := M0t + 2N0 (c − cn−1) t + N1c2n−1,

dn = R
∞
n (0) , R

∞
n (t) := M0t + 2N0bnt + N1t2 + N1a

2
n−1.

Remark 1.14 Notice that estimates (1.4.13) and (1.4.14) followby a simple inductive
argument using (1.4.11) and (1.4.12 ). Moreover, strict inequality holds in (1.4.13)
(for n ≥ 1) and in (1.4.14) (for n > 1) if strict inequality holds in (1.4.11) or
(1.4.12). Hence, again we obtain better apriori and aposteriori bounds under the
same hypotheses (H ).

Condition (H̄5) has been weakened since N0 ≤ N1. It turns out that condition
(H̄3) can be weakened and sequences {cn} and {dn} can be replaced by more precise
sequences as follows: Define operators Q0, Q1, Q2, H1, H2 on D by

( ¯̄H3)Q0(t) := M0t + /F(x0)/

Suppose that there exists a solution μ0 ∈ K of the inequality

Q0(μ0) ≤ μ0.

There exists a solution μ1 ∈ K with μ1 ≤ μ0 of the inequality

Q1(t) ≤ t,

where

Q1(t) := M0t + 2N0(μ0 − t)t + N0μ
2
0.

There exists a solution μ2 = μ ∈ K with μ ≤ μ1 such that

Q2(t) ≤ t,

where

Q2(t) := M0t + 2N0(μ − t)t + N1μ
2
1.

Moreover, define operators on D by

H1(t) := M0t, H2(t) := Q1(t),

Hn(t) := M0t + 2N0(μ − μn−1)t + N1μ
2
n−1, n = 3, 4, . . .
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and
Qn(t) := M0t + 2N0bnt + N1t2 + N1an−1.

Furthermore, define sequences { ¯̄cn} and { ¯̄dn} by

¯̄cn := H∞
n (0) and ¯̄dn := Q∞

n (0)

Then, the proof of Theorem 4.2 goes on through in this setting to arrive at:

Theorem 1.15 Suppose that the conditions of Theorem 4.2 are satisfied but with
c,(H̄3) − (H̄5) replaced by μ, (H̄3),

( ¯̄H4) U (x0,μ) ⊆ D ( ¯̄H5) (M0 + N0μ)kμ → 0 as k → ∞, respectively.

Then, the conclusions of Theorem 4.2 hold with sequences { ¯̄cn} and { ¯̄dn} replacing
{cn} and {dn} respectively. Moreover, we have that

¯̄cn ≤ c̄n ≤ cn,

¯̄dn ≤ d̄n ≤ dn,

and
μ ≤ c.

Clearly the new error bounds are more precise; the information on the location of

the solution x∗ at least as precise and the sufficient convergence criteria ( ¯̄H3) and

( ¯̄H5) weaker than (H̄3) and (H̄5), respectively.

Example 1.16 The j-dimensional space R j is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorems 1.6 and 4.4 look like.

Theorem 1.17 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (1.4.15)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (1.4.15).
Then, the conclusions of Theorem 1.6 hold.
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Theorem 1.18 (H 1)
∥∥I − F ′ (x0)

∥∥ ≤ M0 for some M0 ∈ [0, 1).
(H 2)

∥∥F ′ (x) − F ′ (x0)
∥∥ ≤ 2N0 ‖x − x0‖ ,∥∥F ′ (x) − F ′ (y)

∥∥ ≤ 2N1 ‖x − y‖, for some N0 ≥ 0 and N1 > 0.
(H 3)

4N1 ‖F (x0)‖ ≤ (1 − M0)
2 , (1.4.16)

c = 1 − M0 −
√

(1 − M0)
2 − 4N1 ‖F (x0)‖

2N1
. (1.4.17)

(H 4) U (x0, c) ⊆ D.

(H 5) (M0 + 2N0c)k c → 0 as k → ∞, where c is defined by (1.4.17).
Then, the conclusions of Theorem 4.4 hold.

Remark 1.19 Condition (1.4.16) is a Newton-Kantorovich type hypothesis appear-
ing as a sufficient semilocal convergence hypothesis in connection to Newton-like
methods. In particular, if F ′ (x0) = I , then M0 = 0 and (1.4.16) reduces to the
famous for its simplicity and clarity Newton-Kantorovich hypothesis

4N1 ‖F (x0)‖ ≤ 1 (1.4.18)

appearing in the study of Newton’s method [1, 2, 6–8, 10–17].

1.5 Applications to Fractional Calculus

Based on [18], it makes sense to study Newton-like numerical methods.
Thus, our presented earlier semilocal convergence Newton-like general methods,

see Theorem 4.8, apply in the next two fractional settings given that the following
inequalities are fulfilled:

‖1 − A (x)‖∞ ≤ γ0 ∈ (0, 1) , (1.5.1)

and

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (1.5.2)

where γ0, γ1 ∈ (0, 1), furthermore

γ = γ0 + γ1 ∈ (0, 1) , (1.5.3)

for all x, y ∈ [a∗, b] .
Here, we consider a < a∗ < b.
The specific functions A (x), F (x) will be described next.

http://dx.doi.org/10.1007/978-3-319-26721-0_4
http://dx.doi.org/10.1007/978-3-319-26721-0_4
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I) Let α > 0 and f ∈ L∞ ([a, b]). The Riemann-Liouville integral ([9], p. 13) is
given by

(
Jα

a f
)
(x) = 1

� (α)

∫ x

a
(x − t)α−1 f (t) dt, x ∈ [a, b] . (1.5.4)

Then
∣∣(Jα

a f
)
(x)

∣∣ ≤ 1

� (α)

(∫ x

a
(x − t)α−1 | f (t)| dt

)

≤ 1

� (α)

(∫ x

a
(x − t)α−1 dt

)
‖ f ‖∞ = 1

� (α)

(x − a)α

α
‖ f ‖∞ (1.5.5)

= (x − a)α

� (α + 1)
‖ f ‖∞ = (ξ1) .

Clearly (
Jα

a f
)
(a) = 0. (1.5.6)

(ξ1) ≤ (b − a)α

� (α + 1)
‖ f ‖∞ . (1.5.7)

That is

∥∥Jα
a f

∥∥∞,[a,b] ≤ (b − a)α

� (α + 1)
‖ f ‖∞ < ∞, (1.5.8)

i.e. Jα
a is a bounded linear operator.

By [3], p. 388, we get that
(
Jα

a f
)
is a continuous function over [a, b] and in

particular over [a∗, b]. Thus there exist x1, x2 ∈ [a∗, b] such that

(
Jα

a f
)
(x1) = min

(
Jα

a f
)
(x) , (1.5.9)

(
Jα

a f
)
(x2) = max

(
Jα

a f
)
(x) , x ∈ [

a∗, b
]
.

We assume that

(
Jα

a f
)
(x1) > 0. (1.5.10)

Hence

∥∥Jα
a f

∥∥∞,[a∗,b] = (
Jα

a f
)
(x2) > 0. (1.5.11)

Here it is

J (x) = mx , m �= 0. (1.5.12)
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Therefore the equation

J f (x) = 0, x ∈ [
a∗, b

]
, (1.5.13)

has the same solutions as the equation

F (x) := J f (x)

2
(
Jα

a f
)
(x2)

= 0, x ∈ [
a∗, b

]
. (1.5.14)

Notice that

Jα
a

(
f

2
(
Jα

a f
)
(x2)

)

(x) =
(
Jα

a f
)
(x)

2
(
Jα

a f
)
(x2)

≤ 1

2
< 1, x ∈ [

a∗, b
]
. (1.5.15)

Call

A (x) :=
(
Jα

a f
)
(x)

2
(
Jα

a f
)
(x2)

, ∀ x ∈ [
a∗, b

]
. (1.5.16)

We notice that

0 <

(
Jα

a f
)
(x1)

2
(
Jα

a f
)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a∗, b
]
. (1.5.17)

Hence the first condition (1.5.1) is fulfilled

|1 − A (x)| = 1 − A (x) ≤ 1 −
(
Jα

a f
)
(x1)

2
(
Jα

a f
)
(x2)

=: γ0, ∀ x ∈ [
a∗, b

]
. (1.5.18)

Clearly γ0 ∈ (0, 1) .

Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; all x, y ∈ [
a∗, b

]
, (1.5.19)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(
Jα

a f
)
(x2) |x − y| , all x, y ∈ [

a∗, b
]
. (1.5.20)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a∗, b

]
.

(1.5.21)
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We have that

∣∣(Jα
a f

)
(x)

∣∣ ≤ (b − a)α

� (α + 1)
‖ f ‖∞ < ∞, ∀ x ∈ [

a∗, b
]
. (1.5.22)

Hence

|A (x)| =
∣∣(Jα

a f
)
(x)

∣∣

2
(
Jα

a f
)
(x2)

≤ (b − a)α ‖ f ‖∞
2� (α + 1)

((
Jα

a f
)
(x2)

) < ∞, ∀ x ∈ [
a∗, b

]
.

(1.5.23)
Therefore, we get

(ψ1) ≤
(

λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

a f
)
(x2)

)

)

|y − x | , ∀ x, y ∈ [
a∗, b

]
. (1.5.24)

Call

0 < γ1 := λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

a f
)
(x2)

) , (1.5.25)

choosing (b − a) small enough we can make γ1 ∈ (0, 1), fulfilling (1.5.2).
Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(
Jα

a f
)
(x1)

2
(
Jα

a f
)
(x2)

+ λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

a f
)
(x2)

) < 1,

(1.5.26)
equivalently,

λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

a f
)
(x2)

) <

(
Jα

a f
)
(x1)

2
(
Jα

a f
)
(x2)

, (1.5.27)

equivalently,

2λ
(
Jα

a f
)
(x2) + (b − a)a ‖ f ‖∞

� (α + 1)
<

(
Jα

a f
)
(x1) , (1.5.28)

which is possible for small λ, (b − a). That is γ ∈ (0, 1), fulfilling (1.5.3). So our
numerical method converges and solves (1.5.13).

II) Let again a < a∗ < b, α > 0, m = �α� (�·� ceiling function), α /∈ N,
G ∈ Cm−1 ([a, b]), 0 �= G(m) ∈ L∞ ([a, b]). Here we consider the Caputo fractional
derivative (see [3], p. 270),

Dα
∗aG (x) = 1

� (m − α)

∫ x

a
(x − t)m−α−1 G(m) (t) dt. (1.5.29)

By [3], p. 388, Dα∗aG is a continuous function over [a, b] and in particular continuous
over [a∗, b]. Notice that by [4], p. 358 we have that Dα∗aG (a) = 0.
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Therefore there exist x1, x2 ∈ [a∗, b] such that Dα∗aG (x1) = min Dα∗aG (x), and
Dα∗aG (x2) = max Dα∗aG (x), for x ∈ [a∗, b].

We assume that
Dα

∗aG (x1) > 0. (1.5.30)

(i.e. Dα∗aG (x) > 0, ∀ x ∈ [a∗, b]).
Furthermore

∥∥Dα
∗aG

∥∥∞,[a∗,b] = Dα
∗aG (x2) . (1.5.31)

Here it is

J (x) = mx , m �= 0. (1.5.32)

The equation

J G (x) = 0, x ∈ [
a∗, b

]
, (1.5.33)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα∗aG (x2)
= 0, x ∈ [

a∗, b
]
. (1.5.34)

Notice that

Dα
∗a

(
G (x)

2Dα∗aG (x2)

)
= Dα∗aG (x)

2Dα∗aG (x2)
≤ 1

2
< 1, ∀ x ∈ [

a∗, b
]
. (1.5.35)

We call

A (x) := Dα∗aG (x)

2Dα∗aG (x2)
, ∀ x ∈ [

a∗, b
]
. (1.5.36)

We notice that

0 <
Dα∗aG (x1)

2Dα∗aG (x2)
≤ A (x) ≤ 1

2
. (1.5.37)

Hence, the first condition (1.5.1) is fulfilled

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα∗aG (x1)

2Dα∗aG (x2)
=: γ0, ∀ x ∈ [

a∗, b
]
. (1.5.38)

Clearly γ0 ∈ (0, 1) .

Next, we assume that F (x) is a contraction over [a∗, b], i.e.
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|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a∗, b

]
, (1.5.39)

and 0 < λ < 1
2 .

Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

∗aG (x2)
) |x − y| , ∀ x, y ∈ [

a∗, b
]
. (1.5.40)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀ x, y ∈ [
a∗, b

]
.

(1.5.41)
We observe that

∣∣Dα
∗aG (x)

∣∣ ≤ 1

� (m − α)

∫ x

a
(x − t)m−α−1

∥∥G(m) (t)
∥∥ dt

≤ 1

� (m − α)

(∫ x

a
(x − t)m−α−1 dt

)∥
∥G(m)

∥
∥∞

= 1

� (m − α)

(x − a)m−α

(m − α)

∥∥G(m)
∥∥∞

= 1

� (m − α + 1)
(x − a)m−α

∥∥G(m)
∥∥∞ ≤ (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ . (1.5.42)

That is

∣∣Dα
∗aG (x)

∣∣ ≤ (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < ∞, ∀ x ∈ [a, b] . (1.5.43)

Hence, ∀ x ∈ [a∗, b] we get that

|A (x)| =
∣
∣Dα∗aG (x)

∣
∣

2Dα∗aG (x2)
≤ (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα∗aG (x2)
< ∞. (1.5.44)

Consequently we observe

(ξ2) ≤
(

λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα∗aG (x2)

)

|y − x | , ∀ x, y ∈ [
a∗, b

]
.

(1.5.45)
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Call

0 < γ1 := λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα∗aG (x2)
, (1.5.46)

choosing (b − a) small enough we can make γ1 ∈ (0, 1). So (1.5.2) is fulfilled.
Next, we call and need

0 < γ := γ0 + γ1 = 1 − Dα∗aG (x1)

2Dα∗aG (x2)
+ λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα∗aG (x2)
< 1,

(1.5.47)
equivalently we find,

λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα∗aG (x2)
<

Dα∗aG (x1)

2Dα∗aG (x2)
, (1.5.48)

or,

2λDα
∗aG (x2) + (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < Dα

∗aG (x1) , (1.5.49)

which is possible for small λ, (b − a).
That is γ ∈ (0, 1), fulfilling (1.5.3). Hence Eq. (1.5.33) can be solved with our

presented numerical methods.
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Chapter 2
Semilocal Convegence of Newton-Like
Methods and Fractional Calculus

We present a semilocal convergence study of Newton-like methods on a generalized
Banach space setting to approximate a locally unique zero of an operator. Earlier
studies such as [6–8, 15] require that the operator involved is Fré chet-differentiable.
In the present study we assume that the operator is only continuous. This way we
extend the applicability of Newton-like methods to include fractional calculus and
problems from other areas. Some applications include fractional calculus involving
the Riemann-Liouville fractional integral and the Caputo fractional derivative. Frac-
tional calculus is very important for its applications in many applied sciences. It
follows [5].

2.1 Introduction

We present a semilocal convergence analysis for Newton-like methods on a gen-
eralized Banach space setting to approximate a zero of an operator. The semilocal
convergence is, based on the information around an initial point, to give conditions
ensuring the convergence of the method. A generalized norm is defined to be an
operator from a linear space into a partially order Banach space (to be precised
in Sect. 2.2). Earlier studies such as [6–8, 15] for Newton’s method have shown
that a more precise convergence analysis is obtained when compared to the real
norm theory. However, the main assumption is that the operator involved is Fréchet-
differentiable. This hypothesis limits the applicability of Newton’s method. In the
present study we only assume the continuity of the operator. This may be expand the
applicability of these methods.

The rest of the chapter is organized as follows: Sect. 2.2 contains the basic concepts
on generalized Banach spaces and auxiliary results on inequalities and fixed points.
In Sect. 2.3 we present the semilocal convergence analysis of Newton-like methods.
Finally, in the concluding Sects. 2.4 and 2.5, we present special cases and applications
in fractional calculus.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_2
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2.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [6–8, 15], and the references there in.

Definition 2.1 A generalized Banach space is a triplet (x, E, /·/) such that
(i) X is a linear space over R (C).
(ii) E = (E, K , ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(ii3) The norm ‖·‖ is monotone on K .

(iii) The operator /·/ : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/.
Remark 2.2 The operator /·/ is called a generalized norm. In view of (iii) and (ii3)
‖·‖i , is a real norm. In the rest of this paper all topological conceptswill be understood
with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
. (2.2.1)

Definition 2.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, /·/) the set of bounds is defined to be:

B (Q) := {
P ∈ L+ (E, E) ,

/
Qx

/ ≤ P/x/ for each x ∈ X
}
. (2.2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (2.2.3)

is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn. (2.2.4)

We need some auxiliary results on inequations.

Lemma 2.4 Let (E, K , ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M, N ∈ L+ (E, E).

(i) Suppose there exists r ∈ K such that



2.2 Generalized Banach Spaces 25

R (r) := (M + N ) r + ξ ≤ r (2.2.5)

and
(M + N )k r → 0 as k → ∞. (2.2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller
than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there
exists r ≤ q satisfying (i).

Proof (i) Define sequence {bn} by bn = Rn (0). Then, we have by (2.2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, . . . , n.
Then, we have by (2.2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M + N ) bn +ξ ≤ (M + N ) r +ξ ≤ r ⇒ bn+1 ≤ r . Hence,
sequence {bn} is bounded above by r . Set Pn = bn+1 − bn . We shall show that

Pn ≤ (M + N )n r for each n = 1, 2, . . . (2.2.7)

We have by the definition of Pn and (2.2.6) that

P1 = R2 (0) − R (0) = R (R (0)) − R (0)

= R (ξ) − R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M + N ) r,

which shows (2.2.7) for n = 1. Suppose that (2.2.7) is true for k = 1, 2, . . . , n.

Then, we have in turn by (2.2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0) − Rk+1 (0) = Rk+1 (R (0)) − Rk+1 (0) =

Rk+1 (ξ) − Rk+1 (0) = R
(
Rk (ξ)

) − R
(
Rk (0)

) =
∫ 1

0
R′ (Rk (0) + t

(
Rk (ξ) − Rk (0)

)) (
Rk (ξ) − Rk (0)

)
dt ≤

R′ (Rk (ξ)
) (

Rk (ξ) − Rk (0)
) = R′ (Rk (ξ)

) (
Rk+1 (0) − Rk (0)

) ≤

R′ (r)
(
Rk+1 (0) − Rk (0)

) ≤ (M + N ) (M + N )k r = (M + N )k+1 r,

which completes the induction for (2.2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that
R (b) = R (limn→∞ Rn (0)) = limn→∞ Rn+1 (0) = b ⇒ b solves the equation
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R (t) = t . We have that bn ≤ r ⇒ b ≤ r , where r a solution of R (r) ≤ r . Hence,
b is smaller than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (2.2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q.
We also get by (2.2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as n → ∞. �

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 2.5 Let (X, (E, K , ‖·‖) , /·/) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X, X). Suppose there exists y ∈ X and q ∈ K such
that

Pq + /
y
/ ≤ q and Pkq → 0 as k → ∞. (2.2.9)

Then, z = T ∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P/z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X |∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [15, Lemma 3.2].

2.3 Semilocal Convergence

Let (X, (E, K , ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by a Newton-like method starting at a point x0 ∈ D.
The results are presented for an operator F = J G, where J ∈ L (Y, X). The iterates
are determined through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (2.3.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {
x ∈ X : /

x − x0
/ ≤ r

}

for some r ∈ K .

Next, we present the semilocal convergence analysis of Newton-like method
(2.3.1) using the preceding notation.



2.3 Semilocal Convergence 27

Theorem 2.6 Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/
F (y) − F (x) − A (x) (y − x)

/ ≤ N
/

y − x
/
.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /
F (x0)

/ ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (2.3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,

bn := /
xn − x0

/ ≤ r − rn ≤ r,

where
an−1 := /

xn − xn−1
/

for each n = 1, 2, . . .

Proof Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 2.4 and (H3),
(H5) there exists q ≤ r such that:

Mq + /
F (x0)

/ = q and Mkq ≤ Mkr → 0 as k → ∞.
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Hence, by Lemma 2.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) + Nr0

≤ Mr − Mq + Nr = R0 (r) − q

≤ R0 (r) − q = r − q.

It follows with Lemma 2.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (I j ) is true for each j = 1, 2, . . . , n. We need to show the existence of
xn+1 and to obtain a bound q for an . To achieve this notice that:

Mrn + N (rn−1 − rn) = Mrn + Nrn−1 − Nrn = Pn (rn) − Nrn ≤ rn.

Then, it follows from Lemma 2.4 that there exists q ≤ rn such that

q = Mq + N (rn−1 − rn) and (M + N )k q → 0, as k → ∞. (2.3.3)

By (I j ) it follows that

bn = /
xn − x0

/ ≤
n−1∑

j=0

a j ≤
n−1∑

j=0

(
r j − r j+1

) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn) .

We can write by (H2) that

/
F (xn)

/ = /
F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)

/

≤ Nan−1 ≤ N (rn−1 − rn) . (2.3.4)

It follows from (2.3.3) and (2.3.4) that

Mq + /
F (xn)

/ ≤ q.

By Lemma 2.5, xn+1 is well defined and an ≤ q ≤ rn . In view of the definition of
rn+1 we have that

Pn+1 (rn − q) = Pn (rn) − q = rn − q,
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so that by Lemma 2.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain
in turn that

/
xm+1 − xn

/ ≤
m∑

j=n

a j ≤
m∑

j=n

(
r j − r j+1

) = rn − rm+1 ≤ rn. (2.3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M + N ) rn ≤ · · · ≤ (M + N )n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence
in a Banach space X by (2.3.5) and as such it converges to some x∗ ∈ X . By letting
m → ∞ in (2.3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore, (2.3.4) shows that
x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 2.4. That is sn is smaller in
general than rn . The conditions of Theorem 2.6 are satisfied for xn replacing x0.
A solution of the inequality of (C2) is given by sn (see (2.3.4)). It follows from
(2.3.5) that the conditions of Theorem 2.6 are easily verified. Then, it follows from
(C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the aposterior, estimate is of interest. Then, condition (H5) can be
avoided as follows:

Proposition 2.7 Suppose: condition (H1) of Theorem 2.6 is true.
(H′

3) There exists s ∈ K , θ ∈ (0, 1) such that

R0 (s) = (M + N ) s + /
F (x0)

/ ≤ θs.

(H′
4) U (x0, s) ⊂ D.

Then, there exists r ≤ s satisfying the conditions of Theorem 2.6. Moreover, the
zero x∗ of F is unique in U (x0, s).

Remark 2.8 (i) Notice that by Lemma 2.4 R∞
n (0) is the smallest solution of

Rn (s) ≤ s. Hence any solution of this inequality yields on upper estimate for
R∞

n (0). Similar inequalities appear in (H2) and (H′
2).

(ii) The weak assumptions of Theorem 2.6 do not imply the existence of A (xn)
−1.

In practice the computation of T ∞
n (0) as a solution of a linear equation is no problem

and the computation of the expensive or impossible to compute in general A (xn)
−1

is not needed.
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(iii) We can used the following result for the computation of the aposteriori esti-
mates. The proof can be found in [15, Lemma 4.2] by simply exchanging the defin-
itions of R.

Lemma 2.9 Suppose that the conditions of Theorem 2.6 are satisfied. If s ∈ K is a
solution of Rn (s) ≤ s, then q := s −an ∈ K and solves Rn+1 (q) ≤ q. This solution
might be improved by Rk

n+1 (q) ≤ q for each k = 1, 2, . . ..

2.4 Special Cases and Applications

Application 2.10 The results obtained in earlier studies such as [6–8, 15] require
that operator F (i.e. G) is Fré chet-differentiable. This assumption limits the applica-
bility of the earlier results. In the present study we only require that F is a continu-
ous operator. Hence, we have extended the applicability of Newton-like methods to
classes of operators that are only continuous. If A (x) = F ′ (x) Newton-like method
(2.3.1) reduces to Newton’s method considered in [15].

Example 2.11 The j-dimensional space R j is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 2.6 look like.

Theorem 2.12 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (2.4.1)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (2.4.1).
Then, the conclusions of Theorem 2.6 hold.

2.5 Applications to Fractional Calculus

Our presented earlier semilocal convergenceNewton-like generalmethods, seeTheo-
rem2.12, apply in the next two fractional settings given that the following inequalities
are fulfilled:

‖1 − A (x)‖∞ ≤ γ0 ∈ (0, 1) , (2.5.1)
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and
|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (2.5.2)

where γ0, γ1 ∈ (0, 1), furthermore

γ = γ0 + γ1 ∈ (0, 1) , (2.5.3)

for all x, y ∈ [a, b∗] .
Here we consider a < b∗ < b.
The specific functions A (x), F (x) will be described next.
(I) Let α > 0 and f ∈ L∞ ([a, b]). The right Riemann-Liouville integral ([4],

pp. 333–354) is given by

(
Jα

b f
)
(x) := 1

� (α)

∫ b

x
(t − x)α−1 f (t) dt, x ∈ [a, b] . (2.5.4)

Then
∣∣(Jα

b f
)
(x)

∣∣ ≤ 1

� (α)

(∫ b

x
(t − x)α−1 | f (t)| dt

)

≤ 1

� (α)

(∫ b

x
(t − x)α−1 dt

)
‖ f ‖∞ = 1

� (α)

(b − x)α

α
‖ f ‖∞ (2.5.5)

= (b − x)α

� (α + 1)
‖ f ‖∞ = (ξ1) .

Clearly (
Jα

b f
)
(b) = 0. (2.5.6)

(ξ1) ≤ (b − a)α

� (α + 1)
‖ f ‖∞ . (2.5.7)

That is
∥∥Jα

b f
∥∥∞,[a,b] ≤ (b − a)α

� (α + 1)
‖ f ‖∞ < ∞, (2.5.8)

i.e. Jα
b is a bounded linear operator.

By [3] we get that
(
Jα

b f
)
is a continuous function over [a, b] and in particular

over [a, b∗]. Thus there exist x1, x2 ∈ [a, b∗] such that
(
Jα

b f
)
(x1) = min

(
Jα

b f
)
(x) , (2.5.9)

(
Jα

b f
)
(x2) = max

(
Jα

b f
)
(x) , x ∈ [

a, b∗] .

We assume that (
Jα

b f
)
(x1) > 0. (2.5.10)
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Hence ∥∥Jα
b f

∥∥∞,[a,b∗] = (
Jα

b f
)
(x2) > 0. (2.5.11)

Here it is
J (x) = mx, m �= 0. (2.5.12)

Therefore the equation
J f (x) = 0, x ∈ [

a, b∗] , (2.5.13)

has the same solutions as the equation

F (x) := J f (x)

2
(
Jα

b f
)
(x2)

= 0, x ∈ [
a, b∗] . (2.5.14)

Notice that

Jα
b

(
f

2
(
Jα

b f
)
(x2)

)

(x) =
(
Jα

b f
)
(x)

2
(
Jα

b f
)
(x2)

≤ 1

2
< 1, x ∈ [

a, b∗] . (2.5.15)

Call

A (x) :=
(
Jα

b f
)
(x)

2
(
Jα

b f
)
(x2)

, ∀ x ∈ [
a, b∗] . (2.5.16)

We notice that

0 <

(
Jα

b f
)
(x1)

2
(
Jα

b f
)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a, b∗] . (2.5.17)

Hence the first condition (2.5.1) is fulfilled

|1 − A (x)| = 1 − A (x) ≤ 1 −
(
Jα

b f
)
(x1)

2
(
Jα

b f
)
(x2)

=: γ0, ∀ x ∈ [
a, b∗] . (2.5.18)

Clearly γ0 ∈ (0, 1).
Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; all x, y ∈ [
a, b∗] , (2.5.19)

and 0 < λ < 1
2 .

Equivalently, we have

|J f (x) − J f (y)| ≤ 2λ
(
Jα

b f
)
(x2) |x − y| , all x, y ∈ [

a, b∗] . (2.5.20)
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We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a, b∗] .

(2.5.21)
We have that

∣∣(Jα
b f

)
(x)

∣∣ ≤ (b − a)α

� (α + 1)
‖ f ‖∞ < ∞, ∀ x ∈ [

a, b∗] . (2.5.22)

Hence

|A (x)| =
∣∣(Jα

b f
)
(x)

∣∣

2
(
Jα

b f
)
(x2)

≤ (b − a)α ‖ f ‖∞
2� (α + 1)

((
Jα

b f
)
(x2)

) < ∞, ∀ x ∈ [
a, b∗] .

(2.5.23)
Therefore we get

(ψ1) ≤
(

λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

b f
)
(x2)

)

)

|y − x | , ∀ x, y ∈ [
a, b∗] . (2.5.24)

Call

0 < γ1 := λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

b f
)
(x2)

) , (2.5.25)

choosing (b − a) small enough we can make γ1 ∈ (0, 1), fulfilling (2.5.2).
Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(
Jα

b f
)
(x1)

2
(
Jα

b f
)
(x2)

+ λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

b f
)
(x2)

) < 1,

(2.5.26)
equivalently,

λ + (b − a)a ‖ f ‖∞
2� (α + 1)

((
Jα

b f
)
(x2)

) <

(
Jα

b f
)
(x1)

2
(
Jα

b f
)
(x2)

, (2.5.27)

equivalently,

2λ
(
Jα

b f
)
(x2) + (b − a)a ‖ f ‖∞

� (α + 1)
<

(
Jα

b f
)
(x1) , (2.5.28)

which is possible for small λ, (b − a). That is γ ∈ (0, 1), fulfilling (2.5.3). So our
numerical method converges and solves (2.5.13).

(II) Let again a < b∗ < b, α > 0, m = �α� (�·� ceiling function), α /∈ N,
G ∈ Cm−1 ([a, b]), 0 �= G(m) ∈ L∞ ([a, b]). Here we consider the right Caputo
fractional derivative (see [4], p. 337),
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Dα
b−G (x) = (−1)m

� (m − α)

∫ b

x
(t − x)m−α−1 G(m) (t) dt. (2.5.29)

By [3] Dα
b−G is a continuous function over [a, b] and in particular continuous over

[a, b∗]. Notice that by [4], p. 358 we have that Dα
b−G (b) = 0.

Therefore there exist x1, x2 ∈ [a, b∗] such that Dα
b−G (x1) = min Dα

b−G (x) , and
Dα

b−G (x2) = max Dα
b−G (x), for x ∈ [a, b∗].

We assume that
Dα

b−G (x1) > 0. (2.5.30)

(i.e. Dα
b−G (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥∥Dα
b−G

∥∥∞,[a,b∗] = Dα
b−G (x2) . (2.5.31)

Here it is
J (x) = mx, m �= 0. (2.5.32)

The equation
J G (x) = 0, x ∈ [

a, b∗] , (2.5.33)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα
b−G (x2)

= 0, x ∈ [
a, b∗] . (2.5.34)

Notice that

Dα
b−

(
G (x)

2Dα
b−G (x2)

)
= Dα

b−G (x)

2Dα
b−G (x2)

≤ 1

2
< 1, ∀ x ∈ [

a, b∗] . (2.5.35)

We call

A (x) := Dα
b−G (x)

2Dα
b−G (x2)

, ∀ x ∈ [
a, b∗] . (2.5.36)

We notice that

0 <
Dα

b−G (x1)

2Dα
b−G (x2)

≤ A (x) ≤ 1

2
. (2.5.37)

Hence the first condition (2.5.1) is fulfilled

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα
b−G (x1)

2Dα
b−G (x2)

=: γ0, ∀ x ∈ [
a, b∗] . (2.5.38)

Clearly γ0 ∈ (0, 1) .
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Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a, b∗] , (2.5.39)

and 0 < λ < 1
2 .

Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

b−G (x2)
) |x − y| , ∀ x, y ∈ [

a, b∗] . (2.5.40)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀ x, y ∈ [
a, b∗] .

(2.5.41)
Then, we get that

∣
∣Dα

b−G (x)
∣
∣ ≤ 1

� (m − α)

∫ b

x
(t − x)m−α−1

∣
∣G(m) (t)

∣
∣ dt

≤ 1

� (m − α)

(∫ b

x
(t − x)m−α−1 dt

) ∥∥G(m)
∥∥∞

= 1

� (m − α)

(b − x)m−α

(m − α)

∥∥G(m)
∥∥∞

= 1

� (m − α + 1)
(b − x)m−α

∥∥G(m)
∥∥∞ ≤ (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ . (2.5.42)

That is

∣∣Dα
b−G (x)

∣∣ ≤ (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < ∞, ∀ x ∈ [a, b] . (2.5.43)

Hence, ∀ x ∈ [a, b∗] we get that

|A (x)| =
∣
∣Dα

b−G (x)
∣
∣

2Dα
b−G (x2)

≤ (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−G (x2)

< ∞. (2.5.44)

Consequently we observe

(ξ2) ≤
(

λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−G (x2)

)

|y − x | , ∀ x, y ∈ [
a, b∗] . (2.5.45)
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Call

0 < γ1 := λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−G (x2)

, (2.5.46)

choosing (b − a) small enough we can make γ1 ∈ (0, 1). So (2.5.2) is fulfilled.
Next we call and need

0 < γ := γ0 + γ1 = 1 − Dα
b−G (x1)

2Dα
b−G (x2)

+ λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−G (x2)

< 1,

(2.5.47)
equivalently we find,

λ + (b − a)m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−G (x2)

<
Dα

b−G (x1)

2Dα
b−G (x2)

, (2.5.48)

so,

2λDα
b−G (x2) + (b − a)m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < Dα

b−G (x1) , (2.5.49)

which is possible for small λ, (b − a).
That is γ ∈ (0, 1), fulfilling (2.5.3). Hence Eq. (2.5.33) can be solved with our

presented numerical methods.
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Chapter 3
Convergence of Iterative Methods
and Generalized Fractional Calculus

Wepresent a semilocal convergence study of some iterativemethods on a generalized
Banach space setting to approximate a locally unique zero of an operator. Earlier stud-
ies such as [8–10, 15] require that the operator involved is Fréchet-differentiable.
In the present study we assume that the operator is only continuous. This way we
extend the applicability of these methods to include generalized fractional calculus
and problems from other areas. Some applications include generalized fractional cal-
culus involving the Riemann-Liouville fractional integral and the Caputo fractional
derivative. Fractional calculus is very important for its applications in many applied
sciences. It follows [7].

3.1 Introduction

Many problems in Computational sciences can be formulated as an operator equation
usingMathematicalModelling [4, 10, 12, 16]. The zeros of these operators can rarely
be found in closed form. That is why most solution methods are usually iterative.

The semilocal convergence is, based on the information around an initial point,
to give conditions ensuring the convergence of the method.

We present a semilocal convergence analysis for some iterative methods on a gen-
eralized Banach space setting to approximate a zero of an operator. A generalized
norm is defined to be an operator from a linear space into a partially order Banach
space (to be precised in Sect. 3.2). Earlier studies such as [8–10, 15] for Newton’s
method have shown that a more precise convergence analysis is obtained when com-
pared to the real norm theory. However, the main assumption is that the operator
involved is Fré chet-differentiable. This hypothesis limits the applicability of New-
ton’s method. In the present study we only assume the continuity of the operator.
This may be expand the applicability of these methods.

The rest of the chapter is organized as follows: Sect. 3.2 contains the basic concepts
on generalized Banach spaces and auxiliary results on inequalities and fixed points.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_3
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In Sect. 3.3 we present the semilocal convergence analysis of Newton-like methods.
Finally, in the concluding Sects. 3.4 and 3.5, we present special cases and applications
in generalized fractional calculus.

3.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [8–10, 15], and the references there in.

Definition 3.1 A generalized Banach space is a triplet (x, E, / · /) such that
(i) X is a linear space over R (C) .

(ii) E = (E, K , ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(ii3) The norm ‖·‖ is monotone on K .

(iii) The operator / · / : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · / · /.

Remark 3.2 The operator / · / is called a generalized norm. In view of (iii) and
(ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts will be
understood with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
. (3.2.1)

Definition 3.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, / · /) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E, E) , /Qx/ ≤ P/x/ for each x ∈ X} . (3.2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (3.2.3)



3.2 Generalized Banach Spaces 41

is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn. (3.2.4)

We need some auxiliary results on inequations.

Lemma 3.4 Let (E, K , ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M, N ∈ L+ (E, E).

(i) Suppose there exists r ∈ K such that

R (r) := (M + N ) r + ξ ≤ r (3.2.5)

and
(M + N )k r → 0 as k → ∞. (3.2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller
than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exists q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there
exists r ≤ q satisfying (i).

Proof (i) Define sequence {bn} by bn = Rn (0). Then, we have by (3.2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, . . . , n.
Then, we have by (3.2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M + N ) bn +ξ ≤ (M + N ) r +ξ ≤ r ⇒ bn+1 ≤ r . Hence,
sequence {bn} is bounded above by r . Set Pn = bn+1 − bn . We shall show that

Pn ≤ (M + N )n r for each n = 1, 2, . . . (3.2.7)

We have by the definition of Pn and (3.2.6) that

P1 = R2 (0) − R (0) = R (R (0)) − R (0)

= R (ξ) − R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M + N ) r,

which shows (3.2.7) for n = 1. Suppose that (3.2.7) is true for k = 1, 2, . . . , n.

Then, we have in turn by (3.2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0) − Rk+1 (0) = Rk+1 (R (0)) − Rk+1 (0) =

Rk+1 (ξ) − Rk+1 (0) = R
(
Rk (ξ)

) − R
(
Rk (0)

) =
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∫ 1

0
R′ (Rk (0) + t

(
Rk (ξ) − Rk (0)

)) (
Rk (ξ) − Rk (0)

)
dt ≤

R′ (Rk (ξ)
) (

Rk (ξ) − Rk (0)
) = R′ (Rk (ξ)

) (
Rk+1 (0) − Rk (0)

) ≤

R′ (r)
(
Rk+1 (0) − Rk (0)

) ≤ (M + N ) (M + N )k r = (M + N )k+1 r,

which completes the induction for (3.2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b . Notice that
R (b) = R (limn→∞ Rn (0)) = limn→∞ Rn+1 (0) = b ⇒ b solves the equation
R (t) = t . We have that bn ≤ r ⇒ b ≤ r , where r a solution of R (r) ≤ r . Hence, b
is smaller than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (3.2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q.
We also get by (3.2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as n → ∞. �

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 3.5 Let (X, (E, K , ‖·‖) , / · /) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X, X). Suppose there exists y ∈ X and q ∈ K such
that

Pq + /y/ ≤ q and Pkq → 0 as k → ∞. (3.2.9)

Then, z = T ∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P/z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X |∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [15, Lemma3.2].

3.3 Semilocal Convergence

Let (X, (E, K , ‖·‖) , / · /) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by a Newton-like method starting at a point x0 ∈ D.
The results are presented for an operator F = J G, where J ∈ L (Y, X). The iterates
are determined through a fixed point problem:

xn+1 = xn + yn , A (xn) yn + F (xn) = 0 (3.3.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .
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Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x − x0/ ≤ r}

for some r ∈ K .

Next, we present the semilocal convergence analysis of Newton-like method
(3.3.1) using the preceding notation.

Theorem 3.6 Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − A (x) (y − x) / ≤ N/y − x/.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /F (x0) / ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (3.3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,

where

an−1 := /xn − xn−1/ for each n = 1, 2, . . .
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Proof Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 3.4 and (H3),
(H5) there exists q ≤ r such that:

Mq + /F (x0) / = q and Mkq ≤ Mkr → 0 as k → ∞.

Hence, by Lemma 3.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) + Nr0

≤ Mr − Mq + Nr = R0 (r) − q

≤ R0 (r) − q = r − q.

It follows with Lemma 3.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (I j ) is true for each j = 1, 2, . . . , n. We need to show the existence of
xn+1 and to obtain a bound q for an . To achieve this notice that:

Mrn + N (rn−1 − rn) = Mrn + Nrn−1 − Nrn = Pn (rn) − Nrn ≤ rn.

Then, it follows from Lemma 3.4 that there exists q ≤ rn such that

q = Mq + N (rn−1 − rn) and (M + N )k q → 0, as k → ∞. (3.3.3)

By (I j ) it follows that

bn = /xn − x0/ ≤
n−1∑

j=0

a j ≤
n−1∑

j=0

(
r j − r j+1

) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn) .

We can write by (H2) that

/F (xn) / = /F (xn) − F (xn−1) − A (xn−1) (xn − xn−1) /

≤ Nan−1 ≤ N (rn−1 − rn) . (3.3.4)
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It follows from (3.3.3) and (3.3.4) that

Mq + /F (xn) / ≤ q.

By Lemma 3.5, xn+1 is well defined and an ≤ q ≤ rn . In view of the definition of
rn+1 we have that

Pn+1 (rn − q) = Pn (rn) − q = rn − q,

so that by Lemma 3.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain
in turn that

/xm+1 − xn/ ≤
m∑

j=n

a j ≤
m∑

j=n

(
r j − r j+1

) = rn − rm+1 ≤ rn. (3.3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M + N ) rn ≤ · · · ≤ (M + N )n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence
in a Banach space X by (3.3.5) and as such it converges to some x∗ ∈ X . By letting
m → ∞ in (3.3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore, (3.3.4) shows that
x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 3.4. That is sn is smaller in
general than rn . The conditions of Theorem 3.6 are satisfied for xn replacing x0.
A solution of the inequality of (C2) is given by sn (see (3.3.4)). It follows from
(3.3.5) that the conditions of Theorem 3.6 are easily verified. Then, it follows from
(C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the aposterior, estimate is of interest. Then, condition (H5) can be
avoided as follows:

Proposition 3.7 Suppose: condition (H1) of Theorem 3.6 is true.
(H′

3) There exists s ∈ K , θ ∈ (0, 1) such that

R0 (s) = (M + N ) s + /F (x0) / ≤ θs.

(H′
4) U (x0, s) ⊂ D.
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Then, there exists r ≤ s satisfying the conditions of Theorem 3.6. Moreover, the
zero x∗ of F is unique in U (x0, s).

Remark 3.8 (i) Notice that by Lemma 3.4 R∞
n (0) is the smallest solution of Rn (s) ≤

s. Hence any solution of this inequality yields on upper estimate for R∞
n (0). Similar

inequalities appear in (H2) and (H′
2).

(ii) The weak assumptions of Theorem 3.6 do not imply the existence of A (xn)
−1.

In practice the computation of T ∞
n (0) as a solution of a linear equation is no problem

and the computation of the expensive or impossible to compute in general A (xn)
−1

is not needed.
(iii) We can used the following result for the computation of the aposteriori esti-

mates. The proof can be found in [15, Lemma4.2] by simply exchanging the defini-
tions of R.

Lemma 3.9 Suppose that the conditions of Theorem 3.6 are satisfied. If s ∈ K is a
solution of Rn (s) ≤ s, then q := s −an ∈ K and solves Rn+1 (q) ≤ q. This solution
might be improved by Rk

n+1 (q) ≤ q for each k = 1, 2, . . . .

3.4 Special Cases and Applications

Application 3.10 The results obtained in earlier studies such as [8–10, 15] require
that operator F (i.e. G) is Fré chet-differentiable. This assumption limits the applica-
bility of the earlier results. In the present study we only require that F is a continuous
operator. Hence, we have extended the applicability of these methods to classes of
operators that are only continuous.

Example 3.11 The j-dimensional space R j is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 3.6 look like.

Theorem 3.12 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (3.4.1)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (3.4.1).
Then, the conclusions of Theorem 3.6 hold.
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3.5 Applications to Generalized Fractional Calculus

We present some applications of Theorem 3.12 in this section.
Background
We use a lot here the following generalized fractional integral.

Definition 3.13 (see also [12], p. 99) The left generalized fractional integral of a
function f with respect to given function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is striclty increasing, f ∈ L∞ ([a, b]). We set

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a, (3.5.1)

clearly
(

I α
a+;g f

)
(a) = 0.

When g is the identity function id, we get that I α
a+;id = I α

a+, the ordinary left
Riemann-Liouville fractional integral, where

(
I α
a+ f

)
(x) = 1

� (α)

∫ x

a
(x − t)α−1 f (t) dt, x ≥ a, (3.5.2)

(
I α
a+ f

)
(a) = 0.

When, g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 3.14 ([12], p. 110) Let 0 < a < b < ∞, α > 0. The left Hadamard
fractional integral of order α is given by

(
Jα

a+ f
)
(x) = 1

� (α)

∫ x

a

(
ln

x

y

)α−1 f (y)

y
dy, x ≥ a, (3.5.3)

where f ∈ L∞ ([a, b]) .

We mention:

Definition 3.15 ([5]) The left fractional exponential integral is defined as follows:
Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
a+;ex f

)
(x) = 1

� (α)

∫ x

a

(
ex − et

)α−1
et f (t) dt, x ≥ a. (3.5.4)

Definition 3.16 ([5]) Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We give
the fractional integral

(
I α
a+;Ax f

)
(x) = ln A

� (α)

∫ x

a

(
Ax − At

)α−1
At f (t) dt, x ≥ a. (3.5.5)
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We also give:

Definition 3.17 ([5]) Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

a+;xσ f
)
(x) = 1

� (α)

∫ x

z
(xσ − tσ)

α−1 f (t)σtσ−1dt , x ≥ a. (3.5.6)

We mention the following generalized fractional derivatives:

Definition 3.18 ([5]) Let α > 0 and �α� = m. Consider f ∈ ACm ([a, b]) (space
of functions f with f (m−1) ∈ AC ([a, b])). We define the left generalized fractional
derivative of f of order α as follows

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t) f (m) (t) dt, (3.5.7)

for any x ∈ [a, b], where � is the gamma function.
We set

Dm
∗α;g f (x) = f (m) (x) , (3.5.8)

D0
∗a;g f (x) = f (x) , ∀ x ∈ [a, b] . (3.5.9)

When g = id, then Dα∗a f = Dα
∗a;id f is the left Caputo fractional derivative.

So, we have the specific generalized left fractional derivatives.

Definition 3.19 ([5])

Dα
∗a;ln x f (x) = 1

� (m − α)

∫ x

a

(
ln

x

y

)m−α−1 f (m) (y)

y
dy, x ≥ a > 0,

(3.5.10)

Dα
∗a;ex f (x) = 1

� (m − α)

∫ x

a

(
ex − et

)m−α−1
et f (m) (t) dt, x ≥ a, (3.5.11)

and

Dα
∗a;Ax f (x) = ln A

� (m − α)

∫ x

a

(
Ax − At

)m−α−1
At f (m) (t) dt, x ≥ a, (3.5.12)

(
Dα

∗a;xσ f
)
(x) = 1

� (m − α)

∫ x

a
(xσ − tσ)

m−α−1 σtσ−1 f (m) (t) dt, x ≥ a ≥ 0.

(3.5.13)
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We make:

Remark 3.20 ([5]) Here g ∈ AC ([a, b]) (absolutely continuous functions), g is
increasing over [a, b], α > 0. Then

∫ x

a
(g (x) − g (t))α−1 g′ (t) dt = (g (x) − g (a))α

α
, ∀ x ∈ [a, b] . (3.5.14)

We mention

Theorem 3.21 ([5]) Let α > 0, N � m = �α�, and f ∈ Cm ([a, b]). Then(
Dα

∗a;g f
)

(x) is continuous in x ∈ [a, b].

Results
(I) We notice the following

∣∣(I α
a+;g f

)
(x)

∣∣ ≤ 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) | f (t)| dt

≤ ‖ f ‖∞
� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) dt = ‖ f ‖∞

� (α)

(g (x) − g (a))α

α
(3.5.15)

= ‖ f ‖∞
� (α + 1)

(g (x) − g (a))α .

That is

∣∣(I α
a+;g f

)
(x)

∣∣ ≤ ‖ f ‖∞
� (α + 1)

(g (x) − g (a))α ≤ ‖ f ‖∞
(g (b) − g (a))α

� (α + 1)
,

(3.5.16)
∀ x ∈ [a, b] .

In particular
(

I α
a+;g f

)
(a) = 0.

Clearly I α
a+;g is a bounded linear operator.

We use

Theorem 3.22 ([6]) Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g is
strictly increasing.

Consider

G (s) :=
∫ s

a
(g (s) − g (t))r−1 g′ (t) F (t) dt, for all s ∈ [a, b] . (3.5.17)

Then G ∈ C ([a, b]) .

By Theorem 3.22, the function
(

I α
a+;g f

)
is a continuous function over [a, b].

Consider a < a∗ < b . Therefore
(

I α
a+;g f

)
is also continuous over [a∗, b] .
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Thus, there exist x1, x2 ∈ [a∗, b] such that

(
I α
a+;g f

)
(x1) = min

(
I α
a+;g f

)
(x) , (3.5.18)

(
I α
a+;g f

)
(x2) = max

(
I α
a+;g f

)
(x) , x ∈ [

a∗, b
]
. (3.5.19)

We assume that (
I α
a+;g f

)
(x1) > 0. (3.5.20)

Hence ∥
∥I α

a+;g f
∥
∥

∞,[a∗,b] = (
I α
a+;g f

)
(x2) > 0. (3.5.21)

Here it is
J (x) = mx, m �= 0. (3.5.22)

Therefore the equation
J f (x) = 0, x ∈ [

a∗, b
]
, (3.5.23)

has the same solutions as the equation

F (x) := J f (x)

2
(

I α
a+;g f

)
(x2)

= 0, x ∈ [
a∗, b

]
. (3.5.24)

Notice that

I α
a+;g

⎛

⎝ f

2
(

I α
a+;g f

)
(x2)

⎞

⎠ (x) =
(

I α
a+;g f

)
(x)

2
(

I α
a+;g f

)
(x2)

≤ 1

2
< 1, x ∈ [

a∗, b
]
.

(3.5.25)
Call

A (x) :=
(

I α
a+;g f

)
(x)

2
(

I α
a+;g f

)
(x2)

, ∀ x ∈ [
a∗, b

]
. (3.5.26)

Then, we get that

0 <

(
I α
a+;g f

)
(x1)

2
(

I α
a+;g f

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a∗, b
]
. (3.5.27)
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We observe

|1 − A (x)| = 1− A (x) ≤ 1−
(

I α
a+;g f

)
(x1)

2
(

I α
a+;g f

)
(x2)

=: γ0, ∀ x ∈ [
a∗, b

]
. (3.5.28)

Clearly γ0 ∈ (0, 1) .

I.e.
|1 − A (x)| ≤ γ0, ∀ x ∈ [

a∗, b
]
, γ0 ∈ (0, 1) . (3.5.29)

Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a∗, b

]
, (3.5.30)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(
I α
a+;g f

)
(x2) |x − y| , all x, y ∈ [

a∗, b
]
. (3.5.31)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a∗, b

]
.

(3.5.32)
By (3.5.16) we get

∣∣(I α
a+;g f

)
(x)

∣∣ ≤ ‖ f ‖∞
� (α + 1)

(g (b) − g (a))α , ∀ x ∈ [
a∗, b

]
. (3.5.33)

Hence

|A (x)| =
∣∣∣
(

I α
a+;g f

)
(x)

∣∣∣

2
(

I α
a+;g f

)
(x2)

≤ ‖ f ‖∞ (g (b) − g (a))α

2� (α + 1)
(

I α
a+;g f

)
(x2)

< ∞, ∀ x ∈ [
a∗, b

]
.

(3.5.34)
Therefore we get

(ψ1) ≤
⎛

⎝λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
a+;g f

)
(x2)

⎞

⎠ |y − x | , ∀ x, y ∈ [
a∗, b

]
. (3.5.35)
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Call

0 < γ1 := λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
a+;g f

)
(x2)

, (3.5.36)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , ∀ x, y ∈ [
a∗, b

]
, γ1 ∈ (0, 1) .

(3.5.37)
Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(

I α
a+;g f

)
(x1)

2
(

I α
a+;g f

)
(x2)

+ λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
a+;g f

)
(x2)

< 1,

(3.5.38)

λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
a+;g f

)
(x2)

<

(
I α
a+;g f

)
(x1)

2
(

I α
a+;g f

)
(x2)

, (3.5.39)

equivalently,

2λ
(
I α
a+;g f

)
(x2) + ‖ f ‖∞ (g (b) − g (a))a

� (α + 1)
<

(
I α
a+;g f

)
(x1) , (3.5.40)

which is possible for small λ, (g (b) − g (a)). That is γ ∈ (0, 1). So our method
solves (3.5.23).

(II) Let α /∈ N, α > 0 and �α� = m, a < a∗ < b, G ∈ ACm ([a, b]),
with 0 �= G(m) ∈ L∞ ([a, b]). Here we consider the left generalized (Caputo type)
fractional derivative:

(
Dα

∗a;gG
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t) G(m) (t) dt, (3.5.41)

for any x ∈ [a, b] .

By Theorem 3.22 we get that
(

Dα
∗a;gG

)
∈ C ([a, b]), in particular

(
Dα

∗a;gG
)

∈
C ([a∗, b]). Here notice that

(
Dα

∗a;gG
)

(a) = 0.

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
∗a;gG (x1) = min Dα

∗a;gG (x),
and Dα

∗a;gG (x2) = max Dα
∗a;gG (x), for x ∈ [a∗, b].

We assume that
Dα

∗a;gG (x1) > 0. (3.5.42)

(i.e. Dα
∗a;gG (x) > 0, ∀ x ∈ [a∗, b]).
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Furthermore ∥∥Dα
∗a;gG

∥∥
∞,[a∗,b] = Dα

∗a;gG (x2) . (3.5.43)

Here it is
J (x) = mx , m �= 0. (3.5.44)

The equation
J G (x) = 0, x ∈ [

a∗, b
]
, (3.5.45)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα
∗a;gG (x2)

= 0, x ∈ [
a∗, b

]
. (3.5.46)

Notice that

Dα
∗a;g

(
G (x)

2Dα
∗a;gG (x2)

)

= Dα
∗a;gG (x)

2Dα
∗a;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [

a∗, b
]
. (3.5.47)

We call

A (x) := Dα
∗a;gG (x)

2Dα
∗a;gG (x2)

, ∀x ∈ [
a∗, b

]
. (3.5.48)

We notice that

0 <
Dα

∗a;gG (x1)

2Dα
∗a;gG (x2)

≤ A (x) ≤ 1

2
. (3.5.49)

Hence it holds

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

=: γ0, ∀ x ∈ [
a∗, b

]
. (3.5.50)

Clearly γ0 ∈ (0, 1).
We have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [
a∗, b

]
. (3.5.51)

Next we assume that F (x) is a contraction over [a∗, b], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a∗, b

]
, (3.5.52)

and 0 < λ < 1
2 .



54 3 Convergence of Iterative Methods and Generalized …

Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

∗a;gG (x2)
) |x − y| , ∀ x, y ∈ [

a∗, b
]
. (3.5.53)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀ x, y ∈ [
a∗, b

]
.

(3.5.54)
We observe that

∣∣Dα
∗a;gG (x)

∣∣ ≤ 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t)

∣∣G(m) (t)
∣∣ dt

≤ 1

� (m − α)

(∫ x

a
(g (x) − g (t))m−α−1 g′ (t) dt

)∥
∥G(m)

∥
∥∞

= 1

� (m − α)

(g (x) − g (a))m−α

(m − α)

∥∥G(m)
∥∥∞

= 1

� (m − α + 1)
(g (x) − g (a))m−α

∥∥G(m)
∥∥∞ ≤ (g (b) − g (a))m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ .

(3.5.55)
That is

∣∣Dα
∗a;gG (x)

∣∣ ≤ (g (b) − g (a))m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < ∞, ∀ x ∈ [a, b] . (3.5.56)

Hence, ∀ x ∈ [a∗, b] we get that

|A (x)| =
∣∣∣Dα

∗a;gG (x)

∣∣∣

2Dα
∗a;gG (x2)

≤ (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
∗a;gG (x2)

< ∞. (3.5.57)

Consequently we observe

(ξ2) ≤
(

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
∗a;gG (x2)

)

|y − x | , ∀ x, y ∈ [
a∗, b

]
.

(3.5.58)
Call

0 < γ1 := λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
∗a;gG (x2)

, (3.5.59)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
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We proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , where γ1 ∈ (0, 1) , ∀ x, y ∈ [
a∗, b

]
.

(3.5.60)

Next we call and need

0 < γ := γ0 + γ1 = 1− Dα
∗a;gG (x1)

2Dα
∗a;gG (x2)

+ λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
∗a;gG (x2)

< 1,

(3.5.61)
equivalently we find,

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
∗a;gG (x2)

<
Dα

∗a;gG (x1)

2Dα
∗a;gG (x2)

, (3.5.62)

equivalently,

2λDα
∗a;gG (x2) + (g (b) − g (a))m−α

� (m − α + 1)

∥
∥G(m)

∥
∥∞ < Dα

∗a;gG (x1) , (3.5.63)

which is possible for small λ, (g (b) − g (a)).
That is γ ∈ (0, 1). Hence Eq. (3.5.45) can be solved with our presented numerical

methods.
Conclusion:
Our presented earlier semilocal convergence Newton-like general methods, see

Theorem 3.12, can apply in the above two generalized fractional settings since the
following inequalities have been fulfilled:

‖1 − A (x)‖∞ ≤ γ0, (3.5.64)

and

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (3.5.65)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (3.5.66)

for all x, y ∈ [a∗, b], where a < a∗ < b.
The specific functions A (x), F (x) have been described above.



56 3 Convergence of Iterative Methods and Generalized …

References

1. S. Amat, S. Busquier, Third-order iterative methods under Kantorovich conditions. J. Math.
Anal. Applic. 336, 243–261 (2007)

2. S. Amat, S. Busquier, S. Plaza, Chaotic dynamics of a third-order Newton-likemethod. J.Math.
Anal. Applic. 366(1), 164–174 (2010)

3. G. Anastassiou, Fractional Differentiation Inequalities (Springer, New York, 2009)
4. G. Anastassiou, Intelligent Mathematics Computational Analysis (Springer, Heidelberg, 2011)
5. G.A. Anastassiou, Left General Fractional Monotone Approximation Theory (2015) (submit-

ted)
6. G.A. Anastassiou, Univariate Left General higher order Fractional Monotone Approximation

(2015) (submitted)
7. G. Anastassiou, I. Argyros, On the convergence of iterative methods with applications in

generalized fractional calculus (2015) (submitted)
8. I.K. Argyros, Newton-like methods in partially ordered linear spaces. J. Approx. Th. Applic.

9(1), 1–10 (1993)
9. I.K. Argyros, Results on controlling the residuals of perturbed Newton-likemethods on Banach

spaces with a convergence structure. Southwest J. Pure Appl. Math. 1, 32–38 (1995)
10. I.K. Argyros, Convergence and Applications of Newton-like iterations (Springer-Verlag Publ,

New York, 2008)
11. J.A. Ezquerro, J.M. Gutierrez, M.A. Hernandez, N. Romero, M.J. Rubio, The Newton method:

from Newton to Kantorovich (spanish). Gac. R. Soc. Mat. Esp. 13, 53–76 (2010)
12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional differential

equations. North-Holland Mathematics Studies, vol. 2004 (Elsevier, New York, NY, USA,
2006)

13. A.A.Magrenan, Different anomalies in a Surrutt family of iterative root findingmethods. Appl.
Math. Comput. 233, 29–38 (2014)

14. A.A. Magrenan, A new tool to study real dynamics: the convergence plane. Appl. Math. Com-
put. 248, 215–224 (2014)

15. P.W. Meyer, Newton’s method in generalized Banach spaces, Numer. Func. Anal. Optimiz. 9,
3 and 4, 244-259 (1987)

16. F.A. Potra, V. Ptak,Nondiscrete induction and iterative processes (Pitman Publ, London, 1984)



Chapter 4
Fixed Point Techniques and Generalized
Right Fractional Calculus

We present a fixed point technique for some iterative algorithms on a generalized
Banach space setting to approximate a locally unique zero of an operator. Earlier stud-
ies such as [8–10, 15] require that the operator involved is Fréchet-differentiable.
In the present study we assume that the operator is only continuous. This way we
extend the applicability of these methods to include right fractional calculus as well
as problems from other areas. Some applications include fractional calculus involv-
ing right generalized fractional integral and the right Hadamard fractional integral.
Fractional calculus is very important for its applications in many applied sciences.
It follows [7].

4.1 Introduction

Wepresent a semilocal convergence analysis for somefixed point iterative algorithms
on a generalized Banach space setting to approximate a zero of an operator. The
semilocal convergence is, based on the information around an initial point, to give
conditions ensuring the convergence of the iterative algorithm. A generalized norm
is defined to be an operator from a linear space into a partially order Banach space
(to be precised in Sect. 4.2). Earlier studies such as [8–10, 15] for Newton’s method
have shown that a more precise convergence analysis is obtained when compared to
the real norm theory. However, the main assumption is that the operator involved is
Fréchet-differentiable. This hypothesis limits the applicability of Newton’s method.
In the present study using a fixed point technique (see iterative algorithm (4.3.1)),
we show convergence by only assuming the continuity of the operator. This way we
expand the applicability of these iterative algorithms.

The rest of the chapter is organized as follows: Sect. 4.2 contains the basic concepts
on generalizedBanach spaces and auxiliary results on inequalities and fixed points. In

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_4
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Sect. 4.3 we present the semilocal convergence analysis. Finally, in the concluding
Sects. 4.4 and 4.5, we present special cases and applications in generalized right
fractional calculus.

4.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [8–10, 15], and the references there in.

Definition 4.1 A generalized Banach space is a triplet (x, E, / · /) such that
(i) X is a linear space over R (C).
(ii) E = (E, K , ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(ii3) The norm ‖·‖ is monotone on K .

(iii) The operator / · / : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · / · /.

Remark 4.2 The operator / · / is called a generalized norm. In view of (iii) and
(ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts will be
understood with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
. (4.2.1)

Definition 4.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, / · /) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E, E) , /Qx/ ≤ P/x/ for each x ∈ X} . (4.2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (4.2.3)
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is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn. (4.2.4)

We need some auxiliary results on inequations.

Lemma 4.4 Let (E, K , ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M, N ∈ L+ (E, E).

(i) Suppose there exists r ∈ K such that

R (r) := (M + N ) r + ξ ≤ r (4.2.5)

and
(M + N )k r → 0 as k → ∞. (4.2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller
than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exist q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there
exists r ≤ q satisfying (i).

Proof (i) Define sequence {bn} by bn = Rn (0). Then, we have by (4.2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, . . . , n.
Then, we have by (4.2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M + N ) bn +ξ ≤ (M + N ) r +ξ ≤ r ⇒ bn+1 ≤ r . Hence,
sequence {bn} is bounded above by r . Set Pn = bn+1 − bn . We shall show that

Pn ≤ (M + N )n r for each n = 1, 2, . . . (4.2.7)

We have by the definition of Pn and (4.2.6) that

P1 = R2 (0) − R (0) = R (R (0)) − R (0)

= R (ξ) − R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M + N ) r,

which shows (4.2.7) for n = 1. Suppose that (4.2.7) is true for k = 1, 2, . . . , n.

Then, we have in turn by (4.2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0) − Rk+1 (0) = Rk+1 (R (0)) − Rk+1 (0) =

Rk+1 (ξ) − Rk+1 (0) = R
(
Rk (ξ)

) − R
(
Rk (0)

) =
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∫ 1

0
R′ (Rk (0) + t

(
Rk (ξ) − Rk (0)

)) (
Rk (ξ) − Rk (0)

)
dt ≤

R′ (Rk (ξ)
) (

Rk (ξ) − Rk (0)
) = R′ (Rk (ξ)

) (
Rk+1 (0) − Rk (0)

) ≤

R′ (r)
(
Rk+1 (0) − Rk (0)

) ≤ (M + N ) (M + N )k r = (M + N )k+1 r,

which completes the induction for (4.2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that
R (b) = R (limn→∞ Rn (0)) = limn→∞ Rn+1 (0) = b ⇒ b solves the equation
R (t) = t . We have that bn ≤ r ⇒ b ≤ r , where r a solution of R (r) ≤ r . Hence, b
is smaller than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (4.2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q.
We also get by (4.2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as n → ∞. �

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 4.5 Let (X, (E, K , ‖·‖) , / · /) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X, X) . Suppose there exists y ∈ X and q ∈ K such
that

Pq + /y/ ≤ q and Pkq → 0 as k → ∞. (4.2.9)

Then, z = T ∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P/z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X |∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [15, Lemma3.2].

4.3 Semilocal Convergence

Let (X, (E, K , ‖·‖) , / · /) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by an iterative algorithm starting at a point x0 ∈ D.
The results are presented for an operator F = J G, where J ∈ L (Y, X). The iterates
are determined through a fixed point problem:

xn+1 = xn + yn , A (xn) yn + F (xn) = 0 (4.3.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .
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Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x − x0/ ≤ r}

for some r ∈ K .

Next, we present the semilocal convergence analysis of iterative algorithm (4.3.1)
using the preceding notation.

Theorem 4.6 Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − A (x) (y − x) / ≤ N/y − x/.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /F (x0) / ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (4.3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r).

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,

where

an−1 := /xn − xn−1/ for each n = 1, 2, . . .
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Proof Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 4.4 and (H3),
(H5) there exists q ≤ r such that:

Mq + /F (x0) / = q and Mkq ≤ Mkr → 0 as k → ∞.

Hence, by Lemma 4.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) + Nr0

≤ Mr − Mq + Nr = R0 (r) − q

≤ R0 (r) − q = r − q.

It follows with Lemma 4.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (I j ) is true for each j = 1, 2, . . . , n. We need to show the existence of
xn+1 and to obtain a bound q for an . To achieve this notice that:

Mrn + N (rn−1 − rn) = Mrn + Nrn−1 − Nrn = Pn (rn) − Nrn ≤ rn.

Then, it follows from Lemma 4.4 that there exists q ≤ rn such that

q = Mq + N (rn−1 − rn) and (M + N )k q → 0, as k → ∞. (4.3.3)

By (I j ) it follows that

bn = /xn − x0/ ≤
n−1∑

j=0

a j ≤
n−1∑

j=0

(
r j − r j+1

) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn) .

We can write by (H2) that

/F (xn) / = /F (xn) − F (xn−1) − A (xn−1) (xn − xn−1) /

≤ Nan−1 ≤ N (rn−1 − rn) . (4.3.4)
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It follows from (4.3.3) and (4.3.4) that

Mq + /F (xn) / ≤ q.

By Lemma 4.5, xn+1 is well defined and an ≤ q ≤ rn . In view of the definition of
rn+1 we have that

Pn+1 (rn − q) = Pn (rn) − q = rn − q,

so that by Lemma 4.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain
in turn that

/xm+1 − xn/ ≤
m∑

j=n

a j ≤
m∑

j=n

(
r j − r j+1

) = rn − rm+1 ≤ rn. (4.3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M + N ) rn ≤ · · · ≤ (M + N )n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence
in a Banach space X by (4.3.5) and as such it converges to some x∗ ∈ X . By letting
m → ∞ in (4.3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore, (4.3.4) shows that
x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 4.4. That is sn is smaller in
general than rn . The conditions of Theorem 4.6 are satisfied for xn replacing x0.
A solution of the inequality of (C2) is given by sn (see (4.3.4)). It follows from
(4.3.5) that the conditions of Theorem 4.6 are easily verified. Then, it follows from
(C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the aposterior, estimate is of interest. Then, condition (H5) can be
avoided as follows:

Proposition 4.7 Suppose: condition (H1) of Theorem 4.6 is true.
(H′

3) There exists s ∈ K , θ ∈ (0, 1) such that

R0 (s) = (M + N ) s + /F (x0) / ≤ θs.

(H′
4) U (x0, s) ⊂ D.
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Then, there exists r ≤ s satisfying the conditions of Theorem 4.6. Moreover, the
zero x∗ of F is unique in U (x0, s) .

Remark 4.8 (i) Notice that by Lemma 4.4 R∞
n (0) is the smallest solution of Rn (s) ≤

s. Hence any solution of this inequality yields on upper estimate for R∞
n (0). Similar

inequalities appear in (H2) and (H′
2).

(ii) The weak assumptions of Theorem 4.6 do not imply the existence of A (xn)
−1.

In practice the computation of T ∞
n (0) as a solution of a linear equation is no problem

and the computation of the expensive or impossible to compute in general A (xn)
−1

is not needed.
(iii) We can used the following result for the computation of the aposteriori esti-

mates. The proof can be found in [15, Lemma 4.2] by simply exchanging the defin-
itions of R.

Lemma 4.9 Suppose that the conditions of Theorem 4.6 are satisfied. If s ∈ K is a
solution of Rn (s) ≤ s, then q := s −an ∈ K and solves Rn+1 (q) ≤ q. This solution
might be improved by Rk

n+1 (q) ≤ q for each k = 1, 2, . . ..

4.4 Special Cases and Applications

Application 4.10 The results obtained in earlier studies such as [8–10, 15] require
that operator F (i.e. G) is Fré chet-differentiable. This assumption limits the applica-
bility of the earlier results. In the present study we only require that F is a continu-
ous operator. Hence, we have extended the applicability of the iterative algorithms
include to classes of operators that are only continuous. If A (x) = F ′ (x) iterative
algorithm (4.3.1) reduces to Newton’s method considered in [15].

Example 4.11 The j-dimensional space R j is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 4.6 look like.

Theorem 4.12 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (4.4.1)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (4.4.1).
Then, the conclusions of Theorem 4.6 hold.
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4.5 Applications to Generalized Right Fractional Calculus

Background
We use Theorem 4.12 in this section.
We use here the following right generalized fractional integral.

Definition 4.13 (see also [12, p. 99]) The right generalized fractional integral of a
function f with respect to given function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is striclty increasing, f ∈ L∞ ([a, b]). We set

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b, (4.5.1)

clearly
(

I α
b−;g f

)
(b) = 0.

When g is the identity function id, we get that I α
b−;id = I α

b−, the ordinary right
Riemann-Liouville fractional integral, where

(
I α
b− f

)
(x) = 1

� (α)

∫ b

x
(t − x)α−1 f (t) dt, x ≤ b, (4.5.2)

(
I α
b− f

)
(b) = 0.

When, g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 4.14 ([12, p. 110]) Let 0 < a < b < ∞, α > 0. The right Hadamard
fractional integral of order α is given by

(
Jα

b− f
)
(x) = 1

� (α)

∫ b

x

(
ln

y

x

)α−1 f (y)

y
dy, x ≤ b, (4.5.3)

where f ∈ L∞ ([a, b]) .

We mention:

Definition 4.15 ([5]) The right fractional exponential integral is defined as follows:
Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
b−;ex f

)
(x) = 1

� (α)

∫ b

x

(
et − ex

)α−1
et f (t) dt, x ≤ b. (4.5.4)

Definition 4.16 ([5]) Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We give
the right fractional integral

(
I α
b−;Ax f

)
(x) = ln A

� (α)

∫ b

x

(
At − Ax

)α−1
At f (t) dt, x ≤ b. (4.5.5)
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We also give:

Definition 4.17 ([5]) Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

b−;xσ f
)
(x) = 1

� (α)

∫ b

x
(tσ − xσ)

α−1 f (t)σtσ−1dt, x ≤ b. (4.5.6)

We mention the following generalized right fractional derivatives.

Definition 4.18 ([5]) Let α > 0 and �α� = m (�·� ceiling of the number). Consider
f ∈ ACm ([a, b]) (space of functions f with f (m−1) ∈ AC ([a, b])). We define the
right generalized fractional derivative of f of order α as follows

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t) f (m) (t) dt, (4.5.7)

for any x ∈ [a, b], where � is the gamma function.
We set

Dm
b−;g f (x) = (−1)m f (m) (x) , (4.5.8)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] . (4.5.9)

When g = id, then Dα
b− f = Dα

b−;id f is the right Caputo fractional derivative.

So we have the specific generalized right fractional derivatives.

Definition 4.19 ([5])

Dα
b−;ln x f (x) = (−1)m

� (m − α)

∫ b

x

(
ln

y

x

)m−α−1 f (m) (y)

y
dy, 0 < a ≤ x ≤ b,

(4.5.10)

Dα
b−;ex f (x) = (−1)m

� (m − α)

∫ b

x

(
et − ex

)m−α−1
et f (m) (t) dt, a ≤ x ≤ b,

(4.5.11)
and

Dα
b−;Ax f (x) = (−1)m ln A

� (m − α)

∫ b

x

(
At − Ax

)m−α−1
At f (m) (t) dt, a ≤ x ≤ b,

(4.5.12)

(
Dα

b−;xσ f
)
(x) = (−1)m

� (m − α)

∫ b

x

(
tσ − xσ

)m−α−1
σtσ−1 f (m) (t) dt, 0 ≤ a ≤ x ≤ b.

(4.5.13)
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We make:

Remark 4.20 ([5]) Here g ∈ AC ([a, b]) (absolutely continuous functions), g is
increasing over [a, b], α > 0. Then

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt = (g (b) − g (x))α

α
, ∀ x ∈ [a, b] . (4.5.14)

Finally we will use

Theorem 4.21 ([5]) Let α > 0, N � m = �α�, and f ∈ Cm ([a, b]). Then(
Dα

b−;g f
)

(x) is continuous in x ∈ [a, b], −∞ < a < b < ∞.

Results
(I) We notice the following (a ≤ x ≤ b):

∣∣(I α
b−;g f

)
(x)

∣∣ ≤ 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) | f (t)| dt (4.5.15)

≤ ‖ f ‖∞
� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt = ‖ f ‖∞

� (α)

(g (b) − g (x))α

α

= ‖ f ‖∞
� (α + 1)

(g (b) − g (x))α ≤ ‖ f ‖∞
� (α + 1)

(g (b) − g (a))α . (4.5.16)

In particular it holds (
I α
b−;g f

)
(b) = 0, (4.5.17)

and
∥
∥I α

b−;g f
∥
∥

∞,[a,b]
≤ (g (b) − g (a))α

� (α + 1)
‖ f ‖∞ , (4.5.18)

proving that I α
b−;g is a bounded linear operator.

We use:

Theorem 4.22 ([6]) Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g is
strictly increasing.

Consider

B (s) :=
∫ b

s
(g (t) − g (s))r−1 g′ (t) F (t) dt, for all s ∈ [a, b] . (4.5.19)

Then B ∈ C ([a, b]) .

By Theorem 4.22, the function
(

I α
b−;g f

)
is a continuous function over [a, b].

Consider a < b∗ < b . Therefore
(

I α
b−;g f

)
is also continuous over [a, b∗] .
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Thus, there exist x1, x2 ∈ [a, b∗] such that
(
I α
b−;g f

)
(x1) = min

(
I α
b−;g f

)
(x) , (4.5.20)

(
I α
b−;g f

)
(x2) = max

(
I α
b−;g f

)
(x) , where x ∈ [

a, b∗] . (4.5.21)

We assume that (
I α
b−;g f

)
(x1) > 0. (4.5.22)

Hence ∥
∥I α

b−;g f
∥
∥

∞,[a,b∗] = (
I α
b−;g f

)
(x2) > 0. (4.5.23)

Here it is
J (x) = mx, m �= 0. (4.5.24)

Therefore the equation
J f (x) = 0, x ∈ [

a, b∗] , (4.5.25)

has the same solutions as the equation

F (x) := J f (x)

2
(

I α
b−;g f

)
(x2)

= 0, x ∈ [
a, b∗] . (4.5.26)

Notice that

I α
b−;g

⎛

⎝ f

2
(

I α
b−;g f

)
(x2)

⎞

⎠ (x) =
(

I α
b−;g f

)
(x)

2
(

I α
b−;g f

)
(x2)

≤ 1

2
< 1, x ∈ [

a, b∗] .

(4.5.27)
Call

A (x) :=
(

I α
b−;g f

)
(x)

2
(

I α
b−;g f

)
(x2)

, ∀ x ∈ [
a, b∗] . (4.5.28)

We notice that

0 <

(
I α
b−;g f

)
(x1)

2
(

I α
b−;g f

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a, b∗] . (4.5.29)
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We observe

|1 − A (x)| = 1− A (x) ≤ 1−
(

I α
b−;g f

)
(x1)

2
(

I α
b−;g f

)
(x2)

=: γ0, ∀ x ∈ [
a, b∗] . (4.5.30)

Clearly γ0 ∈ (0, 1) .

I.e.
|1 − A (x)| ≤ γ0, ∀ x ∈ [

a, b∗] , γ0 ∈ (0, 1) . (4.5.31)

Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a, b∗] , (4.5.32)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(
I α
b−;g f

)
(x2) |x − y| , all x, y ∈ [

a, b∗] . (4.5.33)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a, b∗] .

(4.5.34)
By (4.5.18) we get

∣∣(I α
b−;g f

)
(x)

∣∣ ≤ ‖ f ‖∞
� (α + 1)

(g (b) − g (a))α , ∀ x ∈ [
a, b∗] . (4.5.35)

Hence

|A (x)| =
∣∣∣
(

I α
b−;g f

)
(x)

∣∣∣

2
(

I α
b−;g f

)
(x2)

≤ ‖ f ‖∞ (g (b) − g (a))α

2� (α + 1)
(

I α
b−;g f

)
(x2)

< ∞, ∀ x ∈ [
a, b∗] .

(4.5.36)
Therefore we get

(ψ1) ≤
⎛

⎝λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
b−;g f

)
(x2)

⎞

⎠ |y − x | , ∀x, y ∈ [
a, b∗] . (4.5.37)
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Call

0 < γ1 := λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
b−;g f

)
(x2)

, (4.5.38)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , ∀ x, y ∈ [
a, b∗] , γ1 ∈ (0, 1) .

(4.5.39)
Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(

I α
b−;g f

)
(x1)

2
(

I α
b−;g f

)
(x2)

+ λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
b−;g f

)
(x2)

< 1,

(4.5.40)

λ + ‖ f ‖∞ (g (b) − g (a))a

2� (α + 1)
(

I α
b−;g f

)
(x2)

<

(
I α
b−;g f

)
(x1)

2
(

I α
b−;g f

)
(x2)

, (4.5.41)

equivalently,

2λ
(
I α
b−;g f

)
(x2) + ‖ f ‖∞ (g (b) − g (a))a

� (α + 1)
<

(
I α
b−;g f

)
(x1) , (4.5.42)

which is possible for small λ, and small (g (b) − g (a)). That is γ ∈ (0, 1). So our
method solves (4.5.25).

(II) Let α /∈ N, α > 0 and �α� = m, a < b∗ < b, G ∈ ACm ([a, b]), with
0 �= G(m) ∈ L∞ ([a, b]). Here we consider the right generalized (Caputo type)
fractional derivative:

(
Dα

b−;gG
)
(x) = (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t) G(m) (t) dt, (4.5.43)

for any x ∈ [a, b] .

By Theorem 4.22 we get that
(

Dα
b−;gG

)
∈ C ([a, b]), in particular

(
Dα

b−;gG
)

∈ C ([a, b∗]). Here notice that
(

Dα
b−;gG

)
(b) = 0.

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
b−;gG (x1) = min Dα

b−;gG (x),
and Dα

b−;gG (x2) = max Dα
b−;gG (x), for x ∈ [a, b∗].

We assume that
Dα

b−;gG (x1) > 0. (4.5.44)

(i.e. Dα
b−;gG (x) > 0, ∀ x ∈ [a, b∗]).
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Furthermore ∥∥Dα
b−;gG

∥∥
∞,[a,b∗] = Dα

b−;gG (x2) . (4.5.45)

Here it is
J (x) = mx, m �= 0. (4.5.46)

The equation
J G (x) = 0, x ∈ [

a, b∗] , (4.5.47)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα
b−;gG (x2)

= 0, x ∈ [
a, b∗] . (4.5.48)

Notice that

Dα
b−;g

(
G (x)

2Dα
b−;gG (x2)

)

= Dα
b−;gG (x)

2Dα
b−;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [

a, b∗] . (4.5.49)

We call

A (x) := Dα
b−;gG (x)

2Dα
b−;gG (x2)

, ∀ x ∈ [
a, b∗] . (4.5.50)

We notice that

0 <
Dα

b−;gG (x1)

2Dα
b−;gG (x2)

≤ A (x) ≤ 1

2
. (4.5.51)

Hence it holds

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα
b−;gG (x1)

2Dα
b−;gG (x2)

=: γ0, ∀ x ∈ [
a, b∗] . (4.5.52)

Clearly γ0 ∈ (0, 1) .

We have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [
a, b∗] . (4.5.53)

Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a, b∗] , (4.5.54)

and 0 < λ < 1
2 .
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Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

b−;gG (x2)
) |x − y| , ∀ x, y ∈ [

a, b∗] . (4.5.55)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀x, y ∈ [
a, b∗] .

(4.5.56)
We observe that

∣∣Dα
b−;gG (x)

∣∣ ≤ 1

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t)

∣∣G(m) (t)
∣∣ dt

≤ 1

� (m − α)

(∫ b

x
(g (t) − g (x))m−α−1 g′ (t) dt

) ∥
∥G(m)

∥
∥∞

= 1

� (m − α)

(g (b) − g (x))m−α

(m − α)

∥∥G(m)
∥∥∞

= 1

� (m − α + 1)
(g (b) − g (x))m−α

∥∥G(m)
∥∥∞ ≤ (g (b) − g (a))m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ .

(4.5.57)
That is

∣∣Dα
b−;gG (x)

∣∣ ≤ (g (b) − g (a))m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < ∞, ∀ x ∈ [a, b] . (4.5.58)

Hence, ∀ x ∈ [a, b∗] we get that

|A (x)| =
∣
∣∣Dα

b−;gG (x)

∣
∣∣

2Dα
b−;gG (x2)

≤ (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−;gG (x2)

< ∞. (4.5.59)

Consequently we observe

(ξ2) ≤
(

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−;gG (x2)

)

|y − x | , ∀ x, y ∈ [
a, b∗] .

(4.5.60)
Call

0 < γ1 := λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥G(m)
∥∥∞

Dα
b−;gG (x2)

, (4.5.61)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
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We proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , where γ1 ∈ (0, 1) , ∀x, y ∈ [
a, b∗] .

(4.5.62)

Next we call and need

0 < γ := γ0 +γ1 = 1− Dα
b−;gG (x1)

2Dα
b−;gG (x2)

+λ+ (g (b) − g (a))m−α

2� (m − α + 1)

∥
∥G(m)

∥
∥∞

Dα
b−;gG (x2)

< 1,

(4.5.63)
equivalently we find,

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥
∥G(m)

∥
∥∞

Dα
b−;gG (x2)

<
Dα

b−;gG (x1)

2Dα
b−;gG (x2)

, (4.5.64)

equivalently,

2λDα
b−;gG (x2) + (g (b) − g (a))m−α

� (m − α + 1)

∥∥G(m)
∥∥∞ < Dα

b−;gG (x1) , (4.5.65)

which is possible for small λ, (g (b) − g (a)).
That is γ ∈ (0, 1). Hence Eq. (4.5.47) can be solved with our presented iterative

algorithms.
Conclusion:
Our presented earlier semilocal fixed point iterative algorithms, see Theorem

4.12, can apply in the above two generalized fractional settings since the following
inequalities have been fulfilled:

‖1 − A (x)‖∞ ≤ γ0, (4.5.66)

and

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (4.5.67)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (4.5.68)

for all x, y ∈ [a, b∗], where a < b∗ < b.
The specific functions A (x), F (x) have been described above.
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Chapter 5
Approximating Fixed Points
and k-Fractional Calculus

We approximate fixed points of some iterative methods on a generalized Banach
space setting. Earlier studies such as [6–8, 13] require that the operator involved
is Fréchet-differentiable. In the present study we assume that the operator is only
continuous. This way we extend the applicability of these methods to include gener-
alized fractional calculus and problems from other areas. Some applications include
generalized fractional calculus involving the Riemann-Liouville fractional integral
and the Caputo fractional derivative. Fractional calculus is very important for its
applications in many applied sciences. It follows [5].

5.1 Introduction

Many problems in Computational sciences can be formulated as an operator equation
using Mathematical Modelling [8, 11, 14–16]. The fixed points of these operators
can rarely be found in closed form. That is why most solution methods are usually
iterative. The semilocal convergence is, based on the information around an initial
point, to give conditions ensuring the convergence of the method.

We present a semilocal convergence analysis for some iterative methods on a
generalized Banach space setting to approximate fixed point or a zero of an operator.
A generalized norm is defined to be an operator from a linear space into a partially
order Banach space (to be precised in Sect. 5.2). Earlier studies such as [6–8, 13] for
Newton’s method have shown that a more precise convergence analysis is obtained
when compared to the real norm theory. However, the main assumption is that the
operator involved is Fréchet-differentiable. This hypothesis limits the applicability of
Newton’s method. In the present study we only assume the continuity of the operator.
This may be expand the applicability of these methods.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_5

75



76 5 Approximating Fixed Points and k-Fractional Calculus

The rest of the chapter is organized as follows: Sect. 5.2 contains the basic concepts
on generalized Banach spaces and auxiliary results on inequalities and fixed points.
In Sect. 5.3 we present the semilocal convergence analysis of these methods. Finally,
in the concluding Sects. 5.4 and 5.5, we present special cases and applications in
generalized fractional calculus.

5.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [6–8, 13], and the references there in.

Definition 5.1 A generalized Banach space is a triplet (x, E, / · /) such that
(i) X is a linear space over R (C).
(ii) E = (E, K , ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(ii3) The norm ‖·‖ is monotone on K .
(iii) The operator / · / : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · / · /.

Remark 5.2 The operator / · / is called a generalized norm. In view of (iii) and
(ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts will be
understood with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
. (5.2.1)

Definition 5.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, / · /) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E, E) , /Qx/ ≤ P/x/ for each x ∈ X} . (5.2.2)

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0) (5.2.3)
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is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn. (5.2.4)

We need some auxiliary results on inequations.

Lemma 5.4 Let (E, K , ‖·‖) be a partially ordered Banach space, ξ ∈ K and
M, N ∈ L+ (E, E).

(i) Suppose there exist r ∈ K such that

R (r) := (M + N ) r + ξ ≤ r (5.2.5)

and
(M + N )k r → 0 as k → ∞. (5.2.6)

Then, b := R∞ (0) is well defined satisfies the equation t = R (t) and is the smaller
than any solution of the inequality R (s) ≤ s.

(ii) Suppose there exist q ∈ K and θ ∈ (0, 1) such that R (q) ≤ θq, then there
exists r ≤ q satisfying (i).

Proof (i) Define sequence {bn} by bn = Rn (0). Then, we have by (5.2.5) that
b1 = R (0) = ξ ≤ r ⇒ b1 ≤ r. Suppose that bk ≤ r for each k = 1, 2, . . . , n.
Then, we have by (5.2.5) and the inductive hypothesis that bn+1 = Rn+1 (0) =
R (Rn (0)) = R (bn) = (M + N ) bn +ξ ≤ (M + N ) r +ξ ≤ r ⇒ bn+1 ≤ r . Hence,
sequence {bn} is bounded above by r . Set Pn = bn+1 − bn . We shall show that

Pn ≤ (M + N )n r for each n = 1, 2, . . . (5.2.7)

We have by the definition of Pn and (5.2.6) that

P1 = R2 (0) − R (0) = R (R (0)) − R (0)

= R (ξ) − R (0) =
∫ 1

0
R′ (tξ) ξdt ≤

∫ 1

0
R′ (ξ) ξdt

≤
∫ 1

0
R′ (r) rdt ≤ (M + N ) r,

which shows (5.2.7) for n = 1. Suppose that (5.2.7) is true for k = 1, 2, . . . , n.

Then, we have in turn by (5.2.6) and the inductive hypothesis that

Pk+1 = Rk+2 (0) − Rk+1 (0) = Rk+1 (R (0)) − Rk+1 (0) =

Rk+1 (ξ) − Rk+1 (0) = R
(
Rk (ξ)

) − R
(
Rk (0)

) =
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∫ 1

0
R′ (Rk (0) + t

(
Rk (ξ) − Rk (0)

)) (
Rk (ξ) − Rk (0)

)
dt ≤

R′ (Rk (ξ)
) (

Rk (ξ) − Rk (0)
) = R′ (Rk (ξ)

) (
Rk+1 (0) − Rk (0)

) ≤

R′ (r)
(
Rk+1 (0) − Rk (0)

) ≤ (M + N ) (M + N )k r = (M + N )k+1 r,

which completes the induction for (5.2.7). It follows that {bn} is a complete
sequence in a Banach space and as such it converges to some b. Notice that
R (b) = R (limn→∞ Rn (0)) = limn→∞ Rn+1 (0) = b ⇒ b solves the equation
R (t) = t . We have that bn ≤ r ⇒ b ≤ r , where r a solution of R (r) ≤ r . Hence, b
is smaller than any solution of R (s) ≤ s.

(ii) Define sequences {vn}, {wn} by v0 = 0, vn+1 = R (vn), w0 = q, wn+1 =
R (wn). Then, we have that

0 ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ q, (5.2.8)

wn − vn ≤ θn (q − vn)

and sequence {vn} is bounded above by q. Hence, it converges to some r with r ≤ q.
We also get by (5.2.8) that wn − vn → 0 as n → ∞ ⇒ wn → r as n → ∞. �

We also need the auxiliary result for computing solutions of fixed point problems.

Lemma 5.5 Let (X, (E, K , ‖·‖) , / · /) be a generalized Banach space, and P ∈
B (Q) be a bound for Q ∈ L (X, X). Suppose there exists y ∈ X and q ∈ K such
that

Pq + /y/ ≤ q and Pkq → 0 as k → ∞. (5.2.9)

Then, z = T ∞ (0), T (x) := Qx + y is well defined and satisfies: z = Qz + y
and /z/ ≤ P/z/ + /y/ ≤ q. Moreover, z is the unique solution in the subspace
{x ∈ X |∃ θ ∈ R : {x} ≤ θq} .

The proof can be found in [13, Lemma 3.2].

5.3 Semilocal Convergence

Let (X, (E, K , ‖·‖) , / · /) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by a method starting at a point x0 ∈ D. The results are
presented for an operator F = J G, where J ∈ L (Y, X). The iterates are determined
through a fixed point problem:

xn+1 = xn + yn , A (xn) yn + F (xn) = 0 (5.3.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .
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Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x − x0/ ≤ r}

for some r ∈ K .
Next, we present the semilocal convergence analysis of method (5.3.1) using the

preceding notation.

Theorem 5.6 Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − A (x) (y − x) / ≤ N/y − x/.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /F (x0) / ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (5.3.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r).

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,

where

an−1 := /xn − xn−1/ for each n = 1, 2, . . .
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Proof Let us define for each n ∈ N the statement:
(In) xn ∈ X and rn ∈ K are well defined and satisfy

rn + an−1 ≤ rn−1.

We use induction to show (In). The statement (I1) is true: By Lemma 5.4 and (H3),
(H5) there exists q ≤ r such that:

Mq + /F (x0) / = q and Mkq ≤ Mkr → 0 as k → ∞.

Hence, by Lemma 5.5 x1 is well defined and we have a0 ≤ q. Then, we get the
estimate

P1 (r − q) = M (r − q) + Nr0

≤ Mr − Mq + Nr = R0 (r) − q

≤ R0 (r) − q = r − q.

It follows with Lemma 5.4 that r1 is well defined and

r1 + a0 ≤ r − q + q = r = r0.

Suppose that (I j ) is true for each j = 1, 2, . . . , n. We need to show the existence of
xn+1 and to obtain a bound q for an . To achieve this notice that:

Mrn + N (rn−1 − rn) = Mrn + Nrn−1 − Nrn = Pn (rn) − Nrn ≤ rn.

Then, it follows from Lemma 5.4 that there exists q ≤ rn such that

q = Mq + N (rn−1 − rn) and (M + N )k q → 0, as k → ∞. (5.3.3)

By (I j ) it follows that

bn = /xn − x0/ ≤
n−1∑

j=0

a j ≤
n−1∑

j=0

(
r j − r j+1

) = r − rn ≤ r.

Hence, xn ∈ U (x0, r) ⊂ D and by (H1) M is a bound for I − A (xn).
We can write by (H2) that

/F (xn) / = /F (xn) − F (xn−1) − A (xn−1) (xn − xn−1) /

≤ Nan−1 ≤ N (rn−1 − rn) . (5.3.4)
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It follows from (5.3.3) and (5.3.4) that

Mq + /F (xn) / ≤ q.

By Lemma 5.5, xn+1 is well defined and an ≤ q ≤ rn . In view of the definition of
rn+1 we have that

Pn+1 (rn − q) = Pn (rn) − q = rn − q,

so that by Lemma 5.4, rn+1 is well defined and

rn+1 + an ≤ rn − q + q = rn,

which proves (In+1). The induction for (In) is complete. Let m ≥ n, then we obtain
in turn that

/xm+1 − xn/ ≤
m∑

j=n

a j ≤
m∑

j=n

(
r j − r j+1

) = rn − rm+1 ≤ rn. (5.3.5)

Moreover, we get inductively the estimate

rn+1 = Pn+1 (rn+1) ≤ Pn+1 (rn) ≤ (M + N ) rn ≤ · · · ≤ (M + N )n+1 r.

It follows from (H5) that {rn} is a null-sequence. Hence, {xn} is a complete sequence
in a Banach space X by (5.3.5) and as such it converges to some x∗ ∈ X . By letting
m → ∞ in (5.3.5) we deduce that x∗ ∈ U (xn, rn). Furthermore, (5.3.4) shows that
x∗ is a zero of F . Hence, (C1) and (C2) are proved.

In view of the estimate
Rn (rn) ≤ Pn (rn) ≤ rn

the apriori, bound of (C3) is well defined by Lemma 5.4. That is sn is smaller in
general than rn . The conditions of Theorem 5.6 are satisfied for xn replacing x0.
A solution of the inequality of (C2) is given by sn (see (5.3.4)). It follows from
(5.3.5) that the conditions of Theorem 5.6 are easily verified. Then, it follows from
(C1) that x∗ ∈ U (xn, sn) which proves (C3). �

In general the aposterior, estimate is of interest. Then, condition (H5) can be
avoided as follows:

Proposition 5.7 Suppose: condition (H1) of Theorem 5.6 is true.
(H′

3) There exist s ∈ K , θ ∈ (0, 1) such that

R0 (s) = (M + N ) s + /F (x0) / ≤ θs.

(H′
4) U (x0, s) ⊂ D.
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Then, there exists r ≤ s satisfying the conditions of Theorem 5.6. Moreover, the
zero x∗ of F is unique in U (x0, s).

Remark 5.8 (i) Notice that by Lemma 5.4 R∞
n (0) is the smallest solution of

Rn (s) ≤ s. Hence any solution of this inequality yields on upper estimate for R∞
n (0).

Similar inequalities appear in (H2) and (H′
2).

(ii) The weak assumptions of Theorem 5.6 do not imply the existence of A (xn)
−1.

In practice the computation of T ∞
n (0) as a solution of a linear equation is no problem

and the computation of the expensive or impossible to compute in general A (xn)
−1

is not needed.
(iii) We can used the following result for the computation of the aposteriori esti-

mates. The proof can be found in [13, Lemma 4.2] by simply exchanging the defin-
itions of R.

Lemma 5.9 Suppose that the conditions of Theorem 5.6 are satisfied. If s ∈ K is a
solution of Rn (s) ≤ s, then q := s −an ∈ K and solves Rn+1 (q) ≤ q. This solution
might be improved by Rk

n+1 (q) ≤ q for each k = 1, 2, . . . .

5.4 Special Cases and Applications

Application 5.10 The results obtained in earlier studies such as [6–8, 13] require
that operator F (i.e. G) is Fré chet-differentiable. This assumption limits the applica-
bility of the earlier results. In the present study we only require that F is a continu-
ous operator. Hence, we have extended the applicability of these methods to include
classes of operators that are only continuous.

Example 5.11 The j-dimensional space R j is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 5.6 look like.

Theorem 5.12 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (5.4.1)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (5.4.1).
Then, the conclusions of Theorem 5.6 hold.
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5.5 Applications to k-Fractional Calculus

Background
We apply Theorem 5.12 in this section.
Let f ∈ L∞ ([a, b]), the k-left Riemann-Liouville fractional integral ([16]) of

order α > 0 is defined as follows:

k Jα
a+ f (x) = 1

k�k (α)

∫ x

a
(x − t)

α
k −1 f (t) dt, (5.5.1)

all x ∈ [a, b], where k > 0, and �k (a) is the k-gamma function given by �k (α) =
∫ ∞
0 tα−1e− tk

k dt .
It holds ([4]) �k (α + k) = α�k (α), � (α) = limk→1�k (α), and we set

k Jα
a+ f (x) = f (x).
Similarly, we define the k-right Riemann-Liouville fractional integral as

k Jα
b− f (x) = 1

k�k (α)

∫ b

x
(t − x)

α
k −1 f (t) dt, (5.5.2)

for all x ∈ [a, b], and we set k Jα
b− f (x) = f (x).

Results
(I) Here we work with k Jα

a+ f (x). We observe that

∣∣
k Jα

a+ f (x)
∣∣ ≤ 1

k�k (α)

∫ x

a
(x − t)

α
k −1 | f (t)| dt

≤ ‖ f ‖∞
k�k (α)

∫ x

a
(x − t)

α
k −1 dt = ‖ f ‖∞

k�k (α)

(x − a)
α
k

α
k

(5.5.3)

= ‖ f ‖∞
�k (α + k)

(x − a)
α
k ≤ ‖ f ‖∞

�k (α + k)
(b − a)

α
k .

We have proved that
k Jα

a+ f (a) = 0, (5.5.4)

and
∥∥

k Jα
a+ f

∥∥∞ ≤ (b − a)
α
k

�k (α + k)
‖ f ‖∞ , (5.5.5)

proving that k Jα
a+ is a bounded linear operator.

By [3], p. 388, we get that
(

k Jα
a+ f

)
is a continuous function over [a, b] and in

particular continuous over [a∗, b], where a < a∗ < b.
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Thus, there exist x1, x2 ∈ [a∗, b] such that

(
k Jα

a+ f
)
(x1) = min

(
k Jα

a+ f
)
(x) , (5.5.6)

(
k Jα

a+ f
)
(x2) = max

(
k Jα

a+ f
)
(x) , x ∈ [

a∗, b
]
. (5.5.7)

We assume that (
k Jα

a+ f
)
(x1) > 0. (5.5.8)

Hence ∥∥
k Jα

a+ f
∥∥∞,[a∗,b] = (

k Jα
a+ f

)
(x2) > 0. (5.5.9)

Here it is
J (x) = mx , m �= 0. (5.5.10)

Therefore the equation
J f (x) = 0, x ∈ [

a∗, b
]
, (5.5.11)

has the same solutions as the equation

F (x) := J f (x)

2
(

k Jα
a+ f

)
(x2)

= 0, x ∈ [
a∗, b

]
. (5.5.12)

Notice that

k Jα
a+

(
f

2
(

k Jα
a+ f

)
(x2)

)

(x) =
(

k Jα
a+ f

)
(x)

2
(

k Jα
a+ f

)
(x2)

≤ 1

2
< 1, x ∈ [

a∗, b
]
. (5.5.13)

Call

A (x) :=
(

k Jα
a+ f

)
(x)

2
(

k Jα
a+ f

)
(x2)

, ∀ x ∈ [
a∗, b

]
. (5.5.14)

We notice that

0 <

(
k Jα

a+ f
)
(x1)

2
(

k Jα
a+ f

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a∗, b
]
. (5.5.15)

Hence it holds

|1 − A (x)| = 1 − A (x) ≤ 1 −
(

k Jα
a+ f

)
(x1)

2
(

k Jα
a+ f

)
(x2)

=: γ0, ∀ x ∈ [
a∗, b

]
. (5.5.16)

Clearly γ0 ∈ (0, 1).
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We have proved that

|1 − A (x)| ≤ γ0, ∀ x ∈ [
a∗, b

]
. (5.5.17)

Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a∗, b

]
, (5.5.18)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(

k Jα
a+ f

)
(x2) |x − y| , all x, y ∈ [

a∗, b
]
. (5.5.19)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a∗, b

]
.

(5.5.20)
We have that

∣
∣(

k Jα
a+ f

)
(x)

∣
∣ ≤ (b − a)

α
k

�k (α + k)
‖ f ‖∞ < ∞, ∀ x ∈ [

a∗, b
]
. (5.5.21)

Hence

|A (x)| =
∣∣(

k Jα
a+ f

)
(x)

∣∣

2
(

k Jα
a+ f

)
(x2)

≤ (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
a+ f

)
(x2)

< ∞, ∀ x ∈ [
a∗, b

]
.

(5.5.22)
Therefore we get

(ψ1) ≤
(

λ + (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
a+ f

)
(x2)

)

|y − x | , ∀ x, y ∈ [
a∗, b

]
. (5.5.23)

Call

0 < γ1 := λ + (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
a+ f

)
(x2)

, (5.5.24)

choosing (b − a) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , ∀ x, y ∈ [
a∗, b

]
, γ1 ∈ (0, 1) .

(5.5.25)
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Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(

k Jα
a+ f

)
(x1)

2
(

k Jα
a+ f

)
(x2)

+ λ + (b − a)
a
k ‖ f ‖∞

2�k (α + k)
(

k Jα
a+ f

)
(x2)

< 1,

(5.5.26)
equivalently,

λ + (b − a)
a
k ‖ f ‖∞

2�k (α + k)
(

k Jα
a+ f

)
(x2)

<

(
k Jα

a+ f
)
(x1)

2
(

k Jα
a+ f

)
(x2)

, (5.5.27)

equivalently,

2λ
(

k Jα
a+ f

)
(x2) + (b − a)

α
k ‖ f ‖∞

�k (α + k)
<

(
k Jα

a+ f
)
(x1) , (5.5.28)

which is possible for small λ, (b − a). That is γ ∈ (0, 1). So our numerical method
converges and solves (5.5.11).

II) Here we act on k Jα
b− f (x), see (5.5.2).

Let f ∈ L∞ ([a, b]). We have that

∣∣
k Jα

b− f (x)
∣∣ ≤ 1

k�k (α)

∫ b

x
(t − x)

α
k −1 | f (t)| dt

≤ ‖ f ‖∞
k�k (α)

∫ b

x
(t − x)

α
k −1 dt = ‖ f ‖∞

k�k (α)

(b − x)
α
k

α
k

= ‖ f ‖∞
�k (α + k)

(b − x)
α
k ≤ ‖ f ‖∞

�k (α + k)
(b − a)

α
k . (5.5.29)

We observe that
k Jα

b− f (b) = 0, (5.5.30)

and
∥∥

k Jα
b− f

∥∥∞ ≤ (b − a)
α
k

�k (α + k)
‖ f ‖∞ . (5.5.31)

That is k Jα
b− is a bounded linear operator.

Let here a < b∗ < b.
By [4]we get that k Jα

b− f is continuous over [a, b], and in particular it is continuous
over [a, b∗].

Thus, there exist x1, x2 ∈ [a, b∗] such that
(

k Jα
b− f

)
(x1) = min

(
k Jα

b− f
)
(x) , (5.5.32)

(
k Jα

b− f
)
(x2) = max

(
k Jα

b− f
)
(x) , x ∈ [

a, b∗] .
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We assume that (
k Jα

b− f
)
(x1) > 0. (5.5.33)

Hence ∥∥
k Jα

b− f
∥∥∞,[a∗,b] = (

k Jα
b− f

)
(x2) > 0. (5.5.34)

Here it is
J (x) = mx , m �= 0. (5.5.35)

Therefore the equation
J f (x) = 0, x ∈ [

a, b∗] , (5.5.36)

has the same solutions as the equation

F (x) := J f (x)

2
(

k Jα
b− f

)
(x2)

= 0, x ∈ [
a, b∗] . (5.5.37)

Notice that

k Jα
b−

(
f

2
(

k Jα
b− f

)
(x2)

)

(x) =
(

k Jα
b− f

)
(x)

2
(

k Jα
b− f

)
(x2)

≤ 1

2
< 1, x ∈ [

a, b∗] . (5.5.38)

Call

A (x) :=
(

k Jα
b− f

)
(x)

2
(

k Jα
b− f

)
(x2)

, ∀ x ∈ [
a, b∗] . (5.5.39)

We notice that

0 <

(
k Jα

b− f
)
(x1)

2
(

k Jα
b− f

)
(x2)

≤ A (x) ≤ 1

2
, ∀ x ∈ [

a, b∗] . (5.5.40)

Hence we have

|1 − A (x)| = 1 − A (x) ≤ 1 −
(

k Jα
b− f

)
(x1)

2
(

k Jα
b− f

)
(x2)

=: γ0, ∀ x ∈ [
a, b∗] . (5.5.41)

Clearly γ0 ∈ (0, 1).
We have proved that

|1 − A (x)| ≤ γ0, ∀ x ∈ [
a, b∗] , γ0 ∈ (0, 1) . (5.5.42)
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Next we assume that F (x) is a contraction, i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a, b∗] , (5.5.43)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(

k Jα
b− f

)
(x2) |x − y| , all x, y ∈ [

a, b∗] . (5.5.44)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ψ1) , ∀ x, y ∈ [
a, b∗] .

(5.5.45)
We have that

∣∣(
k Jα

b− f
)
(x)

∣∣ ≤ (b − a)
α
k

�k (α + k)
‖ f ‖∞ < ∞, ∀ x ∈ [

a, b∗] . (5.5.46)

Hence

|A (x)| =
∣∣(

k Jα
b− f

)
(x)

∣∣

2
(

k Jα
b− f

)
(x2)

≤ (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
b− f

)
(x2)

< ∞, ∀ x ∈ [
a, b∗] .

(5.5.47)
Therefore we get

(ψ1) ≤
(

λ + (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
b− f

)
(x2)

)

|y − x | , ∀ x, y ∈ [
a, b∗] . (5.5.48)

Call

0 < γ1 := λ + (b − a)
α
k ‖ f ‖∞

2�k (α + k)
(

k Jα
b− f

)
(x2)

, (5.5.49)

choosing (b − a) small enough we can make γ1 ∈ (0, 1).
We have proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , ∀ x, y ∈ [
a, b∗] , γ1 ∈ (0, 1) .

(5.5.50)
Next we call and we need that

0 < γ := γ0 + γ1 = 1 −
(

k Jα
b− f

)
(x1)

2
(

k Jα
b− f

)
(x2)

+ λ + (b − a)
a
k ‖ f ‖∞

2�k (α + k)
(

k Jα
b− f

)
(x2)

< 1,

(5.5.51)
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equivalently,

λ + (b − a)
a
k ‖ f ‖∞

2�k (α + k)
(

k Jα
b− f

)
(x2)

<

(
k Jα

b− f
)
(x1)

2
(

k Jα
b− f

)
(x2)

, (5.5.52)

equivalently,

2λ
(

k Jα
b− f

)
(x2) + (b − a)

α
k ‖ f ‖∞

�k (α + k)
<

(
k Jα

b− f
)
(x1) , (5.5.53)

which is possible for small λ, (b − a). That is γ ∈ (0, 1). So our numerical method
converges and solves (5.5.36).

(III) Here we deal with the fractional M. Caputo-Fabrizio derivative defined as
follows (see [10]):

let 0 < α < 1, f ∈ C1 ([0, b]),

C F Dα
∗ f (t) = 1

1 − α

∫ t

0
exp

(
− α

1 − α
(t − s)

)
f ′ (s) ds, (5.5.54)

for all 0 ≤ t ≤ b.

Call
γ := α

1 − α
> 0. (5.5.55)

I.e.
C F Dα

∗ f (t) = 1

1 − α

∫ t

0
e−γ(t−s) f ′ (s) ds, 0 ≤ t ≤ b. (5.5.56)

We notice that

∣∣C F Dα
∗ f (t)

∣∣ ≤ 1

1 − α

(∫ t

0
e−γ(t−s)ds

) ∥∥ f ′∥∥∞

= e−γt

α

(
eγt − 1

) ∥∥ f ′∥∥∞ = 1

α

(
1 − e−γt

) ∥∥ f ′∥∥∞ ≤
(
1 − e−γb

α

) ∥∥ f ′∥∥∞ .

(5.5.57)
That is (

C F Dα
∗ f

)
(0) = 0, (5.5.58)

and
∣∣C F Dα

∗ f (t)
∣∣ ≤

(
1 − e−γb

α

) ∥∥ f ′∥∥∞ , ∀ t ∈ [0, b] . (5.5.59)

Notice here that 1 − e−γt , t ≥ 0 is an increasing function.
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Thus the smaller the t , the smaller it is 1 − e−γt . We rewrite

C F Dα
∗ f (t) = e−γt

1 − α

∫ t

0
eγs f ′ (s) ds, (5.5.60)

proving that
(

C F Dα∗ f
)
is a continuous function over [0, b], in particular it is contin-

uous over [a, b], where 0 < a < b.

Therefore there exist x1, x2 ∈ [a, b] such that

C F Dα
∗ f (x1) = min C F Dα

∗ f (x) , (5.5.61)

and
C F Dα

∗ f (x2) = max C F Dα
∗ f (x) , for x ∈ [a, b] .

We assume that
C F Dα

∗ f (x1) > 0. (5.5.62)

(i.e. C F Dα∗ f (x) > 0, ∀ x ∈ [a, b]).
Furthermore ∥

∥C F Dα
∗ f G

∥
∥∞,[a,b] =C F Dα

∗ f (x2) . (5.5.63)

Here it is
J (x) = mx , m �= 0. (5.5.64)

The equation
J f (x) = 0, x ∈ [a, b] , (5.5.65)

has the same set of solutions as the equation

F (x) := J f (x)
C F Dα∗ f (x2)

= 0, x ∈ [a, b] . (5.5.66)

Notice that

C F Dα
∗

(
f (x)

2C F Dα∗ f (x2)

)
=

C F Dα∗ f (x)

2C F Dα∗ f (x2)
≤ 1

2
< 1, ∀ x ∈ [a, b] . (5.5.67)

We call

A (x) :=
C F Dα∗ f (x)

2C F Dα∗ f (x2)
, ∀ x ∈ [a, b] . (5.5.68)

We notice that

0 <
C F Dα∗ f (x1)

2C F Dα∗ f (x2)
≤ A (x) ≤ 1

2
. (5.5.69)
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Furthermore it holds

|1 − A (x)| = 1 − A (x) ≤ 1 −
C F Dα∗ f (x1)

2C F Dα∗ f (x2)
=: γ0, ∀ x ∈ [a, b] . (5.5.70)

Clearly γ0 ∈ (0, 1).
We have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a, b] . (5.5.71)

Next we assume that F (x) is a contraction over [a, b], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [a, b] , (5.5.72)

and 0 < λ < 1
2 .

Equivalently we have

|J f (x) − J f (y)| ≤ 2λ
(

C F Dα
∗ f (x2)

) |x − y| , ∀ x, y ∈ [a, b] . (5.5.73)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀ x, y ∈ [a, b] .
(5.5.74)

Here we have

∣∣(C F Dα
∗ f

)
(x)

∣∣ ≤
(
1 − e−γb

α

) ∥∥ f ′∥∥∞ , ∀ t ∈ [a, b] . (5.5.75)

Hence, ∀ x ∈ [a, b] we get that

|A (x)| =
∣∣C F Dα∗ f (x)

∣∣

2
(

C F Dα∗ f
)
(x2)

≤
(
1 − e−γb

) ∥∥ f ′∥∥∞
2α

(
C F Dα∗ f

)
(x2)

< ∞. (5.5.76)

Consequently we observe

(ξ2) ≤
(

λ +
(
1 − e−γb

) ∥∥ f ′∥∥∞
2α

(
C F Dα∗ f

)
(x2)

)

|y − x | , ∀ x, y ∈ [a, b] . (5.5.77)

Call

0 < γ1 := λ +
(
1 − e−γb

) ∥∥ f ′∥∥∞
2α

(
C F Dα∗ f

)
(x2)

, (5.5.78)

choosing b small enough, we can make γ1 ∈ (0, 1).
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We have proved

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , γ1 ∈ (0, 1) , ∀ x, y ∈ [a, b] .
(5.5.79)

Next we call and need

0 < γ := γ0 + γ1 = 1 −
C F Dα∗ f (x1)

2C F Dα∗ f (x2)
+ λ +

(
1 − e−γb

) ∥∥ f ′∥∥∞
2α

(
C F Dα∗ f

)
(x2)

< 1, (5.5.80)

equivalently,

λ +
(
1 − e−γb

) ∥
∥ f ′∥∥∞

2α
(

C F Dα∗ f
)
(x2)

<
C F Dα∗ f (x1)

2C F Dα∗ f (x2)
, (5.5.81)

equivalently,

2λC F Dα
∗ f (x2) +

(
1 − e−γb

)

α

∥∥ f ′∥∥∞ <C F Dα
∗ f (x1) , (5.5.82)

which is possible for small λ, b.
We have proved that

γ = γ0 + γ1 ∈ (0, 1) . (5.5.83)

Hence Eq. (5.5.65) can be solved with our presented numerical methods.
Conclusion:
In all three applications we have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , (5.5.84)

and

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (5.5.85)

where γ1 ∈ (0, 1), and

γ = γ0 + γ1 ∈ (0, 1) , (5.5.86)

for all x, y ∈ [a∗, b], [a, b∗], [a, b], respectively.
Consequently, our presented Numerical methods here, Theorem 5.12, apply to

solve

f (x) = 0. (5.5.87)
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Chapter 6
Iterative Methods and Generalized
g-Fractional Calculus

We approximated solutions of some iterative methods on a generalized Banach
space setting in [5]. Earlier studies such as [8–13] the operator involved is Fréchet-
differentiable. In [5] we assumed that the operator is only continuous. This way we
extended the applicability of thesemethods to include generalized fractional calculus
and problems from other areas. In the present study applications include generalized
g-fractional calculus. Fractional calculus is very important for its applications in
many applied sciences. It follows [6].

6.1 Introduction

Many problems in Computational sciences can be formulated as an operator equation
using Mathematical Modelling [9, 11, 14–16]. The fixed points of these operators
can rarely be found in closed form. That is why most solution methods are usually
iterative. The semilocal convergence is, based on the information around an initial
point, to give conditions ensuring the convergence of the method.

We presented a semilocal convergence analysis for some iterative methods on a
generalized Banach space setting in [5] to approximate fixed point or a zero of an
operator. A generalized norm is defined to be an operator from a linear space into
a partially order Banach space (to be precised in Sect. 6.2). Earlier studies such as
[8–13] for Newton’s method have shown that a more precise convergence analysis
is obtained when compared to the real norm theory. However, the main assumption
is that the operator involved is Fréchet-differentiable. This hypothesis limits the
applicability of Newton’s method. In [5] study we only assumed the continuity of
the operator. This may be expanded the applicability of these methods.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_6
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The rest of the chapter is organized as follows: Sect. 6.2 contains the basic concepts
on generalized Banach spaces and the semilocal convergence analysis of these meth-
ods. Finally, in the concluding Sect. 6.3, we present special cases and applications in
generalized g-fractional calculus.

6.2 Generalized Banach Spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can
be found in [5, 7–13], and the references there in.

Definition 6.1 A generalized Banach space is a triplet (x, E, / · /) such that
(i) X is a linear space over R (C) .

(ii) E = (E, K , ‖·‖) is a partially ordered Banach space, i.e.
(ii1) (E, ‖·‖) is a real Banach space,
(ii2) E is partially ordered by a closed convex cone K ,
(iii3) The norm ‖·‖ is monotone on K .

(iii) The operator / · / : X → K satisfies
/x/ = 0 ⇔ x = 0, /θx/ = |θ| /x/,

/x + y/ ≤ /x/ + /y/ for each x, y ∈ X , θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · / · /.

Remark 6.2 The operator / · / is called a generalized norm. In view of (iii) and
(ii3) ‖·‖i , is a real norm. In the rest of this paper all topological concepts will be
understood with respect to this norm.

Let L
(
X j , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from X j to Y , where X and Y are Banach spaces. For X, Y partially ordered
L+

(
X j , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P
(
a1, . . . , a j

) ≤ P
(
b1, . . . , b j

)
.

Definition 6.3 The set of bounds for an operator Q ∈ L (X, X) on a generalized
Banach space (X, E, / · /) the set of bounds is defined to be:

B (Q) := {P ∈ L+ (E, E) , /Qx/ ≤ P/x/ for each x ∈ X} .

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = T n+1 (x0)

is well defined. We write in case of convergence

T ∞ (x0) := lim
(
T n (x0)

) = lim
n→∞xn.
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Let (X, (E, K , ‖·‖) , / · /) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X, Y ). A zero of
operator G is to be determined by a method starting at a point x0 ∈ D. The results are
presented for an operator F = J G, where J ∈ L (Y, X). The iterates are determined
through a fixed point problem:

xn+1 = xn + yn , A (xn) yn + F (xn) = 0 (6.2.1)

⇔ yn = T (yn) := (I − A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x − x0/ ≤ r}

for some r ∈ K .

Next, we state the semilocal convergence analysis of method (6.2.1) using the
preceding notation.

Theorem 6.4 [5] Let F : D ⊂ X, A (·) : D → L (X, Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I − A (x)) for each x ∈ D.

(H2) There exists an operator N ∈ L+ (E, E) satisfying for each x, y ∈ D

/F (y) − F (x) − A (x) (y − x) / ≤ N/y − x/.

(H3) There exists a solution r ∈ K of

R0 (t) := (M + N ) t + /F (x0) / ≤ t.

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T ∞
n (0) , Tn (y) := (I − A (xn)) y − F (xn) (6.2.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the
unique zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, . . .

rn = P∞
n (0) , Pn (t) = Mt + Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞
n (0) , Rn (t) = (M + N ) t + Nan−1,
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bn := /xn − x0/ ≤ r − rn ≤ r,

where
an−1 := /xn − xn−1/ for each n = 1, 2, . . .

Remark 6.5 The results obtained in earlier studies such as [8–13] require that opera-
tor F (i.e. G) is Fréchet-differentiable. This assumption limits the applicability of the
earlier results. In the present study we only require that F is a continuous operator.
Hence, we have extended the applicability of these methods to include classes of
operators that are only continuous.

Example 6.6 The j-dimensional space R
j is a classical example of a generalized

Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = R

j with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the cor-
responding matrix with absolute values. Similarly, we can define the “N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 6.4 look like.

Theorem 6.7 (H1) ‖I − A (x)‖ ≤ M for some M ≥ 0.
(H2) ‖F (y) − F (x) − A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M + N < 1,

r = ‖F (x0)‖
1 − (M + N )

. (6.2.3)

(H4) U (x0, r) ⊆ D.

(H5) (M + N )k r → 0 as k → ∞, where r is given by (6.2.3).
Then, the conclusions of Theorem 6.4 hold.

6.3 Applications to g-Fractional Calculus

We apply Theorem 6.7 in this section. Here basic concepts and facts come from [4]
and Chap.24. We need:

Definition 6.8 Let α > 0, α /∈ N, �α
 = m, �·
 the ceiling of the number. Here
g ∈ AC ([a, b]) (absolutely continuous functions) and g is strictly increasing. Let
G : [a, b] → R such that

(
G ◦ g−1

)(m) ◦ g ∈ L∞ ([a, b]).
We define the left generalized g-fractional derivative of G of order α as follows:

(
Dα

a+;gG
)
(x) :=

1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t)

(
G ◦ g−1)(m)

(g (t)) dt , (6.3.1)

a ≤ x ≤ b, where � is the gamma function.

http://dx.doi.org/10.1007/978-3-319-26721-0_24
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We also define the right generalized g-fractional derivative of G of order α as
follows: (

Dα
b−;gG

)
(x) :=

(−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t)

(
G ◦ g−1

)(m)
(g (t)) dt , (6.3.2)

a ≤ x ≤ b.

Both
(

Dα
a+;gG

)
,
(

Dα
b−;gG

)
∈ C ([a, b]).

(I) Let a < a∗ < b. In particular we have that
(

Dα
a+;gG

)
∈ C ([a∗, b]). We notice

that ∣∣(Dα
a+;gG

)
(x)

∣∣ ≤
∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

� (m − α)

(∫ x

a
(g (x) − g (t))m−α−1 g′ (t) dt

)
= (6.3.3)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

� (m − α)

(g (x) − g (a))m−α

(m − α)
=

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

� (m − α + 1)
(g (x) − g (a))m−α , ∀ x ∈ [a, b] .

We have proved that

∣∣(Dα
a+;gG

)
(x)

∣∣ ≤

∥∥
∥
(
G ◦ g−1

)(m) ◦ g
∥∥
∥∞,[a,b]

� (m − α + 1)
(g (x) − g (a))m−α

≤

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

� (m − α + 1)
(g (b) − g (a))m−α < ∞, ∀ x ∈ [a, b] , (6.3.4)

in particular true ∀ x ∈ [a∗, b] .
We obtain that (

Dα
a+;gG

)
(a) = 0. (6.3.5)

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
a+;gG (x1) = min Dα

a+;gG (x), and
Dα

a+;gG (x2) = max Dα
a+;gG (x), for x ∈ [a∗, b].

We assume that
Dα

a+;gG (x1) > 0. (6.3.6)



100 6 Iterative Methods and Generalized g-Fractional Calculus

(i.e. Dα
a+;gG (x) > 0, ∀ x ∈ [a∗, b]).

Furthermore ∥∥Dα
a+;gG

∥∥
∞,[a∗,b] = Dα

a+;gG (x2) . (6.3.7)

Here it is
J (x) = mx , m �= 0. (6.3.8)

The equation
J G (x) = 0, x ∈ [

a∗, b
]
, (6.3.9)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα
a+;gG (x2)

= 0, x ∈ [
a∗, b

]
. (6.3.10)

Notice that

Dα
a+;g

(
G (x)

2Dα
a+;gG (x2)

)

= Dα
a+;gG (x)

2Dα
a+;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [

a∗, b
]
. (6.3.11)

We call

A (x) := Dα
a+;gG (x)

2Dα
a+;gG (x2)

, ∀ x ∈ [
a∗, b

]
. (6.3.12)

We notice that

0 <
Dα

a+;gG (x1)

2Dα
a+;gG (x2)

≤ A (x) ≤ 1

2
. (6.3.13)

Hence it holds

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα
a+;gG (x1)

2Dα
a+;gG (x2)

=: γ0, ∀ x ∈ [
a∗, b

]
. (6.3.14)

Clearly γ0 ∈ (0, 1) .

We have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [
a∗, b

]
. (6.3.15)

Next we assume that F (x) is a contraction over [a∗, b], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀x, y ∈ [
a∗, b

]
, (6.3.16)

and 0 < λ < 1
2 .
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Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

a+;gG (x2)
) |x − y| , ∀ x, y ∈ [

a∗, b
]
. (6.3.17)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ1) , ∀ x, y ∈ [
a∗, b

]
.

(6.3.18)
Hence by (6.3.4), ∀ x ∈ [a∗, b] we get that

|A (x)| =
∣∣∣Dα

a+;gG (x)

∣∣∣

2Dα
a+;gG (x2)

≤ (g (b) − g (a))m−α

2� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

Dα
a+;gG (x2)

< ∞.

(6.3.19)
Consequently we observe

(ξ1) ≤
⎛

⎜
⎝λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

Dα
a+;gG (x2)

⎞

⎟
⎠ |y − x | , (6.3.20)

∀ x, y ∈ [a∗, b] .
Call

0 < γ1 := λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

Dα
a+;gG (x2)

, (6.3.21)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , where γ1 ∈ (0, 1) , ∀ x, y ∈ [
a∗, b

]
.

(6.3.22)

Next we call and need

0 < γ := γ0 + γ1 = 1 − Dα
a+;gG (x1)

2Dα
a+;gG (x2)

+ λ+

(g (b) − g (a))m−α

2� (m − α + 1)

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

Dα
a+;gG (x2)

< 1, (6.3.23)
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equivalently we find,

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

Dα
a+;gG (x2)

<
Dα

a+;gG (x1)

2Dα
a+;gG (x2)

, (6.3.24)

equivalently,

2λDα
a+;gG (x2) + (g (b) − g (a))m−α

� (m − α + 1)

∥∥∥
(
G ◦ g−1)(m) ◦ g

∥∥∥∞,[a,b]
< Dα

a+;gG (x1) ,

(6.3.25)
which is possible for small λ, (g (b) − g (a)).

That is γ ∈ (0, 1). Hence equation (6.3.9) can be solved with our presented
iterative algorithms.

Conclusion 6.9 (for (I))
Our presented earlier semilocal results, see Theorem 6.7, can apply in the above

generalized fractional setting for g (x) = x for each x ∈ [a, b] since the following
inequalities have been fulfilled:

‖1 − A (x)‖∞ ≤ γ0, (6.3.26)

and
|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (6.3.27)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (6.3.28)

for all x, y ∈ [a∗, b], where a < a∗ < b.
The specific functions A (x), F (x) have been described above, see (6.3.12) and

(6.3.10), respectively.

(II) Let a < b∗ < b. In particular we have that
(

Dα
b−;gG

)
∈ C ([a, b∗]). We

notice that ∣∣(Dα
b−;gG

)
(x)

∣∣ ≤
∥∥
∥
(
G ◦ g−1

)(m) ◦ g
∥∥
∥∞,[a,b]

� (m − α)

(∫ b

x
(g (t) − g (x))m−α−1 g′ (t) dt

)
= (6.3.29)
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∥∥
∥
(
G ◦ g−1

)(m) ◦ g
∥∥
∥∞,[a,b]

� (m − α + 1)
(g (b) − g (x))m−α ≤

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

� (m − α + 1)
(g (b) − g (a))m−α < ∞, ∀ x ∈ [a, b] , (6.3.30)

in particular true ∀ x ∈ [a, b∗] .
We obtain that (

Dα
b−;gG

)
(b) = 0. (6.3.31)

Therefore there exist x1, x2 ∈ [a, b∗] such that Dα
b−;gG (x1) = min Dα

b−;gG (x), and
Dα

b−;gG (x2) = max Dα
b−;gG (x), for x ∈ [a, b∗].

We assume that
Dα

b−;gG (x1) > 0. (6.3.32)

(i.e. Dα
b−;gG (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥
∥Dα

b−;gG
∥
∥

∞,[a,b∗] = Dα
b−;gG (x2) . (6.3.33)

Here it is
J (x) = mx , m �= 0. (6.3.34)

The equation
J G (x) = 0, x ∈ [

a, b∗] , (6.3.35)

has the same set of solutions as the equation

F (x) := J G (x)

2Dα
b−;gG (x2)

= 0, x ∈ [
a, b∗] . (6.3.36)

Notice that

Dα
b−;g

(
G (x)

2Dα
b−;gG (x2)

)

= Dα
b−;gG (x)

2Dα
b−;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [

a, b∗] . (6.3.37)

We call

A (x) := Dα
b−;gG (x)

2Dα
b−;gG (x2)

, ∀ x ∈ [
a, b∗] . (6.3.38)

We notice that

0 <
Dα

b−;gG (x1)

2Dα
b−;gG (x2)

≤ A (x) ≤ 1

2
. (6.3.39)
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Hence it holds

|1 − A (x)| = 1 − A (x) ≤ 1 − Dα
b−;gG (x1)

2Dα
b−;gG (x2)

=: γ0, ∀ x ∈ [
a, b∗] . (6.3.40)

Clearly γ0 ∈ (0, 1) .

We have proved that

|1 − A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [
a, b∗] . (6.3.41)

Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x) − F (y)| ≤ λ |x − y| ; ∀ x, y ∈ [
a, b∗] , (6.3.42)

and 0 < λ < 1
2 .

Equivalently we have

|J G (x) − J G (y)| ≤ 2λ
(
Dα

b−;gG (x2)
) |x − y| , ∀ x, y ∈ [

a, b∗] . (6.3.43)

We observe that

|F (y) − F (x) − A (x) (y − x)| ≤ |F (y) − F (x)| + |A (x)| |y − x | ≤

λ |y − x | + |A (x)| |y − x | = (λ + |A (x)|) |y − x | =: (ξ2) , ∀ x, y ∈ [
a, b∗] .

(6.3.44)
Hence by (6.3.30), ∀ x ∈ [a, b∗] we get that

|A (x)| =
∣∣∣Dα

b−;gG (x)

∣∣∣

2Dα
b−;gG (x2)

≤ (g (b) − g (a))m−α

2� (m − α + 1)

∥∥
∥
(
G ◦ g−1

)(m) ◦ g
∥∥
∥∞,[a,b]

Dα
b−;gG (x2)

< ∞.

(6.3.45)
Consequently we observe

(ξ2) ≤
⎛

⎜
⎝λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥
∥∥
(
G ◦ g−1

)(m) ◦ g
∥
∥∥∞,[a,b]

Dα
b−;gG (x2)

⎞

⎟
⎠ |y − x | , (6.3.46)

∀ x, y ∈ [a, b∗] .
Call

0 < γ1 := λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

Dα
b−;gG (x2)

, (6.3.47)

choosing (g (b) − g (a)) small enough we can make γ1 ∈ (0, 1).
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We proved that

|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , where γ1 ∈ (0, 1) , ∀ x, y ∈ [
a, b∗] .

(6.3.48)

Next we call and need

0 < γ := γ0 + γ1 = 1 − Dα
b−;gG (x1)

2Dα
b−;gG (x2)

+ λ+

(g (b) − g (a))m−α

2� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

Dα
b−;gG (x2)

< 1, (6.3.49)

equivalently we find,

λ + (g (b) − g (a))m−α

2� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

Dα
b−;gG (x2)

<
Dα

b−;gG (x1)

2Dα
b−;gG (x2)

, (6.3.50)

equivalently,

2λDα
b−;gG (x2) + (g (b) − g (a))m−α

� (m − α + 1)

∥∥∥
(
G ◦ g−1

)(m) ◦ g
∥∥∥∞,[a,b]

< Dα
b−;gG (x1) ,

(6.3.51)
which is possible for small λ, (g (b) − g (a)).

That is γ ∈ (0, 1). Hence equation (6.3.35) can be solved with our presented
iterative algorithms.

Conclusion 6.10 (for (II))
Our presented earlier semilocal iterative methods, see Theorem 6.7, can apply in

the above generalized fractional setting for g (x) = x for each x ∈ [a, b] since the
following inequalities have been fulfilled:

‖1 − A (x)‖∞ ≤ γ0, (6.3.52)

and
|F (y) − F (x) − A (x) (y − x)| ≤ γ1 |y − x | , (6.3.53)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (6.3.54)

for all x, y ∈ [a, b∗], where a < b∗ < b.
The specific functions A (x), F (x) have been described above, see (6.3.38) and

(6.3.36), respectively.
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Chapter 7
Unified Convergence Analysis for Iterative
Algorithms and Fractional Calculus

We present local and semilocal convergence results for some iterative algorithms in
order to approximate a locally unique solution of a nonlinear equation in a Banach
space setting. In earlier studies to operator involved is assumed to be at least once
Fréchet-differentiable. In the present study, we assume that the operator is only
continuous. This way we expand the applicability of these iterative algorithms. In the
third part of the study we present some choices of the operators involved in fractional
calculus where the operators satisfy the convergence conditions. It follows [5].

7.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (7.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (7.1.1) using Mathematical Modelling [8, 12, 16]. The solutions of
such equations can be found in closed form only in special cases. That is why most
solution methods for these equations are iterative. Iterative algorithms are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_7
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around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

We introduce the iterative algorithm defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn)
−1 F (xn) , (7.1.2)

where x0 ∈ D is an initial point and A (x) ∈ L (X, Y ) the space of bounded linear
operators from X into Y . There is a plethora on local as well as semilocal conver-
gence theorems for iterative algorithm (7.1.2) provided that the operator A is an
approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we do
not assume that operator A is related to F ′. This way we expand the applicability of
iterative algorithm (7.1.2). Notice that many well known methods are special case
of interative algorithm (7.1.2).

Newton’s method: Choose A (x) = F ′ (x) for each x ∈ D.

Steffensen’s method: Choose A (x) = [x, G (x) ; F], where G : X → X is a
known operator and [x, y; F] denotes a divided difference of order one [8, 12, 15].

The so called Newton-like methods and many other methods are special cases of
iterative algorithm (7.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the
local convergence analysis of iterative algorithm (7.1.2) is given in Sect. 7.2. Some
applications from fractional calculus are given in Sect. 7.3.

7.2 Convergence Analysis

We present the main semilocal convergence result for iterative algorithm (7.1.2).

Theorem 7.1 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, a function g : [0, η] →
[0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) , (7.2.1)

∥∥A (x0)
−1 F (x0)

∥∥ ≤ η, (7.2.2)

∥∥A (y)−1 (F (y) − F (x) − A (x) (y − x))
∥∥ ≤ g (‖x − y‖) ‖x − y‖p+1 , (7.2.3)

q := g (η) η p < 1 (7.2.4)

and
U (x0, r) ⊆ D, (7.2.5)

where,
r = η

1 − q
. (7.2.6)
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Then, the sequence {xn} generated by iterative algorithm (7.1.2) is well defined,
remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r)

such that

‖xn+1 − xn‖ ≤ g (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q ‖xn − xn−1‖ (7.2.7)

and
∥
∥xn − x∗∥∥ ≤ qnη

1 − q
. (7.2.8)

Proof The iterate x1 is well defined by iterative algorithm (7.1.2) for n = 0
and (7.2.1) for x = x0. We also have by (7.2.2) and (7.2.6) that ‖x1 − x0‖ =∥∥A (x0)

−1 F (x0)
∥∥ ≤ η < r , so we get that x1 ∈ U (x0, r) and x2 is well defined (by

(7.2.5)). Using (7.2.3) for y = x1, x = x0 and (7.2.4) we get that

‖x2 − x1‖ = ∥∥A (x1)
−1 [F (x1) − F (x0) − A (x0) (x1 − x0)]

∥∥

≤ g (‖x1 − x0‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (7.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get

‖xk+2 − xk+1‖ = ∥∥A (xk+1)
−1

[
F (xk+1) − F (xk) − A (xk) (xk+1 − xk)

]∥∥

≤ g (‖xk+1 − xk‖) ‖xk+1 − xk‖p+1

≤ g (‖x1 − x0‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,
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which completes the induction for (7.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (7.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 7.2 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, ψ > 0, a function
g1 : [0, η] → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) ,
∥
∥A (x)−1

∥
∥ ≤ ψ,

∥
∥A (x0)

−1 F (x0)
∥
∥ ≤ η, (7.2.9)

‖F (y) − F (x) − A (x) (y − x)‖ ≤ g1 (‖x − y‖)
ψ

‖x − y‖p+1 , (7.2.10)

q1 := g1 (η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.

Then, the conclusions of Theorem 7.1 for sequence {xn} hold with g1, q1, r1, replacing
g, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that

∥
∥A (xn)

−1
[
F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)

]∥∥

≤ ∥∥A (xn)
−1

∥∥ ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖

≤ g1 (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .
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Therefore, the proof of Theorem 7.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖ ≤
g1 (‖xn − xn−1‖)

ψ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 7.3 Under the hypotheses of Proposition 7.2, further suppose that

q1r
p
1 < 1. (7.2.11)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 7.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (xn)
−1 F (xn)

∥∥ =
∥
∥A (xn)

−1
[
A (xn)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥∥A (xn)
−1

∥∥ ∥∥F
(
y∗) − F (xn) − A (xn)

(
y∗ − xn

)∥∥ ≤

ψ
g1 (‖xn − y∗‖)

ψ

∥∥xn − y∗∥∥p+1 ≤ q1r
p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,

so we deduce that limn→∞xn = y∗. But we have that limn→∞xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the iterative algorithm (7.1.2).

Proposition 7.4 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g2 : [0,∞) → [0,∞)

continuous and nondecreasing such that for each x ∈ D

F
(
x∗) = 0, A (x)−1 ∈ L (Y, X) ,

∥
∥A (x)−1

[
F (x) − F

(
x∗) − A (x)

(
x − x∗)]∥∥ ≤ g2

(∥∥x − x∗∥∥) ∥
∥x − x∗∥∥p+1

,

(7.2.12)
and

U
(
x∗, r2

) ⊆ D,
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where r2 is the smallest positive solution of equation

h (t) := g2 (t) t p − 1.

Then, sequence {xn} generated by algorithm (7.1.2) for x0 ∈ U (x∗, r2) − {x∗} is
well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x0 ∈ U (x∗, r2) − {x∗}. Then, we get in turn
that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (x0)

−1 F (x0)
∥∥ =

∥∥A (x0)
−1

[
F

(
x∗) − F (x0) − A (x0)

(
x∗ − x0

)]∥∥ ≤

g2
(∥∥x0 − x∗∥∥) ∥∥x0 − x∗∥∥p+1

< g2 (r2) r p
2

∥∥x0 − x∗∥∥ =
∥∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (xk)
−1 F (xk)

∥∥ ≤
∥∥A (xk)

−1
[
F

(
x∗) − F (xk) − A (xk)

(
x∗ − xk

)]∥∥ ≤

g2
(∥∥xk − x∗∥∥) ∥

∥xk − x∗∥∥p+1
< g2 (r2) r p

2

∥
∥xk − x∗∥∥ = ∥

∥xk − x∗∥∥ < r2,

which shows limk→∞xk = x∗ and xk+1 ∈ U (x∗, r2) . �

Remark 7.5 (a)Hypothesis (7.2.3) specializes toNewton-Mysowski-type, if A (x)=
F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then our results extend
the applicability of iterative algorithm (7.1.2).

(b) Theorem 7.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (7.2.12) can be replaced by the stronger

∥∥A (x)−1 [F (x) − F (y) − A (x) (x − y)]
∥∥ ≤ g2 (‖x − y‖) ‖x − y‖p+1 .

The preceding results can be extended to hold for two point iterative algorithms
defined for each n = 0, 1, 2, . . . by
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xn+1 = xn − A (xn, xn−1)
−1 F (xn) , (7.2.13)

where x−1, x0 ∈ D are initial points and A (w, v) ∈ L (X, Y ) for each v,w ∈ D. If
A (w, v) = [w, v; F], then iterative algorithm (7.2.13) reduces to the popular secant
method, where [w, v; F] denotes a divided difference of order one for the operator
F . Many other choices for A are also possible [8, 12, 16].

If we simply replace A (x) by A (y, x) in the proof of Proposition 7.2 we arrive
at the following semilocal convergence result for iterative algorithm (7.2.13).

Theorem 7.6 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ) for each x, y ∈ D. Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
ψ > 0, a function g1 : [0, η] → [0,∞) continuous and nondecreasing such that for
each x, y ∈ D:

A (y, x)−1 ∈ L (Y, X) ,
∥∥A (y, x)−1

∥∥ ≤ ψ, (7.2.14)

min
{‖x0 − x−1‖ ,

∥
∥A (x0, x−1)

−1 F (x0)
∥
∥} ≤ η,

‖F (y) − F (x) − A (y, x) (y − x)‖ ≤ g1 (‖x − y‖)
ψ

‖x − y‖p+1 , (7.2.15)

q1 < 1, q1r
p
1 < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1

and q1 is defined in Proposition 7.2.

Then, sequence {xn} generated by iterative algorithm (7.2.13) is well defined,
remains in U (x0, r1) for each n = 0, 1, 2, . . . and converges to the only solution of
equation F (x) = 0 in U (x0, r1). Moreover, the estimates (7.2.7) and (7.2.8) hold
with g1, q1 replacing g and q, respectively.

Concerning, the local convergence of the iterative algorithm (7.2.13) we obtain
the analogous to Proposition 7.4 result.

Proposition 7.7 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g2 : [0,∞)2 → [0,∞)

continuous and nondecreasing such that for each x, y ∈ D

F
(
x∗) = 0, A (y, x)−1 ∈ L (Y, X) ,
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∥∥A (y, x)−1
[
F (y) − F

(
x∗) − A (y, x)

(
y − x∗)]∥∥ ≤

g2
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g2 (t, t) t p − 1.

Then, sequence {xn} generated by algorithm (7.2.13) for x−1, x0 ∈ U (x∗, r2) −{x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥∥xn − x∗∥∥ < r2.

Remark 7.8 In the next section we present some choices and properties of operator
A (y, x) from fractional calculus satisfying the crucial estimate (7.2.15) in the special
case when,

g1 (t) = c1ψ

p + 1
for some c1 > 0.

Hence, Theorem 7.6 can apply to solve equation F (x) = 0. Other choices for
operator A (x) or operator A (y, x) can be found in [5, 7, 8, 10–16].

7.3 Applications to Fractional Calculus

In this section we apply the earlier numerical methods to fractional calculus for
solving f (x) = 0.

Here we would like to establish for [a, b] ⊆ R , a < b, f ∈ C p ([a, b]), p ∈ N,
that

| f (y) − f (x) − A (x, y) (y − x)| ≤ c1
|x − y|p+1

p + 1
, (7.3.1)

∀ x, y ∈ [a, b], where c1 > 0, and

|A (x, x) − A (y, y)| ≤ c2 |x − y| , (7.3.2)

with c2 > 0, ∀ x, y ∈ [a, b].
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Above A stands for a differential operator to be defined and presented per case in
the next, it will be denoted as A+ ( f ), A− ( f ) in the fractional cases, and A0 ( f ) in
the ordinary case.

We examine the following cases:
(I) Here see [3], pp. 7–10.
Let x, y ∈ [a, b] such that x ≥ y, ν > 0, ν /∈ N, such that p = [v], [·] the integral

part, α = ν − p (0 < α < 1).
Let f ∈ C p ([a, b]) and define

(
J y
ν f

)
(x) := 1

� (ν)

∫ x

y
(x − t)ν−1 f (t) dt, y ≤ x ≤ b, (7.3.3)

the left generalized Riemann-Liouville fractional integral.
Here � stands for the gamma function.
Clearly here it holds

(
J y
ν f

)
(y) = 0. We define

(
J y
ν f

)
(x) = 0 for x < y. By [3],

p. 388,
(
J y
ν f

)
(x) is a continuous function in x , for a fixed y.

We define the subspace Cν
y+ ([a, b]) of C p ([a, b]):

Cν
y+ ([a, b]) := {

f ∈ C p ([a, b]) : J y
1−α f (p) ∈ C1 ([y, b])

}
. (7.3.4)

So let f ∈ Cν
y+ ([a, b]), we define the generalized ν—fractional derivative of f over

[y, b] as
Dν

y f = (
J y
1−α f (p)

)′
, (7.3.5)

that is
(
Dν

y f
)
(x) = 1

� (1 − α)

d

dx

∫ x

y
(x − t)−α f (p) (t) dt, (7.3.6)

which exists for f ∈ Cν
y+ ([a, b]), for a ≤ y ≤ x ≤ b.

Herewe consider f ∈ C p ([a, b]) such that f ∈ Cν
y+ ([a, b]), for every y ∈ [a, b],

which means also that f ∈ Cν
x+ ([a, b]), for every x ∈ [a, b] (i.e. exchange roles of

x and y), we write that as f ∈ Cν+ ([a, b]) .

That is
(
Dν

x f
)
(y) = 1

� (1 − α)

d

dy

∫ y

x
(y − t)−α f (p) (t) dt (7.3.7)

exists for f ∈ Cν
x+ ([a, b]), for a ≤ x ≤ y ≤ b.

We mention the following left generalized fractional Taylor formula ( f ∈
Cν

y+ ([a, b]), ν > 1).
It holds

f (x) − f (y) =
p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

y f
)
(t) dt,

(7.3.8)
all x, y ∈ [a, b] with x ≥ y.
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Similarly for f ∈ Cν
x+ ([a, b]) we have

f (y) − f (x) =
p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

x f
)
(t) dt,

(7.3.9)
all x, y ∈ [a, b] with y ≥ x .

So here we work with f ∈ C p ([a, b]), such that f ∈ Cν+ ([a, b]) .

We define the left linear fractional operator

(A+ ( f )) (x, y) :=

⎧
⎪⎨

⎪⎩

∑p−1
k=1

f (k)(y)

k! (x − y)k−1 + (
Dν

y f
)
(x)

(x−y)ν−1

�(ν+1) , x > y,
∑p−1

k=1
f (k)(x)

k! (y − x)k−1 + (
Dν

x f
)
(y)

(y−x)ν−1

�(ν+1) , y > x,

f (p−1) (x) , x = y.

(7.3.10)
Notice that

|(A+ ( f )) (x, x) − (A+ ( f )) (y, y)| = ∣∣ f (p−1) (x) − f (p−1) (y)
∣∣ (7.3.11)

≤ ∥
∥ f (p)

∥
∥∞ |x − y| , ∀ x, y ∈ [a, b] ,

so that condition (7.3.2) is fulfilled.
Next we will prove condition (7.3.1). It is trivially true if x = y. So, we examine

the case of x 
= y.
We distinguish the subcases:
(1) x > y: We observe that

| f (y) − f (x) − A+ ( f ) (x, y) (y − x)| =

| f (x) − f (y) − A+ ( f ) (x, y) (x − y)| (by (7.3.8), (7.3.10))=
∣∣∣∣∣

p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

y f
)
(t) dt− (7.3.12)

p−1∑

k=1

f (k) (y)

k! (x − y)k − (
Dν

y f
)
(x)

(x − y)ν

� (ν + 1)

∣∣∣
∣∣
=

∣∣∣∣
1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

y f
)
(t) dt − 1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

y f
)
(x) dt

∣∣∣∣ =

1

� (ν)

∣∣
∣∣

∫ x

y
(x − t)ν−1

((
Dν

y f
)
(t) − (

Dν
y f

)
(x)

)
dt

∣∣
∣∣ ≤ (7.3.13)
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1

� (ν)

∫ x

y
(x − t)ν−1

∣
∣(Dν

y f
)
(t) − (

Dν
y f

)
(x)

∣
∣ dt

(we assume that

∣∣(Dν
y f

)
(t) − (

Dν
y f

)
(x)

∣∣ ≤ λ1 (y) |t − x |p+1−ν , (7.3.14)

for all x, y, t ∈ [a, b] with x ≥ t ≥ y, with λ1 (y) > 0 and limy∈[a,b]supλ1 (y) =:
λ1 < ∞, also it is 0 < p + 1 − ν < 1)

≤ λ1

� (ν)

∫ x

y
(x − t)ν−1 (x − t)p+1−ν dt = (7.3.15)

λ1

� (ν)

∫ x

y
(x − t)p dt = λ1

� (ν)

(x − y)p+1

(p + 1)
.

We have proved condition (7.3.1)

| f (y) − f (x) − A+ ( f ) (x, y) (y − x)| ≤ λ1

� (ν)

(x − y)p+1

(p + 1)
, for x > y.

(7.3.16)
(2) x < y: We observe that

| f (y) − f (x) − (A+ ( f )) (x, y) (y − x)| (by (7.3.9), (7.3.10))=
∣∣
∣∣∣

p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

x f
)
(t) dt− (7.3.17)

p−1∑

k=1

f (k) (x)

k! (y − x)k − (
Dν

x f
)
(y)

(y − x)ν

� (ν + 1)

∣∣∣∣∣
=

∣∣
∣∣

1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

x f
)
(t) dt − (

Dν
x f

)
(y)

(y − x)ν

� (ν + 1)

∣∣
∣∣ =

∣
∣∣∣

1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

x f
)
(t) dt − 1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

x f
)
(y) dt

∣
∣∣∣ =
(7.3.18)

1

� (ν)

∣∣
∣∣

∫ y

x
(y − t)ν−1

((
Dν

x f
)
(t) − (

Dν
x f

)
(y)

)
dt

∣∣
∣∣ ≤
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1

� (ν)

∫ y

x
(y − t)ν−1

∣
∣(Dν

x f
)
(t) − (

Dν
x f

)
(y)

∣
∣ dt

(we assume here that

∣
∣(Dν

x f
)
(t) − (

Dν
x f

)
(y)

∣
∣ ≤ λ2 (x) |t − y|p+1−ν , (7.3.19)

for all x, y, t ∈ [a, b] with y ≥ t ≥ x , with λ2 (x) > 0 and limx∈[a,b]supλ2 (x) =:
λ2 < ∞)

≤ λ2

� (ν)

∫ y

x
(y − t)ν−1 (y − t)p+1−ν dt = (7.3.20)

λ2

� (ν)

∫ y

x
(y − t)p dt = λ2

� (ν)

(y − x)p+1

(p + 1)
.

We have proved that

| f (y) − f (x) − (A+ ( f )) (x, y) (y − x)| ≤ λ2

� (ν)

(y − x)p+1

(p + 1)
, (7.3.21)

for all x, y ∈ [a, b] such that y > x .
Call λ := max (λ1,λ2) .

Conclusion We have proved condition (7.3.1), in detail that

| f (y) − f (x) − (A+ ( f )) (x, y) (y − x)| ≤ λ

� (ν)

|x − y|p+1

(p + 1)
, ∀ x, y ∈ [a, b] .

(7.3.22)
(II) Here see [4], p. 333, and again [4], pp. 345–348.
Let x, y ∈ [a, b] such that x ≤ y, ν > 0, ν /∈ N, such that p = [v], α = ν − p

(0 < α < 1 ).
Let f ∈ C p ([a, b]) and define

(
J ν

y− f
)
(x) := 1

� (ν)

∫ y

x
(z − x)ν−1 f (z) dz, a ≤ x ≤ y, (7.3.23)

the right generalized Riemann-Liouville fractional integral.
Define the subspace of functions

Cν
y− ([a, b]) := {

f ∈ C p ([a, b]) : J 1−α
y− f (p) ∈ C1 ([a, y])

}
. (7.3.24)

Define the right generalized ν—fractional derivative of f over [a, y] as

Dν
y− f := (−1)p−1

(
J 1−α

y− f (p)
)′

. (7.3.25)
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Notice that

J 1−α
y− f (p) (x) = 1

� (1 − α)

∫ y

x
(z − x)−α f (p) (z) dz, (7.3.26)

exists for f ∈ Cν
y− ([a, b]), and

(
Dν

y− f
)
(x) = (−1)p−1

� (1 − α)

d

dx

∫ y

x
(z − x)−α f (p) (z) dz. (7.3.27)

I.e.

(
Dν

y− f
)
(x) = (−1)p−1

� (p − ν + 1)

d

dx

∫ y

x
(z − x)p−ν f (p) (z) dz. (7.3.28)

Herewe consider f ∈ C p ([a, b]) such that f ∈ Cν
y− ([a, b]), for every y ∈ [a, b],

which means also that f ∈ Cν
x− ([a, b]), for every x ∈ [a, b] (i.e. exchange roles of

x and y), we write that as f ∈ Cν− ([a, b]).
That is

(
Dν

x− f
)
(y) = (−1)p−1

� (p − ν + 1)

d

dy

∫ x

y
(z − y)p−ν f (p) (z) dz (7.3.29)

exists for f ∈ Cν
x− ([a, b]), for a ≤ y ≤ x ≤ b.

We mention the following right generalized fractional Taylor formula ( f ∈
Cν

y− ([a, b]), ν > 1).
It holds

f (x) − f (y) =
p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz,

(7.3.30)
all x, y ∈ [a, b] with x ≤ y.

Similarly for f ∈ Cν
x− ([a, b]) we have

f (y) − f (x) =
p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(z) dz,

(7.3.31)
all x, y ∈ [a, b] with x ≥ y.
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So here we work with f ∈ C p ([a, b]), such that f ∈ Cν− ([a, b]) .

We define the right linear fractional operator

A− ( f ) (x, y) :=

⎧
⎪⎨

⎪⎩

∑p−1
k=1

f (k)(x)

k! (y − x)k−1 − (
Dν

x− f
)
(y)

(x−y)ν−1

�(ν+1) , x > y,
∑p−1

k=1
f (k)(y)

k! (x − y)k−1 − (
Dν

y− f
)
(x)

(y−x)ν−1

�(ν+1) , y > x,

f (p−1) (x) , x = y.

(7.3.32)
Condition (7.3.2) is fulfilled, the same as in (7.3.11), now for A− ( f ) (x, x) .

We would like to prove that

| f (x) − f (y) − (A− ( f )) (x, y) (x − y)| ≤ c · |x − y|p+1

p + 1
, (7.3.33)

for any x, y ∈ [a, b], where c > 0.
When x = y the last condition (7.3.33) is trivial. We assume x 
= y.
We distinguish the subcases:
(1) x > y: We observe that

|( f (x) − f (y)) − (A− ( f )) (x, y) (x − y)| = (7.3.34)

|( f (y) − f (x)) − (A− ( f )) (x, y) (y − x)| =
∣
∣∣∣∣

(
p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(z) dz

)

−

(
p−1∑

k=1

f (k) (x)

k! (y − x)k−1 − (
Dν

x− f
)
(y)

(x − y)ν−1

� (ν + 1)

)

(y − x)

∣∣∣∣
∣
= (7.3.35)

∣
∣∣∣

1

� (ν)

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(z) dz + (

Dν
x− f

)
(y)

(x − y)ν−1

� (ν + 1)
(y − x)

∣
∣∣∣ =

∣∣∣
∣

1

� (ν)

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(z) dz − (

Dν
x− f

)
(y)

(x − y)ν

� (ν + 1)

∣∣∣
∣ =

1

� (ν)

∣
∣∣∣

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(z) dz −

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(y) dz

∣
∣∣∣ =

1

� (ν)

∣∣∣
∣

∫ x

y
(z − y)ν−1

((
Dν

x− f
)
(z) − (

Dν
x− f

)
(y)

)
dz

∣∣∣
∣ ≤ (7.3.36)

1

� (ν)

∫ x

y
(z − y)ν−1

∣∣(Dν
x− f

)
(z) − (

Dν
x− f

)
(y)

∣∣ dz
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(we assume that

∣∣(Dν
x− f

)
(z) − (

Dν
x− f

)
(y)

∣∣ ≤ λ1 |z − y|p+1−ν , (7.3.37)

λ1 > 0, for all x, z, y ∈ [a, b] with x ≥ z ≥ y)

≤ λ1

� (ν)

∫ x

y
(z − y)ν−1 (z − y)p+1−ν dz = (7.3.38)

λ1

� (ν)

∫ x

y
(z − y)p dz = λ1

� (ν)

(x − y)p+1

p + 1
= ρ1

(x − y)p+1

p + 1
,

where ρ1 := λ1
�(ν)

> 0.
We have proved, when x > y, that

| f (x) − f (y) − (A− ( f )) (x, y) (x − y)| ≤ ρ1
(x − y)p+1

p + 1
. (7.3.39)

(2) y > x : We observe that

| f (x) − f (y) − (A− ( f )) (x, y) (x − y)| =
∣∣∣∣∣

(
p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz

)

−

(
p−1∑

k=1

f (k) (y)

k! (x − y)k−1 − (
Dν

y− f
)
(x)

(y − x)ν−1

� (ν + 1)

)

(x − y)

∣∣∣
∣∣
= (7.3.40)

∣∣∣∣
1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz − (

Dν
y− f

)
(x)

(y − x)ν

� (ν + 1)

∣∣∣∣ =

∣∣∣∣
1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz − 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(x) dz

∣∣∣∣ =
(7.3.41)

1

� (ν)

∣∣∣∣

∫ y

x
(z − x)ν−1

((
Dν

y− f
)
(z) − (

Dν
y− f

)
(x)

)
dz

∣∣∣∣ ≤ (7.3.42)

1

� (ν)

∫ y

x
(z − x)ν−1

∣∣(Dν
y− f

)
(z) − (

Dν
y− f

)
(x)

∣∣ dz
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(we assume that

∣∣(Dν
y− f

)
(z) − (

Dν
y− f

)
(x)

∣∣ ≤ λ2 |z − x |p+1−ν , (7.3.43)

λ2 > 0, for all y, z, x ∈ [a, b] with y ≥ z ≥ x)

≤ λ2

� (ν)

∫ y

x
(z − x)ν−1 (z − x)p+1−ν dz = (7.3.44)

λ2

� (ν)

∫ y

x
(z − x)p dz = λ2

� (ν)

(y − x)p+1

p + 1
.

We have proved, for y > x , that

| f (x) − f (y) − (A− ( f )) (x, y) (x − y)| ≤ ρ2
(y − x)p+1

p + 1
, (7.3.45)

where ρ2 := λ2
�(ν)

> 0.

Set λ := max (λ1,λ2) and ρ := λ
�(ν)

> 0.
Conclusion We have proved (7.3.1) that

| f (x) − f (y) − (A− ( f )) (x, y) (x − y)| ≤ ρ
|x − y|p+1

p + 1
, (7.3.46)

for any x, y ∈ [a, b] .
(III) Let again f ∈ C p ([a, b]), p ∈ N, x, y ∈ [a, b].
By Taylor’s formula we have

f (x) − f (y) =
p∑

k=1

f (k) (y)

k! (x − y)k + 1

(p − 1)!
∫ x

y
(x − t)p−1

(
f (p) (t) − f (p) (y)

)
dt, (7.3.47)

∀ x, y ∈ [a, b] .
We define the function

(A0 ( f )) (x, y) :=
{∑p

k=1
f (k)(y)

k! (x − y)k−1 , x 
= y,

f (p−1) (x) , x = y.
(7.3.48)



7.3 Applications to Fractional Calculus 123

Then it holds

|(A0 ( f )) (x, x) − (A0 ( f )) (y, y)| = ∣∣ f (p−1) (x) − f (p−1) (y)
∣∣ (7.3.49)

≤ ∥∥ f (p)
∥∥∞ |x − y| , ∀ x, y ∈ [a, b] ,

so that condition (7.3.2) is fulfilled.
Next we observe that

| f (x) − f (y) − (A0 ( f )) (x, y) (x − y)| =
∣∣
∣∣∣

p∑

k=1

f (k) (y)

k! (x − y)k + 1

(p − 1)!
∫ x

y
(x − t)p−1

(
f (p) (t) − f (p) (y)

)
dt

(7.3.50)

−
p∑

k=1

f (k) (y)

k! (x − y)k

∣∣
∣∣∣
=

1

(p − 1)!
∣∣∣∣

∫ x

y
(x − t)p−1

(
f (p) (t) − f (p) (y)

)
dt

∣∣∣∣ =: (ξ) . (7.3.51)

Here we assume that

∣∣ f (p) (t) − f (p) (y)
∣∣ ≤ c |t − y| , ∀ t, y ∈ [a, b] , c > 0. (7.3.52)

(1) Subcase of x > y: We have that

(ξ) ≤ 1

(p − 1)!
∫ x

y
(x − t)p−1

∣
∣ f (p) (t) − f (p) (y)

∣
∣ dt ≤

c

(p − 1)!
∫ x

y
(x − t)p−1 (t − y)2−1 dt = (7.3.53)

c
� (p) � (2)

(p − 1)!� (p + 2)
(x − y)p+1 = c

(p − 1)!
(p − 1)! (p + 1)! (x − y)p+1

= c (x − y)p+1

(p + 1)! .

Hence

(ξ) ≤ c
(x − y)p+1

(p + 1)! , x > y. (7.3.54)
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(2) Subcase of y > x .

We have that

(ξ) = 1

(p − 1)!
∣∣∣∣

∫ y

x
(t − x)p−1 (

f (p) (y) − f (p) (t)
)

dt

∣∣∣∣ ≤ (7.3.55)

1

(p − 1)!
∫ y

x
(t − x)p−1

∣
∣ f (p) (y) − f (p) (t)

∣
∣ dt ≤

c

(p − 1)!
∫ y

x
(t − x)p−1 (y − t) dt =

c

(p − 1)!
∫ y

x
(y − t)2−1 (t − x)p−1 dt = (7.3.56)

c

(p − 1)!
� (2) � (p)

� (p + 2)
(y − x)p+1 = c

(p − 1)!
(p − 1)!
(p + 1)! (y − x)p+1

= c
(y − x)p+1

(p + 1)! .

That is

(ξ) ≤ c
(y − x)p+1

(p + 1)! , y > x . (7.3.57)

Therefore it holds

(ξ) ≤ c
|x − y|p+1

(p + 1)! , all x, y ∈ [a, b] such that x 
= y. (7.3.58)

We have found that

| f (x) − f (y) − (A0 ( f )) (x, y) (x − y)| ≤ c
|x − y|p+1

(p + 1)! , c > 0, (7.3.59)

for all x 
= y.
When x = y inequality (7.3.59) holds trivially, so (7.3.1) it is true for any x, y ∈

[a, b] .
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Chapter 8
Convergence Analysis for Extended
Iterative Algorithms and Fractional
and Vector Calculus

Wegive local and semilocal convergence results for some iterative algorithms in order
to approximate a locally unique solution of a nonlinear equation in a Banach space
setting. In earlier studies the operator involved is assumed to be at least once Fréchet-
differentiable. In the present study, we assume that the operator is only continuous.
This way we expand the applicability of iterative algorithms. In the third part of the
study we present some choices of the operators involved in fractional calculus and
vector calculus where the operators satisfy the convergence conditions. It follows [5].

8.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (8.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (8.1.1) usingMathematicalModelling [8, 13, 17, 19, 20]. The solutions
of such equations can be found in closed form only in special cases. That is whymost
solution methods for these equations are iterative. Iterative algorithms are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_8
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We introduce the iterative algorithm defined for each n = 0, 1, 2, . . . by

xn+1 = xn − (A (F) (xn))
−1 F (xn) , (8.1.2)

where x0 ∈ D is an initial point and A (F) (x) ∈ L (X, Y ) the space of bounded
linear operators from X into Y . There is a plethora on local as well as semilocal
convergence theorems for iterative algorithm (8.1.2) provided that the operator A is
an approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we
do not assume that operator A is related to F ′. This way we expand the applicability
of iterative algorithm (8.1.2). Notice that many well known methods are special case
of interative algorithm (8.1.2).

Newton’s method: Choose A (F) (x) = F ′ (x) for each x ∈ D.

Steffensen’s method: Choose A (F) (x) = [x, G (x) ; F], where G : X → X is
a known operator and [x, y; F] denotes a divided difference of order one [8, 13, 16].

The so called Newton-like methods and many other methods are special cases of
iterative algorithm (8.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the
local convergence analysis of iterative algorithm (8.1.2) is given in Sect. 8.2. Some
applications from fractional calculus are given in Sect. 8.3.

8.2 Convergence Analysis

We present the main semilocal convergence result for iterative algorithm (8.1.2).

Theorem 8.1 Let F : D ⊂ X → Y be a continuous operator and let A (F) (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, a function h : [0, η] →
[0,∞) continuous and nondecreasing such that for each x, y ∈ D

(A (F) (x))−1 ∈ L (Y, X) , (8.2.1)

∥
∥(A (F) (x0))

−1 F (x0)
∥
∥ ≤ η, (8.2.2)

∥∥(A (F) (y))−1 (F (y) − F (x) − A (F) (x) (y − x))
∥∥ ≤ h (‖x − y‖) ‖x − y‖p+1 ,

(8.2.3)

q := h (η) η p < 1 (8.2.4)

and
U (x0, r) ⊆ D, (8.2.5)

where,
r = η

1 − q
. (8.2.6)
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Then, the sequence {xn} generated by iterative algorithm (8.1.2) is well defined,
remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r)

such that

‖xn+1 − xn‖ ≤ h (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q ‖xn − xn−1‖ (8.2.7)

and
∥
∥xn − x∗∥∥ ≤ qnη

1 − q
. (8.2.8)

Proof The iterate x1 is well defined by iterative algorithm (8.1.2) for n = 0
and (8.2.1) for x = x0. We also have by (8.2.2) and (8.2.6) that ‖x1 − x0‖ =∥∥(A (F) (x0))

−1 F (x0)
∥∥ ≤ η < r , so we get that x1 ∈ U (x0, r) and x2 is well

defined (by (8.2.5)). Using (8.2.3) for y = x1 , x = x0 and (8.2.4) we get that

‖x2 − x1‖ = ∥∥(A (F) (x1))
−1 [F (x1) − F (x0) − A (F) (x0) (x1 − x0)]

∥∥

≤ h (‖x1 − x0‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (8.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get
‖xk+2 − xk+1‖ =

∥∥(A (F) (xk+1))
−1

[
F (xk+1) − F (xk) − A (F) (xk) (xk+1 − xk)

]∥∥

≤ h (‖xk+1 − xk‖) ‖xk+1 − xk‖p+1

≤ h (‖x1 − x0‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,
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which completes the induction for (8.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (8.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 8.2 Let F : D ⊂ X → Y be a continuous operator and let A (F) (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, ψ > 0, a function
h1 : [0, η] → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (F) (x)−1 ∈ L (Y, X) ,
∥
∥(A (F) (x))−1

∥
∥ ≤ ψ,

∥
∥(A (F) (x0))

−1 F (x0)
∥
∥ ≤ η,

(8.2.9)

‖F (y) − F (x) − A (F) (x) (y − x)‖ ≤ h1 (‖x − y‖)
ψ

‖x − y‖p+1 , (8.2.10)

q1 := h1 (η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.

Then, the conclusions of Theorem 8.1 for sequence {xn} hold with h1, q1, r1, replacing
h, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that

∥∥(A (F) (xn))
−1

[
F (xn) − F (xn−1) − A (F) (xn−1) (xn − xn−1)

]∥∥

≤ ∥∥(A (F) (xn))
−1

∥∥ ‖F (xn) − F (xn−1) − A (F) (xn−1) (xn − xn−1)‖

≤ h1 (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .
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Therefore, the proof of Theorem 8.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (F) (xn−1) (xn − xn−1)‖ ≤
h1 (‖xn − xn−1‖)

ψ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 8.3 Under the hypotheses of Proposition 8.2, further suppose that

q1r
p
1 < 1. (8.2.11)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 8.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − (A (F) (xn))
−1 F (xn)

∥∥ =
∥∥(A (F) (xn))

−1 [
A (F) (xn)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥∥(A (F) (xn))
−1

∥∥ ∥∥F
(
y∗) − F (xn) − A (F) (xn)

(
y∗ − xn

)∥∥ ≤

ψ
h1 (‖xn − y∗‖)

ψ

∥
∥xn − y∗∥∥p+1 ≤ q1r

p
1

∥
∥xn − x∗∥∥ <

∥
∥xn − y∗∥∥ ,

so we deduce that limn→∞ limxn = y∗. But we have that limn→∞ limxn = x∗.
Hence, we conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the iterative algorithm (8.1.2).

Proposition 8.4 Let F : D ⊂ X → Y be a continuous operator and let A (F) (x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function h2 : [0,∞) → [0,∞)

continuous and nondecreasing such that for each x ∈ D

F
(
x∗) = 0, (A (F) (x))−1 ∈ L (Y, X) ,

∥
∥(A (F) (x))−1

[
F (x) − F

(
x∗) − A (F) (x)

(
x − x∗)]∥∥ ≤

h2
(∥∥x − x∗∥∥) ∥∥x − x∗∥∥p+1

, (8.2.12)

and
U

(
x∗, r2

) ⊆ D,
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where r2 is the smallest positive solution of equation

h∗ (t) := h2 (t) t p − 1.

Then, sequence {xn} generated by algorithm (8.1.2) for x0 ∈ U (x∗, r2) − {x∗} is
well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ h2
(∥∥xn − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥∥xn − x∗∥∥ < r2.

Proof We have that h∗ (0) = −1 < 0 and h∗ (t) → +∞ as t → +∞. Then,
it follows from the intermediate value theorem that function h∗ has positive zeros.
Denote by r2 the smallest such zero. By hypothesis x0 ∈ U (x∗, r2) − {x∗}. Then,
we get in turn that

∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − (A (F) (x0))
−1 F (x0)

∥∥ =
∥∥(A (F) (x0))

−1
[
F

(
x∗) − F (x0) − A (F) (x0)

(
x∗ − x0

)]∥∥ ≤

h2
(∥∥x0 − x∗∥∥) ∥

∥x0 − x∗∥∥p+1
< h2 (r2) r p

2

∥
∥x0 − x∗∥∥ =

∥∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − (A (F) (xk))
−1 F (xk)

∥∥ ≤
∥∥(A (F) (xk))

−1
[
F

(
x∗) − F (xk) − A (F) (xk)

(
x∗ − xk

)]∥∥ ≤

h2
(∥∥xk − x∗∥∥) ∥∥xk − x∗∥∥p+1

< h2 (r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows limk→∞ limxk = x∗ and xk+1 ∈ U (x∗, r2). �

Remark 8.5 (a) Hypothesis (8.2.3) specializes to Newton-Mysowski-type, if A (F)

(x) = F ′ (x) [8, 13, 17]. However, if F is not Fréchet-differentiable, then our results
extend the applicability of iterative algorithm (8.1.2).

(b) Theorem 8.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (8.2.12) can be replaced by the stronger

∥∥(A (F) (x))−1 [F (x) − F (y) − A (F) (x) (x − y)]
∥∥ ≤ h2 (‖x − y‖) ‖x − y‖p+1 .
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The preceding results can be extended to hold for two point iterative algorithms
defined for each n = 0, 1, 2, . . . by

xn+1 = xn − (A (F) (xn, xn−1))
−1 F (xn) , (8.2.13)

where x−1, x0 ∈ D are initial points and A (F) (w, v) ∈ L (X, Y ) for each v,w ∈ D.
If A (F) (w, v) = [w, v; F], then iterative algorithm ( 8.2.13) reduces to the popular
secant method, where [w, v; F] denotes a divided difference of order one for the
operator F . Many other choices for A are also possible [8, 13, 17].

If we simply replace A (F) (x) by A (F) (y, x) in the proof of Proposition 8.2 we
arrive at the following semilocal convergence result for iterative algorithm (8.2.13).

Theorem 8.6 Let F : D ⊂ X → Y be a continuous operator and let A (F) (y, x)

∈ L (X, Y ) for each x, y ∈ D. Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
ψ > 0, a function h1 : [0, η] → [0,∞) continuous and nondecreasing such that for
each x, y ∈ D:

(A (F) (y, x))−1 ∈ L (Y, X) ,
∥∥(A (F) (y, x))−1

∥∥ ≤ ψ, (8.2.14)

min
{‖x0 − x−1‖ ,

∥∥(A (F) (x0, x−1))
−1 F (x0)

∥∥} ≤ η,

‖F (y) − F (x) − A (F) (y, x) (y − x)‖ ≤ h1 (‖x − y‖)
ψ

‖x − y‖p+1 , (8.2.15)

q1 < 1, q1r
p
1 < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1

and q1 is defined in Proposition 8.2.Then, sequence {xn} generated by iterative al-
gorithm (8.2.13) is well defined, remains in U (x0, r1) for each n = 0, 1, 2, . . . and
converges to the only solution of equation F (x) = 0 in U (x0, r1). Moreover, the
estimates (8.2.7) and (8.2.8) hold with h1, q1 replacing h and q, respectively.

Concerning, the local convergence of the iterative algorithm (8.2.13) we obtain
the analogous to Proposition 8.4 result.

Proposition 8.7 Let F : D ⊂ X → Y be a continuous operator and let
A (F) (y, x) ∈ L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function
h2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

F
(
x∗) = 0, (A (F) (y, x))−1 ∈ L (Y, X) ,
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∥∥(A (F) (y, x))−1
[
F (y) − F

(
x∗) − A (F) (y, x)

(
y − x∗)]∥∥ ≤

h2
(∥∥y − x∗∥∥ ,

∥
∥x − x∗∥∥) ∥

∥y − x∗∥∥p+1

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h∗∗ (t) := h2 (t, t) t p − 1.

Then, sequence {xn} generated by algorithm (8.2.13) for x−1, x0 ∈ U (x∗, r2) −{x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ h2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥∥xn − x∗∥∥ < r2.

Remark 8.8 In the next section, we present some choices and properties of operator
A (F) (y, x) satisfying the crucial estimate (8.2.15). In particular, we choose

h1 (t) = ρψt

p
, for some ρ > 0, (see (8.3.22)),

h1 (t) = cψ

(p + 1)! , for some c > 0 (see (8.3.36)),

and

h1 (t) = Kψγ p+1

(p + 1)! , (see (8.3.66)),

if |g (x) − g (y)| ≤ γ |x − y| for some K > 0 and γ > 0.
Hence, Theorem 8.6 can apply to solve equation F (x) = 0. Other choices for

operator A (F) (x) or operator A (F) (y, x) can be found in [6–8, 11–18].

8.3 Applications to Fractional and Vector Calculus

We want to solve numerically
f (x) = 0. (8.3.1)
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(I) Application to Fractional Calculus
Let p ∈ N − {1} such that p − 1 < ν < p, where ν /∈ N, ν > 0, i.e. �ν
 = p

(�·
 ceiling of the number), a < b, f ∈ C p ([a, b]).
We define the following left Caputo fractional derivatives (see [3], p. 270)

(
Dν

∗y f
)
(x) := 1

� (p − ν)

∫ x

y
(x − t)p−ν−1 f (p) (t) dt, (8.3.2)

when x ≥ y, and

(
Dν

∗x f
)
(y) := 1

� (p − ν)

∫ y

x
(y − t)p−ν−1 f (p) (t) dt, (8.3.3)

when y ≥ x , where � is the gamma function.
We define also the linear operator

(A1 ( f )) (x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

∑p−1
k=1

f (k)(y)

k! (x − y)k−1 + (
Dν∗y f

)
(x)

(x−y)ν−1

�(ν+1) , x > y,
∑p−1

k=1
f (k)(x)

k! (y − x)k−1 + (
Dν∗x f

)
(y)

(y−x)ν−1

�(ν+1) , y > x,

f (p−1) (x) , x = y.

(8.3.4)

By left fractional Caputo Taylor’s formula (see [9], p. 54 and [3], p. 395), we get that

f (x) − f (y) =
p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ x

y
(x − t)ν−1 Dν

∗y f (t) dt, for x > y, (8.3.5)

and
f (y) − f (x) =

p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt, for x < y. (8.3.6)

Immediately, we observe that

|(A1 ( f )) (x, x) − (A1 ( f )) (y, y)| = ∣∣ f (p−1) (x) − f (p−1) (y)
∣∣ (8.3.7)

≤ ∥∥ f (p)
∥∥∞ |x − y| , ∀x, y ∈ [a, b] ,
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We would like to prove that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| ≤ c
|x − y|p

p
, (8.3.8)

for any x, y ∈ [a, b] and some constant 0 < c < 1.
When x = y, the last condition (8.3.8) is trivial.
We assume x �= y. We distinguish the cases:
(1) x > y: We observe that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| = (8.3.9)

∣
∣∣∣∣

p−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ x

y
(x − t)ν−1 Dν

∗y f (t) dt−

p−1∑

k=1

f (k) (y)

k! (x − y)k − (
Dν

∗y f
)
(x)

(x − y)ν

� (ν + 1)

∣∣∣∣∣
=

∣
∣∣∣

1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

∗y f
)
(t) dt − 1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

∗y f
)
(x) dt

∣
∣∣∣ =

1

� (ν)

∣∣∣∣

∫ x

y
(x − t)ν−1

((
Dν

∗y f
)
(t) − (

Dν
∗y f

)
(x)

)
dt

∣∣∣∣ ≤

1

� (ν)

∫ x

y
(x − t)ν−1

∣
∣(Dν

∗y f
)
(t) − (

Dν
∗y f

)
(x)

∣
∣ dt (8.3.10)

(assume that ∣∣(Dν
∗y f

)
(t) − (

Dν
∗y f

)
(x)

∣∣ ≤ λ1 |t − x |p−ν , (8.3.11)

for any t, x, y ∈ [a, b] : x ≥ t ≥ y, where λ1 < � (ν), i.e. ρ1 := λ1
�(ν)

< 1)

≤ λ1

� (ν)

∫ x

y
(x − t)ν−1 (x − t)p−ν dt = (8.3.12)

λ1

� (ν)

∫ x

y
(x − t)p−1 dt = λ1

� (ν)

(x − y)p

p
= ρ1

(x − y)p

p
. (8.3.13)

We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| ≤ ρ1
(x − y)p

p
, (8.3.14)
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where 0 < ρ1 < 1, and x > y.

(2) x < y: We observe that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| = (8.3.15)

| f (y) − f (x) − (A1 ( f )) (x, y) (y − x)| =
∣
∣∣∣∣

p−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ y

x
(y − t)ν−1 (

Dν
∗x f

)
(t) dt−

p−1∑

k=1

f (k) (x)

k! (y − x)k − (
Dν

∗x f
)
(y)

(y − x)ν

� (ν + 1)

∣∣∣∣∣
=

∣∣∣∣
1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

∗x f
)
(t) dt − 1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

∗x f
)
(y) dt

∣∣∣∣ =
(8.3.16)

1

� (ν)

∣∣∣∣

∫ y

x
(y − t)ν−1

((
Dν

∗x f
)
(t) − (

Dν
∗x f

)
(y)

)
dt

∣∣∣∣ ≤

1

� (ν)

∫ y

x
(y − t)ν−1

∣∣(Dν
∗x f

)
(t) − (

Dν
∗x f

)
(y)

∣∣ dt (8.3.17)

(we assume that

∣∣(Dν
∗x f

)
(t) − (

Dν
∗x f

)
(y)

∣∣ ≤ λ2 |t − y|p−ν , (8.3.18)

for any t, y, x ∈ [a, b] : y ≥ t ≥ x)

≤ λ2

� (ν)

∫ y

x
(y − t)ν−1 (y − t)p−ν dt =

λ2

� (ν)

∫ y

x
(y − t)p−1 dt = λ2

� (ν)

(y − x)p

p
. (8.3.19)

Assuming also

ρ2 := λ2

� (ν)
< 1 (8.3.20)
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(i.e. λ2 < � (ν)), we have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| ≤ ρ2
(y − x)p

p
, for x < y. (8.3.21)

Conclusion: Choosing λ := max (λ1,λ2) and ρ := λ
�(ν)

< 1, we have proved
that

| f (x) − f (y) − (A1 ( f )) (x, y) (x − y)| ≤ ρ
|x − y|p

p
, for any x, y ∈ [a, b] .

(8.3.22)
(II) Application to Vector Calculus
(II1) Background
(see [20], pp. 83–94)
Let f (t) be a function defined on [a, b] ⊆ R taking values in a real or complex

normed linear space (X, ‖·‖). Then f (t) is said to be differentiable at a point t0 ∈
[a, b] if the limit

f ′ (t0) := lim
h→0

f (t0 + h) − f (t0)

h
(8.3.23)

exists in X , the convergence is in ‖·‖. This is called the derivative of f (t) at t = t0.
We call f (t) differentiable on [a, b], iff there exists f ′ (t) ∈ X for all t ∈ [a, b].
Similarly and inductively are defined higher order derivatives of f , denoted

f ′′, f (3), . . . , f (k), k ∈ N, just as for numerical functions.
For all the properties of derivatives see [20], pp. 83–86.
From now let (X, ‖·‖) be a Banach space and f : [a, b] → X .
We define the vector valued Riemann integral

∫ b
a f (t) dt ∈ X as the limit of the

vector valued Riemann sums in X , convergence is in ‖·‖. The definition is as for the
numerical valued functions.

If
∫ b

a f (t) dt ∈ X we call f integrable on [a, b]. If f ∈ C ([a, b] , X), then f is
integrable, [20], p. 87.

For all other properties of vector valued Riemann integrals see [20], pp. 86–91.
We mention some of them here.

Let f, g vector valued Riemann integrable functions, we have that (see [20], p. 88)

∫ b

a
α f (t) dt = α

∫ b

a
f (t) dt , α ∈ R or α ∈ C, (8.3.24)

∫ b

a
( f (t) + g (t)) dt =

∫ b

a
f (t) dt +

∫ b

a
g (t) dt (8.3.25)

∫ c

a
f (t) dt +

∫ b

c
f (t) dt =

∫ b

a
f (t) dt, a < c < b, (8.3.26)
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∥∥∥∥

∫ b

a
f (t) dt

∥∥∥∥ ≤ (b − a) max
a≤t≤b

‖ f (t)‖ , (8.3.27)

∥∥∥
∥

∫ b

a
f (t) dt

∥∥∥
∥ ≤

∫ b

a
‖ f (t)‖ dt. (8.3.28)

By [10], also we get by convention that

∫ β

α

f (t) dt = −
∫ α

β

f (t) dt, for a ≤ β ≤ α ≤ b. (8.3.29)

Let f : [a, b] → R Riemann integrable function, i.e.
∫ b

a f (t) dt exists as a real
number, and c ∈ X . Then clearly it holds

c
∫ b

a
f (x) dx =

∫ b

a
c f (x) dx ∈ X. (8.3.30)

We define the spaceC p ([a, b] , X), p ∈ N, of p-times continuously differentiable
functions from [a, b] into X ; here continuity is with respect to ‖·‖ and defined in the
usual way as for numerical functions.

Let (X, ‖·‖) be a Banach space and f ∈ C p ([a, b] , X), then we have the vector
valued Taylor’s formula, see [20], pp. 93–94, and also [19], (IV, 9; 47).

It holds

f (y) − f (x) − f ′ (x) (y − x) − 1

2
f ′′ (x) (y − x)2 − · · · − 1

(p − 1)! f (p−1) (x) (y − x)p−1

= 1

(p − 1)!
∫ y

x
(y − t)p−1 f (p) (t) dt, ∀ x, y ∈ [a, b] . (8.3.31)

In particular (8.3.31) is true when X = R
m , Cm , m ∈ N, etc.

Clearly it holds that
f (y) − f (x) =

p∑

k=1

f (k) (x)

k! (y − x)k + 1

(p − 1)!
∫ y

x
(y − t)p−1

(
f (p) (t) − f (p) (x)

)
dt,

(8.3.32)
∀ x, y ∈ [a, b] .

We will use (8.3.32).
We need also the mean value theorem for Banach space valued functions.

Theorem 8.9 (see [14], p. 3) Let f ∈ C ([a, b] , X), where X is a Banach space.
Assume f ′ exists on [a, b] and

∥∥ f ′ (t)
∥∥ ≤ K , a < t < b, then

‖ f (b) − f (a)‖ ≤ K (b − a) . (8.3.33)
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(II2) From now on we assume that f ∈ C p+1 ([a, b] , X), p ∈ N.
We define the function

(A2 ( f )) (x, y) :=
{∑p

k=1
f (k)(x)

k! (y − x)k−1 , x �= y,

f (p) (x) , x = y.
(8.3.34)

Then it holds

‖(A2 ( f )) (x, x) − (A2 ( f )) (y, y)‖ = ∥∥ f (p) (x) − f (p) (y)
∥∥

≤ ∥∥∣∣ f (p+1)
∣∣∥∥∞ |x − y| , ∀ x, y ∈ [a, b] , (8.3.35)

where ∥∥∣∣ f (p+1)
∣∣∥∥∞ := sup

t∈[a,b]

∥∥ f (p+1)
∥∥ < ∞.

We would like to prove that

‖ f (y) − f (x) − (A2 ( f )) (x, y) (y − x)‖ ≤ c
|x − y|p+1

(p + 1)! , (8.3.36)

where c > 0.
When x = y inequality (8.3.36) is trivially true. We will prove it for x �= y.
We observe that

‖ f (y) − f (x) − (A2 ( f )) (x, y) (y − x)‖ = (8.3.37)

∥
∥∥∥∥

p∑

k=1

f (k) (x)

k! (y − x)k + 1

(p − 1)!
∫ y

x
(y − t)p−1

(
f (p) (t) − f (p) (x)

)
dt

−
p∑

k=1

f (k) (x)

k! (y − x)k

∥∥∥
∥∥

=

1

(p − 1)!
∥∥∥∥

∫ y

x
(y − t)p−1

(
f (p) (t) − f (p) (x)

)
dt

∥∥∥∥ =: (ξ) . (8.3.38)

Let y > x : we observe that

(ξ) ≤ 1

(p − 1)!
∫ y

x
(y − t)p−1

∥∥ f (p) (t) − f (p) (x)
∥∥ dt

≤
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p − 1)!

∫ y

x
(y − t)p−1 (t − x)2−1 dt (8.3.39)
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=
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p − 1)!

� (p) � (2)

� (p + 2)
(y − x)p+1 =

∥∥∣∣ f (p+1)
∣∣∥∥∞

(p − 1)!
(p − 1)!
(p + 1)! (y − x)p+1 =

∥∥∣∣ f (p+1)
∣∣∥∥∞

(p + 1)! (y − x)p+1 . (8.3.40)

Hence,

(ξ) ≤
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p + 1)! (y − x)p+1 , for y > x . (8.3.41)

Let now x > y: we observe that

(ξ) = 1

(p − 1)!
∥∥
∥∥

∫ x

y
(y − t)p−1

(
f (p) (t) − f (p) (x)

)
dt

∥∥
∥∥

≤ 1

(p − 1)!
∫ x

y
(t − y)p−1

∥∥ f (p) (t) − f (p) (x)
∥∥ dt (8.3.42)

≤
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p − 1)!

∫ x

y
(x − t)2−1 (t − y)p−1 dt

=
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p − 1)!

� (p) � (2)

� (p + 2)
(x − y)p+1 =

∥∥∣∣ f (p+1)
∣∣∥∥∞

(p − 1)!
(p − 1)!
(p + 1)! (x − y)p+1 =

∥∥∣∣ f (p+1)
∣∣∥∥∞

(p + 1)! (x − y)p+1 . (8.3.43)

We have proved that

(ξ) ≤
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p + 1)! (x − y)p+1 , for x > y. (8.3.44)

Conclusion: We have proved the following:
Let p ∈ N and f ∈ C p+1 ([a, b]). Then

‖ f (y) − f (x) − (A2 ( f )) (x, y) · (y − x)‖ (8.3.45)

≤
∥∥∣∣ f (p+1)

∣∣∥∥∞
(p + 1)! |x − y|p+1 , ∀x, y ∈ [a, b] .

(III) Applications from Mathematical Analysis
In [4], pp. 400–402, we have proved the following general diverse Taylor’s

formula:
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Theorem 8.10 Let f, f ′, . . . , f (p); g, g′ be continuous from [a, b] (or [b, a]) into
R, p ∈ N. Assume

(
g−1

)(k)
, k = 0, 1, . . . , p are continuous. Then

f (b) = f (a) +
p−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (b) − g (a))k + Rp (a, b) , (8.3.46)

where

Rp (a, b) = 1

(p − 1)!
∫ b

a
(g (b) − g (s))p−1 (

f ◦ g−1)(p)
(g (s)) g′ (s) ds (8.3.47)

= 1

(p − 1)!
∫ g(b)

g(a)

(g (b) − t)p−1
(

f ◦ g−1
)(p)

(t) dt.

Theorem 8.10 will be applied next for g (x) = ex . One can give similar applica-
tions for g = sin, cos, tan, etc., over suitable intervals, see [4], p. 402.

Proposition 8.11 Let f (p) continuous, from [a, b] (or [b, a]) into R, p ∈ N. Then

f (b) = f (a) +
p−1∑

k=1

[
( f ◦ ln)(k) (ea)

]

k! · (
eb − ea

)k + Rp (a, b) , (8.3.48)

where

Rp (a, b) = 1

(p − 1)!
∫ eb

ea

(
eb − t

)p−1
( f ◦ ln)(p) (t) dt (8.3.49)

= 1

(p − 1)!
∫ b

a

(
eb − ea

)p−1
( f ◦ ln)(p)

(
es

) · esds.

We will use the following variant.

Theorem 8.12 Let f, f ′, . . . , f (p), p ∈ N and g, g′ be continuous from [a, b] into
R , p ∈ N. Assume that

(
g−1

)(k)
, k = 0, 1, . . . , p, are continuous. Then

f (β) − f (α) =
p∑

k=1

(
f ◦ g−1

)(k)
(g (α))

k! (g (β) − g (α))k + R∗
p (α,β) , (8.3.50)

where

R∗
p (α,β) = 1

(p − 1)! ·

∫ β

α

(g (β) − g (s))p−1
((

f ◦ g−1
)(p)

(g (s)) − (
f ◦ g−1

)(p)
(g (α))

)
g′ (s) ds

(8.3.51)
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= 1

(p − 1)!
∫ g(β)

g(α)

(g (β) − t)p−1
((

f ◦ g−1
)(p)

(t) − (
f ◦ g−1

)(p)
(g (α))

)
dt,

(8.3.52)
∀ α,β ∈ [a, b] .

Proof Easy. �

Remark 8.13 Call l = f ◦ g−1. Then l, l ′, . . . , l(p) are continuous from g ([a, b])
into f ([a, b]).

Next we estimate R∗
p (α,β): We assume that

∣∣∣
(

f ◦ g−1
)(p)

(t) − (
f ◦ g−1

)(p)
(g (α))

∣∣∣ ≤ K |t − g (α)| , (8.3.53)

∀ t, g (α) ∈ [g (a) , g (b)] or ∀ t, g (α) ∈ [g (b) , g (a)] where K > 0.
We distinguish the cases:
(i) if g (β) > g (α), then ∣∣R∗

p (α,β)
∣∣ ≤

1

(p − 1)!
∫ g(β)

g(α)

(g (β) − t)p−1
∣∣∣
(

f ◦ g−1
)(p)

(t) − (
f ◦ g−1

)(p)
(g (α))

∣∣∣ dt ≤

K

(p − 1)!
∫ g(β)

g(α)

(g (β) − t)p−1 (t − g (α))2−1 dt = (8.3.54)

K

(p − 1)!
� (p) � (2)

� (p + 2)
(g (β) − g (α))p+1 =

K

(p − 1)!
(p − 1)!
(p + 1)! (g (β) − g (α))p+1 = K

(g (β) − g (α))p+1

(p + 1)! . (8.3.55)

We have proved that

∣∣R∗
p (α,β)

∣∣ ≤ K
(g (β) − g (α))p+1

(p + 1)! , (8.3.56)

when g (β) > g (α) .

(ii) if g (α) > g (β), then ∣∣R∗
p (α,β)

∣∣ =

1

(p − 1)!
∣∣∣
∣

∫ g(α)

g(β)

(t − g (β))p−1
((

f ◦ g−1
)(p)

(t) − (
f ◦ g−1

)(p)
(g (α))

)
dt

∣∣∣
∣ ≤
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1

(p − 1)!
∫ g(α)

g(β)

(t − g (β))p−1
∣∣∣
(

f ◦ g−1
)(p)

(t) − (
f ◦ g−1

)(p)
(g (α))

∣∣∣ dt ≤
(8.3.57)

K

(p − 1)!
∫ g(α)

g(β)

(g (α) − t)2−1 (t − g (β))p−1 dt =

K

(p − 1)!
� (2) � (p)

� (p + 2)
(g (α) − g (β))p+1 = (8.3.58)

K

(p − 1)!
(p − 1)!
(p + 1)! (g (α) − g (β))p+1 = K

(g (α) − g (β))p+1

(p + 1)! . (8.3.59)

We have proved that

∣∣R∗
p (α,β)

∣∣ ≤ K
(g (α) − g (β))p+1

(p + 1)! , (8.3.60)

whenever g (α) > g (β) .

Conclusion: It holds

∣∣R∗
p (α,β)

∣∣ ≤ K
|g (α) − g (β)|p+1

(p + 1)! , (8.3.61)

∀ α,β ∈ [a, b].
Both sides of (8.3.61) equal zero when α = β.
We define the following linear operator:

(A3 ( f )) (x, y) :=
{∑p

k=1
( f ◦g−1)

(k)
(g(y))

k! (g (x) − g (y))k−1 , when g (x) �= g (y) ,

f (p−1) (x) , x = y,
(8.3.62)

for any x, y ∈ [a, b] .
Easily, we see that

|(A3 ( f )) (x, x) − (A3 ( f )) (y, y)| = ∣∣ f (p−1) (x) − f (p−1) (y)
∣∣

≤ ∥∥ f (p)
∥∥∞ |x − y| , ∀ x, y ∈ [a, b] . (8.3.63)

Next we observe that (case of g (x) �= g (y))

| f (x) − f (y) − (A3 ( f )) (x, y) · (g (x) − g (y))| =
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∣∣∣∣∣

p∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k + R∗
p (y, x) (8.3.64)

−
(

p∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k−1 (g (x) − g (y))

)∣
∣∣∣∣
=

∣
∣R∗

p (y, x)
∣
∣ (8.3.61)≤ K

|g (x) − g (y)|p+1

(p + 1)! , (8.3.65)

∀ x, y ∈ [a, b] : g (x) �= g (y) .

We have proved that

| f (x) − f (y) − (A3 ( f )) (x, y) · (g (x) − g (y))| ≤ K
|g (x) − g (y)|p+1

(p + 1)! ,

(8.3.66)
∀ x, y ∈ [a, b]

(the case x = y is trivial).
We apply the above theory as follows:
(III1) We define

(A31 ( f )) (x, y) :=
{∑p

k=1
( f ◦ln)(k)(ey)

k! (ex − ey)k−1 , x �= y,

f (p−1) (x) , x = y,
(8.3.67)

for any x, y ∈ [a, b] .
Furthermore it holds

∣∣ f (x) − f (y) − (A31 ( f )) (x, y) · (
ex − ey

)∣∣ ≤ K1
|ex − ey |p+1

(p + 1)! , (8.3.68)

∀ x, y ∈ [a, b], where we assume that

∣∣( f ◦ ln)(p) (t) − ( f ◦ ln)(p)
(
ey

)∣∣ ≤ K1

∣∣t − ey
∣∣ , (8.3.69)

∀ t, ey ∈ [
ea, eb

]
, a < b, with K1 > 0.

(III2) Next let f ∈ C p
([− π

2 + ε, π
2 − ε

])
, p ∈ N, ε > 0 small.

Here we define that

(A32 ( f )) (x, y) :=
{∑p

k=1
( f ◦sin−1)

(k)
(sin y)

k! (sin x − sin y)k−1 , when x �= y,

f (p−1) (x) , x = y,

(8.3.70)
for any x, y ∈ [− π

2 + ε, π
2 − ε

]
.
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We assume that
∣∣∣
(

f ◦ sin−1
)(p)

(t) − (
f ◦ sin−1

)(p)
(sin y)

∣∣∣ ≤ K2 |t − sin y| , (8.3.71)

∀ t, sin y ∈ [
sin

(−π
2 + ε

)
, sin

(
π
2 − ε

)]
, where K2 > 0.

It holds

| f (x) − f (y) − (A32 ( f )) (x, y) · (sin x − sin y)| ≤ K2
|sin x − sin y|p+1

(p + 1)! ,

(8.3.72)
∀ x, y ∈ [−π

2 + ε, π
2 − ε

]
.

(III3) Next let f ∈ C p ([ε,π − ε]) , p ∈ N, ε > 0 small.
Here we define

(A33 ( f )) (x, y) :=
{∑p

k=1
( f ◦cos−1)

(k)
(cos y)

k! (cos x − cos y)k−1 , when x �= y,

f (p−1) (x) , x = y,

(8.3.73)
for any x, y ∈ [ε,π − ε] .

We assume that
∣∣∣
(

f ◦ cos−1)(p)
(t) − (

f ◦ cos−1)(p)
(cos y)

∣∣∣ ≤ K3 |t − cos y| , (8.3.74)

∀ t, cos y ∈ [cos ε, cos (π − ε)], where K3 > 0.
It holds

| f (x) − f (y) − (A33 ( f )) (x, y) · (cos x − cos y)| ≤ K3
|cos x − cos y|p+1

(p + 1)! ,

(8.3.75)
∀ x, y ∈ [ε,π − ε].

Finally we give:
(III4) Let f ∈ C p

([− π
2 + ε, π

2 − ε
])
, p ∈ N , ε > 0 small.

We define

(A34 ( f )) (x, y) :=
{∑p

k=1
( f ◦tan−1)

(k)
(tan y)

k! (tan x − tan y)k−1 , when x �= y,

f (p−1) (x) , x = y,

(8.3.76)
for any x, y ∈ [−π

2 + ε, π
2 − ε

]
.

We assume that
∣∣
∣
(

f ◦ tan−1
)(p)

(t) − (
f ◦ tan−1

)(p)
(tan y)

∣∣
∣ ≤ K4 |t − tan y| , (8.3.77)

∀ t, tan y ∈ [
tan

(−π
2 + ε

)
, tan

(
π
2 − ε

)]
, where K4 > 0.
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It holds that

| f (x) − f (y) − (A34 ( f )) (x, y) · (tan x − tan y)| ≤ K4
|tan x − tan y|p+1

(p + 1)! ,

(8.3.78)

∀ x, y ∈ [−π
2 + ε, π

2 − ε
]
.
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Chapter 9
Convergence Analysis for Extended Iterative
Algorithms and Fractional Calculus

We present local and semilocal convergence results for some extended methods in
order to approximate a locally unique solution of a nonlinear equation in a Banach
space setting. In earlier studies the operator involved is assumed to be at least once
Fréchet-differentiable. In the present study, we assume that the operator is only
continuous. This way we expand the applicability of these methods. In the third part
of the study we present some choices of the operators involved in fractional calculus
where the operators satisfy the convergence conditions. Moreover, we present a
corrected version of the generalized fractional Taylor’s formula given in [16]. It
follows [5, 6].

9.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (9.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (9.1.1) using Mathematical Modelling [9, 13, 17]. The solutions of
such equations can be found in closed form only in special cases. That is why most
solution methods for these equations are iterative. Iterative algorithms are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the method; while the local one is, based on the information around
a solution, to find estimates of the radii of convergence balls as well as error bounds
on the distances involved.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_9
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We introduce the method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn)
−1 F (xn) , (9.1.2)

where x0 ∈ D is an initial point and A (x) ∈ L (X, Y ) the space of bounded linear
operators from X intoY . There is a plethora on local aswell as semilocal convergence
theorems for method (9.1.2) provided that the operator A is an approximation to the
Fr échet-derivative F ′ [1, 2, 7–17]. In the present study we do not assume that
operator A is not necessarily related to F ′. This way we expand the applicability of
method (9.1.2). Notice that many well known methods are special case of method
(9.1.2).

Newton’s method: Choose A (x) = F ′ (x) for each x ∈ D.

Steffensen’s method: Choose A (x) = [x, G (x) ; F], where G : X → X is a
known operator and [x, y; F] denotes a divided difference of order one [9, 13, 17].

The so called Newton-like methods and many other methods are special cases of
method (9.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the local
convergence analysis of method (9.1.2) is given in Sect. 9.2. Some applications from
fractional calculus are given in Sect. 9.3. In particular, we first correct the generalized
fractional Taylor’s formula, the integral version extracted from [16]. Then, we use
the corrected formula in our applications.

9.2 Convergence Analysis

We present the main semilocal convergence result for method (9.1.2).

Theorem 9.1 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, a function g : [0, η] →
[0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) , (9.2.1)

∥∥A (x0)
−1 F (x0)

∥∥ ≤ η, (9.2.2)

∥∥A (y)−1 (F (y) − F (x) − A (x) (y − x))
∥∥ ≤ g (‖x − y‖) ‖x − y‖p+1 , (9.2.3)

q := g (η) η p < 1 (9.2.4)

and
U (x0, r) ⊆ D, (9.2.5)

where,
r = η

1 − q
. (9.2.6)
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Then, the sequence {xn} generated by method (9.1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that

‖xn+1 − xn‖ ≤ g (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q ‖xn − xn−1‖ (9.2.7)

and

∥
∥xn − x∗∥∥ ≤ qnη

1 − q
. (9.2.8)

Proof The iterate x1 is well defined by method (9.1.2) for n = 0 and (9.2.1) for
x = x0. We also have by (9.2.2) and (9.2.6) that ‖x1 − x0‖ = ∥

∥A (x0)
−1 F (x0)

∥
∥ ≤

η < r , so we get that x1 ∈ U (x0, r) and x2 is well defined (by (9.2.5)). Using (9.2.3)
for y = x1, x = x0 and (9.2.4) we get that

‖x2 − x1‖ = ∥∥A (x1)
−1 [F (x1) − F (x0) − A (x0) (x1 − x0)]

∥∥

≤ g (‖x1 − x0‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (9.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get

‖xk+2 − xk+1‖ = ∥∥A (xk+1)
−1 [

F (xk+1) − F (xk) − A (xk) (xk+1 − xk)
]∥∥

≤ g (‖xk+1 − xk‖) ‖xk+1 − xk‖p+1

≤ g (‖x1 − x0‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,
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which completes the induction for (9.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (9.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 9.2 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, ψ > 0, a function
g1 : [0, η] → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) ,
∥
∥A (x)−1

∥
∥ ≤ ψ,

∥
∥A (x0)

−1 F (x0)
∥
∥ ≤ η, (9.2.9)

‖F (y) − F (x) − A (x) (y − x)‖ ≤ g1 (‖x − y‖)
ψ

‖x − y‖p+1 , (9.2.10)

q1 := g1 (η) η p < 1

and

U (x0, r1) ⊆ D,

where,

r1 = η

1 − q1
.

Then, the conclusions of Theorem 9.1 for sequence {xn} hold with g1, q1, r1, replacing
g, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that

∥∥A (xn)
−1

[
F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)

]∥∥

≤ ∥∥A (xn)
−1

∥∥ ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖

≤ g1 (‖xn − xn−1‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .
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Therefore, the proof of Theorem 9.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖ ≤
g1 (‖xn − xn−1‖)

ψ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 9.3 Under the hypotheses of Proposition 9.2, further suppose that

q1r
p
1 < 1. (9.2.11)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 9.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (xn)
−1 F (xn)

∥∥ =
∥∥A (xn)

−1
[
A (xn)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥∥A (xn)
−1

∥∥ ∥∥F
(
y∗) − F (xn) − A (xn)

(
y∗ − xn

)∥∥ ≤

ψ
g1 (‖xn − y∗‖)

ψ

∥∥xn − y∗∥∥p+1 ≤ q1r
p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,

so we deduce that limn→∞ xn = y∗. But we have that limn→∞ xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the method (9.1.2).

Proposition 9.4 Let F : D ⊂ X → Y be a continuous operator and let A (x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g2 : [0,∞) → [0,∞)

continuous and nondecreasing such that for each x ∈ D

F
(
x∗) = 0, A (x)−1 ∈ L (Y, X) ,

∥∥A (x)−1
[
F (x) − F

(
x∗) − A (x)

(
x − x∗)]∥∥ ≤ g2

(∥∥x − x∗∥∥) ∥∥x − x∗∥∥p+1
,

(9.2.12)
and

U
(
x∗, r2

) ⊆ D,
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where r2 is the smallest positive solution of equation

h (t) := g2 (t) t p − 1.

Then, sequence {xn} generated by method (9.1.2) for x0 ∈ U (x∗, r2) − {x∗} is
well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x0 ∈ U (x∗, r2) − {x∗}. Then, we get in turn
that

∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (x0)
−1 F (x0)

∥∥ =
∥∥A (x0)

−1
[
F

(
x∗) − F (x0) − A (x0)

(
x∗ − x0

)]∥∥ ≤

g2
(∥∥x0 − x∗∥∥) ∥

∥x0 − x∗∥∥p+1
< g2 (r2) r p

2

∥
∥x0 − x∗∥∥ =

∥∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (xk)
−1 F (xk)

∥∥ ≤
∥∥A (xk)

−1
[
F

(
x∗) − F (xk) − A (xk)

(
x∗ − xk

)]∥∥ ≤

g2
(∥∥xk − x∗∥∥) ∥∥xk − x∗∥∥p+1

< g2 (r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows limk→∞xk = x∗ and xk+1 ∈ U (x∗, r2). �

Remark 9.5 (a)Hypothesis (9.2.3) specializes toNewton-Mysowski-type, if A (x) =
F ′ (x) [9, 13, 17]. However, if F is not Fréchet-differentiable, then our results extend
the applicability of iterative algorithm (9.1.2).

(b) Theorem 9.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (9.2.12) can be replaced by the stronger

∥∥A (x)−1 [F (x) − F (y) − A (x) (x − y)]
∥∥ ≤ g2 (‖x − y‖) ‖x − y‖p+1 .
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The preceding results can be extended to hold for two point methods defined for
each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn, xn−1)
−1 F (xn) , (9.2.13)

where x−1, x0 ∈ D are initial points and A (w, v) ∈ L (X, Y ) for each v,w ∈ D. If
A (w, v) = [w, v; F], then method (9.2.13) reduces to the popular secant method,
where [w, v; F] denotes a divided difference of order one for the operator F . Many
other choices for A are also possible [9, 13, 17].

If we simply replace A (x) by A (y, x) in the proof of Proposition 9.2 we arrive
at the following semilocal convergence result for method (9.2.13).

Theorem 9.6 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ) for each x, y ∈ D. Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
ψ > 0, a function g1 : [0, η] → [0,∞) continuous and nondecreasing such that for
each x, y ∈ D:

A (y, x)−1 ∈ L (Y, X) ,
∥∥A (y, x)−1

∥∥ ≤ ψ, (9.2.14)

min
{‖x0 − x−1‖ ,

∥∥A (x0, x−1)
−1 F (x0)

∥∥} ≤ η,

‖F (y) − F (x) − A (y, x) (y − x)‖ ≤ g1 (‖x − y‖)
ψ

‖x − y‖p+1 , (9.2.15)

q1 < 1, q1r
p
1 < 1

and

U (x0, r1) ⊆ D,

where,

r1 = η

1 − q1

and q1 is defined in Proposition 9.2.
Then, sequence {xn} generated by method (9.2.13) is well defined, remains in

U (x0, r1) for each n = 0, 1, 2, . . . and converges to the only solution of equation
F (x) = 0 in U (x0, r1).

Moreover, the estimates (9.2.7) and (9.2.8) hold with g1, q1 replacing g and q,
respectively.

Concerning, the local convergence of the iterative algorithm (9.2.13) we obtain
the analogous to Proposition 9.4 result.
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Proposition 9.7 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g2 : [0,∞)2 → [0,∞)

continuous and nondecreasing such that for each x, y ∈ D

F
(
x∗) = 0, A (y, x)−1 ∈ L (Y, X) ,

∥∥A (y, x)−1
[
F (y) − F

(
x∗) − A (y, x)

(
y − x∗)]∥∥ ≤

g2
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1

and

U
(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g2 (t, t) t p − 1.

Then, sequence {xn} generated by method (9.2.13) for x−1, x0 ∈ U (x∗, r2) −{x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1

<
∥
∥xn − x∗∥∥ < r2.

Remark 9.8 In the next section we present some choices and properties of operator
A (y, x) from fractional calculus satisfying the crucial estimate (9.2.15) in the special
case when,

g1 (t) = cψ for some c > 0 and each t ≥ 0.

(see the end of Sect. 9.3 for a possible definition of the constant c).
Hence, Theorem 9.6 can apply to solve equation F (x) = 0. Other choices for

operator A (x) or operator A (y, x) can be found in [7–9, 11–17].

9.3 Applications to Fractional Calculus

Let f : [a, b] → R such that f (m) ∈ L∞ ([a, b]), the left Caputo fractional derivative
of order α /∈ N, α > 0, m = �α
 (�·
 ceiling) is defined as follows:

(
Dα

a f
)
(x) = 1

� (m − α)

∫ x

a
(x − t)m−α−1 f (m) (t) dt, (9.3.1)

where � is the gamma function, ∀ x ∈ [a, b] .
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We observe that

∣
∣(Dα

a f
)
(x)

∣
∣ ≤ 1

� (m − α)

∫ x

a
(x − t)m−α−1

∣
∣ f (m) (t)

∣
∣ dt

≤
∥∥ f (m)

∥∥∞
� (m − α)

(∫ x

a
(x − t)m−α−1 dt

)
=

∥∥ f (m)
∥∥∞

� (m − α)

(x − a)m−α

(m − α)

=
∥
∥ f (m)

∥
∥∞

� (m − α + 1)
(x − a)m−α . (9.3.2)

We have proved that

∣∣(Dα
a f

)
(x)

∣∣ ≤
∥
∥ f (m)

∥
∥∞

� (m − α + 1)
(x − a)m−α ≤

∥
∥ f (m)

∥
∥∞

� (m − α + 1)
(b − a)m−α .

(9.3.3)
Clearly then

(
Dα

a f
)
(a) = 0.

Let n ∈ N we denote Dnα
a = Dα

a Dα
a . . . Dα

a (n-times).
Let us assume now that

Dkα
a f ∈ C ([a, b]) , k = 0, 1, . . . , n + 1; n ∈ N, 0 < α ≤ 1. (9.3.4)

By [16], we are able to extract the following interesting generalized fractional
Caputo type Taylor’s formula: (there it is assumed that Dkα

a f (x) ∈ C ((a, b]),
k = 0, 1, . . . , n + 1; 0 < α ≤ 1)

f (x) =
n∑

i=0

(x − a)iα

� (iα + 1)

(
Diα

a f
)
(a) + (9.3.5)

1

� ((n + 1) α)

∫ x

a
(x − t)(n+1)α−1

(
D(n+1)α

a f
)
(t) dt, ∀x ∈ (a, b].

Notice that [16] has lots of typos or minor errors, which we fixed.
Under our assumption and conclusion, see (9.3.4), Taylor’s formula (9.3.5)

becomes

f (x) − f (a) =
n∑

i=2

(x − a)iα

� (iα + 1)

(
Diα

a f
)
(a)+

1

� ((n + 1) α)

∫ x

a
(x − t)(n+1)α−1

(
D(n+1)α

a f
)
(t) dt, ∀x ∈ (a, b], 0 < α < 1.

(9.3.6)
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Here we are going to operate more generally. Again we assume 0 < α ≤ 1, and
f : [a, b] → R, such that f ′ ∈ C ([a, b]). We define the following left Caputo
fractional derivatives:

(
Dα

y f
)
(x) = 1

� (1 − α)

∫ x

y
(x − t)−α f ′ (t) dt, (9.3.7)

for any x ≥ y; x, y ∈ [a, b] , and

(
Dα

x f
)
(y) = 1

� (1 − α)

∫ y

x
(y − t)−α f ′ (t) dt, (9.3.8)

for any y ≥ x ; x, y ∈ [a, b] .
Notice D1

y f = f ′, D1
x f = f ′ by convention.

Clearly here
(
Dα

y f
)
,
(
Dα

x f
)
are continuous functions over [a, b], see [3], p. 388.

We also make the convention that
(
Dα

y f
)
(x) = 0, for x < y, and

(
Dα

x f
)
(y) = 0,

for y < x .

Here we assume that Dkα
y f , Dkα

x f ∈ C ([a, b]), k = 0, 1, . . . , n + 1, n ∈ N;
∀ x, y ∈ [a, b] .

Then by (9.3.6) we obtain

f (x) − f (y) =
n∑

i=2

(x − y)iα

� (iα + 1)

(
Diα

y f
)
(y) +

1

� ((n + 1) α)

∫ x

y
(x − t)(n+1)α−1

(
D(n+1)α

y f
)
(t) dt, (9.3.9)

∀ x > y; x, y ∈ [a, b] , 0 < α < 1.
And also it holds

f (y) − f (x) =
n∑

i=2

(y − x)iα

� (iα + 1)

(
Diα

x f
)
(x) +

1

� ((n + 1)α)

∫ y

x
(y − t)(n+1)α−1

(
D(n+1)α

x f
)
(t) dt, (9.3.10)

∀ y > x; x, y ∈ [a, b] , 0 < α < 1.
We define the following linear operator

(A ( f )) (x, y) =
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n
i=2

(x−y)iα−1

�(iα+1)

(
Diα

y f
)
(y) + (

D(n+1)α
y f (x)

)
(x−y)(n+1)α−1

�((n+1)α+1) , x > y,

∑n
i=2

(y−x)iα−1

�(iα+1)

(
Diα

x f
)
(x) + (

D(n+1)α
x f (y)

)
(y−x)(n+1)α−1

�((n+1)α+1) , y > x,

f ′ (x) , when x = y,

(9.3.11)

∀ x, y ∈ [a, b] , 0 < α < 1.
We may assume that

|(A ( f )) (x, x) − (A ( f )) (y, y)| = ∣∣ f ′ (x) − f ′ (y)
∣∣ (9.3.12)

≤ � |x − y| , ∀x, y ∈ [a, b] , with � > 0.

We estimate and have:
(i) case of x > y:

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| =
∣∣∣∣

1

� ((n + 1) α)

∫ x

y
(x − t)(n+1)α−1

(
D(n+1)α

y f
)
(t) dt (9.3.13)

− (
D(n+1)α

y f (x)
) (x − y)(n+1)α

� ((n + 1) α + 1)

∣∣
∣∣∣
=

1

� ((n + 1) α)

∣∣∣
∣

∫ x

y
(x − t)(n+1)α−1

((
D(n+1)α

y f
)
(t) − (

D(n+1)α
y f

)
(x)

)
dt

∣∣∣
∣

≤ 1

� ((n + 1)α)

∫ x

y
(x − t)(n+1)α−1

∣∣D(n+1)α
y f (t) − (

D(n+1)α
y f

)
(x)

∣∣ dt

(we assume here that

∣∣D(n+1)α
y f (t) − D(n+1)α

y f (x)
∣∣ ≤ λ1 |t − x | , (9.3.14)

∀ t, x, y ∈ [a, b] : x ≥ t ≥ y, where λ1 > 0)

≤ λ1

� ((n + 1) α)

∫ x

y
(x − t)(n+1)α−1 (x − t) dt =

λ1

� ((n + 1)α)

∫ x

y
(x − t)(n+1)α dt = λ1

� ((n + 1) α)

(x − y)(n+1)α+1

((n + 1) α + 1)
. (9.3.15)
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We have proved that

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| ≤ λ1

� ((n + 1) α)

(x − y)(n+1)α+1

((n + 1) α + 1)
,

(9.3.16)

for any x, y ∈ [a, b] : x > y, 0 < α < 1.
(ii) case of x < y:

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| =

| f (y) − f (x) − (A ( f )) (x, y) (y − x)| =
∣
∣∣∣

1

� ((n + 1) α)

∫ y

x
(y − t)(n+1)α−1

(
D(n+1)α

x f
)
(t) dt (9.3.17)

− (
D(n+1)α

x f (y)
) (y − x)(n+1)α

� ((n + 1) α + 1)

∣∣∣
∣∣
=

1

� ((n + 1) α)

∣∣∣
∣

∫ y

x
(y − t)(n+1)α−1

((
D(n+1)α

x f
)
(t) − (

D(n+1)α
x f

)
(y)

)
dt

∣∣∣
∣

≤ 1

� ((n + 1) α)

∫ y

x
(y − t)(n+1)α−1

∣∣(D(n+1)α
x f

)
(t) − (

D(n+1)α
x f

)
(y)

∣∣ dt

(we assume that

∣∣(D(n+1)α
x f

)
(t) − (

D(n+1)α
x f

)
(y)

∣∣ ≤ λ2 |t − y| , (9.3.18)

∀ t, y, x ∈ [a, b] : y ≥ t ≥ x , where λ2 > 0)

≤ λ2

� ((n + 1) α)

∫ y

x
(y − t)(n+1)α−1 (y − t) dt =

λ2

� ((n + 1)α)

∫ y

x
(y − t)(n+1)α dt = λ2

� ((n + 1) α)

(y − x)(n+1)α+1

((n + 1) α + 1)
. (9.3.19)

We have proved that

| f (x) − f (y) − A ( f ) (x, y) (x − y)| ≤ λ2

� ((n + 1) α)

(y − x)(n+1)α+1

((n + 1) α + 1)
,

(9.3.20)
∀ x, y ∈ [a, b] : y > x, 0 < α < 1.



9.3 Applications to Fractional Calculus 161

Conclusion Let λ := max (λ1,λ2) . It holds

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| ≤ λ

� ((n + 1) α)

|x − y|(n+1)α+1

((n + 1) α + 1)
,

(9.3.21)
∀ x, y ∈ [a, b], where 0 < α < 1, n ∈ N.

One may assume that λ
�((n+1)α)

< 1.
(Above notice that (9.3.21) is trivial when x = y.)
Now based on (9.3.12) and (9.3.21), we can apply our numerical methods pre-

sented in this chapter, to solve f (x) = 0.
To have (n + 1) α + 1 ≥ 2, we need to take 1 > α ≥ 1

n+1 , where n ∈ N.
Then, returning back to Remark 9.8, we see that the constant c can be defined by

c = λ

� ((n + 1) α) [(n + 1) α + 1]

provided that n = p, (p + 1) α ≤ p and

|y − x | ≤ 1 for each x, y ∈ [a, b] . (9.3.22)

Notice that condition (9.3.22) can always be satisfied by choosing x, y (i.e. a, b)
sufficiently close to each other.
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Chapter 10
Secant-Like Methods and Fractional
Calculus

We present local and semilocal convergence results for secant-like methods in
order to approximate a locally unique solution of a nonlinear equation in a Banach
space setting. In the last part of the study we present some choices of the operators
involved in fractional calculus where the operators satisfy the convergence condi-
tions. It follows [5].

10.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (10.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (10.1.1) using Mathematical Modelling [8, 12, 16]. The solutions
of such equations can be found in closed form only in special cases. That is why
most solution methods for these equations are iterative. Iterative methods are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_10
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We introduce the secant-like method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn, xn−1)
−1 F (xn) , (10.1.2)

where x−1, x0 ∈ D are initial points and A (x, y) ∈ L (X, Y ) the space of bounded
linear operators from X into Y . There is a plethora on local as well as semilocal
convergence theorems for method (10.1.2) provided that the operator A is an ap-
proximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we do
not necessarily assume that operator A is related to F ′. This way we expand the
applicability of iterative algorithm (10.1.2). Notice that many well known methods
are special case of method (10.1.2).

Newton’s method: Choose A (x, x) = F ′ (x) for each x ∈ D.

Secant method: Choose A (x, y) = [x, y; F], where [x, y; F] denotes a divided
difference of order one [8, 12, 15].

The so called Newton-like methods and many other methods are special cases of
method (10.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the local
convergence analysis of method (10.1.2) is given in Sect. 10.2. Some applications
from fractional calculus are given in Sect. 10.3.

10.2 Convergence Analysis

We present the main semilocal convergence result for method (10.1.2).

Theorem 10.1 Let F : D ⊂ X → Y be a continuous operator and let A (x, y) ∈
L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, a function g :
[0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y, z ∈ D

A (z, y)−1 ∈ L (Y, X) , (10.2.1)

max
{‖x−1 − x0‖ ,

∥
∥A (x0, x−1)

−1 F (x0)
∥
∥} ≤ η, (10.2.2)

∥
∥
∥A (z, y)−1 (F (z) − F (y) − A (y, x) (z − y))

∥
∥
∥ ≤ g (‖z − y‖ , ‖y − x‖) ‖z − y‖p+1 ,

(10.2.3)

q := g (η, η) η p < 1 (10.2.4)

and
U (x0, r) ⊆ D, (10.2.5)
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where,
r = η

1 − q
. (10.2.6)

Then, the sequence {xn} generated by method (10.1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that

‖xn+1 − xn‖ ≤ g (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1

≤ q ‖xn − xn−1‖ (10.2.7)

and
∥∥xn − x∗∥∥ ≤ qnη

1 − q
. (10.2.8)

Proof The iterate x1 is well defined by method (10.1.2) for n = 0 and (10.2.1). We
also have by (10.2.2) and (10.2.6) that

‖x1 − x0‖ = ∥∥A (x0, x−1)
−1 F (x0)

∥∥ ≤ η < r , so we get that x1 ∈ U (x0, r) and
x2 is well defined (by (10.2.5)). Using (10.2.3) and (10.2.4) we get that

‖x2 − x1‖ = ∥∥A (x1, x0)
−1

[
F (x1) − F (x0) − A (x0, x−1) (x1 − x0)

]∥∥

≤ g (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (10.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get
‖xk+2 − xk+1‖ =

∥∥A (xk+1, xk)
−1

[
F (xk+1) − F (xk) − A (xk, xk−1) (xk+1 − xk)

]∥∥ ≤

g (‖xk+1 − xk‖ , ‖xk − xk−1‖) ‖xk+1 − xk‖p+1 ≤

g (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖
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≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,

which completes the induction for (10.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (10.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 10.2 Let F : D ⊂ X → Y be a continuous operator and let A (x, y) ∈
L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, μ > 0, a function
g1 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x, y)−1 ∈ L (Y, X) ,
∥∥A (x, y)−1

∥∥ ≤ μ,

max
{‖x−1 − x0‖ ,

∥∥A (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (10.2.9)

‖F (z) − F (y) − A (y, x) (z − y)‖ ≤ g1 (‖z − y‖ , ‖x − y‖)
μ

‖z − y‖p+1 ,

(10.2.10)
q1 := g1 (η, η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.

Then, the conclusions of Theorem 10.1 for sequence {xn} hold with g1, q1, r1, replac-
ing g, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.
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Proof Notice that

∥∥A (xn, xn−1)
−1

[
F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)

]∥∥

≤ ∥∥A (xn, xn−1)
−1

∥∥ ‖F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)‖

≤ g1 (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .

Therefore, the proof of Theorem 10.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)‖ ≤
g1 (‖xn − xn−1‖)

μ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 10.3 Under the hypotheses of Proposition 10.2, further suppose that
there exists g2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that

‖F (z) − F (x) − A (z, y) (z − x)‖ ≤ g2 (‖z − x‖ , ‖y − x‖)
μ

‖z − x‖p+1

(10.2.11)
and

g2 (r1, η + r1) r p
1 < 1. (10.2.12)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 10.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (xn, xn−1)
−1 F (xn)

∥∥ =
∥∥A (xn, xn−1)

−1
[
A (xn, xn−1)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥∥A (xn, xn−1)
−1

∥∥ ∥∥F
(
y∗) − F (xn) − A (xn, xn−1)

(
y∗ − xn

)∥∥ ≤

μ
g1 (‖xn − y∗‖ , ‖xn−1 − y∗‖)

μ

∥∥xn − y∗∥∥p+1 ≤

g2 (r1, η + r1) r p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,

so we deduce that lim
n→∞xn = y∗. But we have that lim

n→∞xn = x∗. Hence, we conclude
that x∗ = y∗. �
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Next, we present a local convergence analysis for the iterative algorithm (10.1.2).

Proposition 10.4 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g3 : [0,∞)2 → [0,∞)

continuous and nondecreasing such that for each x, y ∈ D

F
(
x∗) = 0, A (y, x)−1 ∈ L (Y, X) ,

∥∥A (y, x)−1
[
F (x) − F

(
x∗) − A (y, x)

(
x − x∗)]∥∥ ≤

g3
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1
, (10.2.13)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g3 (t, t) t p − 1.

Then, sequence {xn} generated by method (10.1.2) for x−1, x0 ∈ U (x∗, r2) − {x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1
<

∥∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x−1, x0 ∈ U (x∗, r2) − {x∗}. Then, we get in
turn that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (x0, x−1)

−1 F (x0)
∥∥ =

∥∥A (x0, x−1)
−1

[
F

(
x∗) − F (x0) − A (x0, x−1)

(
x∗ − x0

)]∥∥ ≤

g2
(∥∥x0 − x∗∥∥ ,

∥∥x−1 − x∗∥∥) ∥∥x0 − x∗∥∥p+1
< g3 (r2, r2) r p

2

∥∥x0 − x∗∥∥ =
∥
∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (xk, xk−1)
−1 F (xk)

∥∥ ≤
∥∥A (xk, xk−1)

−1
[
F

(
x∗) − F (xk) − A (xk, xk−1)

(
x∗ − xk

)]∥∥ ≤
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g2
(∥∥xk − x∗∥∥ ,

∥∥xk−1 − x∗∥∥) ∥∥xk − x∗∥∥p+1
<

g3 (r2, r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows lim
k→∞xk = x∗ and xk+1 ∈ U (x∗, r2). �

Remark 10.5 (a) Hypothesis (10.2.3) specializes to Newton-Mysowski-type, if
A (x) = F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then our
results extend the applicability of iterative algorithm (10.1.2).

(b) Theorem 10.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (10.2.13) can be replaced by the stronger

∥∥A (y, x)−1 [F (x) − F (z) − A (y, x) (x − z)]
∥∥ ≤

g3 (‖z − y‖ , ‖z − x‖) ‖z − y‖p+1 .

10.3 Applications to Right Fractional Calculus

We present applications of Proposition 10.2.
Let f : [a, b] → R such that f (m) ∈ L∞ ([a, b]). The right Caputo fractional

derivative of order α /∈ N, α > 0, m = �α
 (�·
 ceiling), is defined as follows:

(
Dα

b− f
)
(x) := (−1)m

� (m − α)

∫ b

x
(z − x)m−α−1 f (m) (z) dz, (10.3.1)

∀ x ∈ [a, b], with Dm
b− f (x) := (−1)m f (m) (x), D0

b− f := f , where � is the gamma
function.

We observe that

∣∣(Dα
b− f

)
(x)

∣∣ ≤ 1

� (m − α)

∫ b

x
(z − x)m−α−1

∣∣ f (m) (z)
∣∣ dz

≤
∥∥ f (m)

∥∥∞
� (m − α)

(∫ b

x
(z − x)m−α−1 dz

)
=

∥∥ f (m)
∥∥∞

� (m − α)

(b − x)m−α

m − α
(10.3.2)

=
∥∥ f (m)

∥∥∞ (b − x)m−α

� (m − α + 1)
.
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We have proved that

∣∣(Dα
b− f

)
(x)

∣∣ ≤
∥
∥ f (m)

∥
∥∞ (b − x)m−α

� (m − α + 1)
≤

∥
∥ f (m)

∥
∥∞ (b − a)m−α

� (m − α + 1)
. (10.3.3)

Clearly here
(
Dα

b− f
)
(b) = 0, 0 < α /∈ N.

Let n ∈ N. We denote

Dnα
b− := Dα

b− Dα
b− . . . Dα

b− (n-times). (10.3.4)

The right Riemann-Liouville fractional integral of order α, is defined as follows:

(
I α
b− f

)
(x) := 1

� (α)

∫ b

x
(z − x)α−1 f (z) dz, (10.3.5)

∀ x ∈ [a, b], I 0b− := I (the identity operator).
We denote also

I nα
b− := I α

b− I α
b− . . . I α

b− (n-times). (10.3.6)

From now on we assume 0 < α ≤ 1, that is m = 1.
In [4] and Chap.24, we proved the following right generalized fractional Taylor’s

formula:

Theorem 10.6 Suppose that Dkα
b− f ∈ C ([a, b]), for k = 0, 1, . . . , n + 1, where

0 < α ≤ 1. Then

f (x) =
n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) + (10.3.7)

1

� ((n + 1) α)

∫ z

x
(z − x)(n+1)α−1

(
D(n+1)α

b− f
)

(z) dz, ∀x ∈ [a, b] .

We make

Remark 10.7 In particular, when f ′ ∈ L∞ ([a, b]), 0 < α < 1, we have that
Dα

b− f (b) = 0, also
(
D1

b− f
)
(x) = − f ′ (x), and

(
Dα

b− f
)
(x) = −1

� (1 − α)

∫ b

x
(z − x)−α f ′ (z) dz, ∀x ∈ [a, b] . (10.3.8)

Thus, from (10.3.7) we derive

f (x) − f (b) =
n∑

i=2

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) + (10.3.9)

http://dx.doi.org/10.1007/978-3-319-26721-0_24
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1

� ((n + 1)α)

∫ b

x
(z − x)(n+1)α−1

(
D(n+1)α

b− f
)

(z) dz, ∀ x ∈ [a, b] ; 0 < α < 1.

Here we are going to operate more generally. Again we assume 0 < α ≤ 1, and
f : [a, b] → R, such that f ′ ∈ C ([a, b]). We define the following right Caputo
fractional derivatives:

(
Dα

y− f
)
(x) := −1

� (1 − α)

∫ y

x
(t − x)−α f ′ (t) dt, (10.3.10)

for any x ≤ y; x, y ∈ [a, b], and

(
Dα

x− f
)
(y) = −1

� (1 − α)

∫ x

y
(t − y)−α f ′ (t) dt, (10.3.11)

for any y ≤ x ; x, y ∈ [a, b].
Notice D1

y− f = − f ′, D1
x− f = − f ′, by convention.

Clearly here Dα
y− f , Dα

x− f are continuous functions over [a, b], see [3]. We also
make the convention that

(
Dα

y− f
)
(x) = 0, for x > y, and

(
Dα

x− f
)
(y) = 0, for

y > x .

Here we assume that
Dkα

y− f, Dkα
x− f ∈ C ([a, b]) , (10.3.12)

k = 0, 1, . . . , n + 1, n ∈ N; ∀ x, y ∈ [a, b]; and 0 < α < 1.
By (10.3.9) we derive

f (x) − f (y) =
n∑

i=2

(y − x)iα

� (iα + 1)

(
Diα

y− f
)
(y) +

1

� ((n + 1) α)

∫ y

x
(z − x)(n+1)α−1

(
D(n+1)α

y− f
)

(z) dz, (10.3.13)

∀ x < y; x, y ∈ [a, b]; 0 < α < 1, and also it holds

f (y) − f (x) =
n∑

i=2

(x − y)iα

� (iα + 1)

(
Diα

x− f
)
(x) +

1

� ((n + 1) α)

∫ x

y
(z − y)(n+1)α−1

(
D(n+1)α

x− f
)

(z) dz, (10.3.14)

∀ y < x; x, y ∈ [a, b]; 0 < α < 1.
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We define the following linear operator

(A ( f )) (x, y) :=
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=2

(y−x)iα−1

�(iα+1)

(
Diα

y− f
)
(y) −

(
D(n+1)α

y− f (x)
)

(y−x)(n+1)α−1

�((n+1)α+1) , x < y,

n∑

i=2

(x−y)iα−1

�(iα+1)

(
Diα

x− f
)
(x) −

(
D(n+1)α

x− f (y)
)

(x−y)(n+1)α−1

�((n+1)α+1) , x > y,

f ′ (x) , when x = y,

(10.3.15)

∀ x, y ∈ [a, b]; 0 < α < 1.
We may assume that

|(A ( f )) (x, x) − (A ( f )) (y, y)| = ∣
∣ f ′ (x) − f ′ (y)

∣
∣ ≤ � |x − y| , ∀x, y ∈ [a, b] ,

(10.3.16)

with � > 0.
We estimate and have:
(i) case x < y:

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| =

| f (y) − f (x) − (A ( f )) (x, y) (y − x)| = (10.3.17)

∣∣∣
∣

1

� ((n + 1) α)

∫ y

x
(z − x)(n+1)α−1

(
D(n+1)α

y− f
)

(z) dz−

(
D(n+1)α

y− f (x)
) (y − x)(n+1)α

� ((n + 1) α + 1)

∣∣∣∣∣
=

1

� ((n + 1) α)

∣∣∣∣

∫ y

x
(z − x)(n+1)α−1

(
D(n+1)α

y− f (z) − D(n+1)α
y− f (x)

)
dz

∣∣∣∣ ≤
(10.3.18)

1

� ((n + 1) α)

(∫ y

x
(z − x)(n+1)α−1

∣∣
∣D(n+1)α

y− f (z) − D(n+1)α
y− f (x)

∣∣
∣ dz

)

(we assume here that

∣∣∣D(n+1)α
y− f (z) − D(n+1)α

y− f (x)

∣∣∣ ≤ λ1 |z − x | , (10.3.19)
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∀ z, x, y ∈ [a, b] : y ≥ z ≥ x; λ1 > 0)

≤ λ1

� ((n + 1) α)

∫ y

x
(z − x)(n+1)α−1 (z − x) dz =

λ1

� ((n + 1) α)

∫ y

x
(z − x)(n+1)α dz = λ1

� ((n + 1) α)

(y − x)(n+1)α+1

((n + 1)α + 1)
. (10.3.20)

We have proved that

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| ≤ λ1 (y − x)(n+1)α+1

� ((n + 1) α) ((n + 1) α + 1)
,

(10.3.21)

for any x, y ∈ [a, b] : x < y; 0 < α < 1.
(ii) Case of x > y: We have

| f (y) − f (x) − (A ( f )) (x, y) (y − x)| = (10.3.22)

∣∣∣∣
1

� ((n + 1) α)

∫ x

y
(z − y)(n+1)α−1

(
D(n+1)α

x− f
)

(z) dz−

(
D(n+1)α

x− f (y)
) (x − y)(n+1)α

� ((n + 1) α + 1)

∣∣∣
∣∣
=

1

� ((n + 1) α)

∣∣∣∣

∫ x

y
(z − y)(n+1)α−1

((
D(n+1)α

x− f
)

(z) −
(

D(n+1)α
x− f

)
(y)

)
dz

∣∣∣∣

(10.3.23)

≤ 1

� ((n + 1) α)

∫ x

y
(z − y)(n+1)α−1

∣∣∣
(

D(n+1)α
x− f

)
(z) −

(
D(n+1)α

x− f
)

(y)

∣∣∣ dz

(we assume that

∣∣
∣
(

D(n+1)α
x− f

)
(z) −

(
D(n+1)α

x− f
)

(y)

∣∣
∣ ≤ λ2 |z − y| , (10.3.24)

∀ z, y, x ∈ [a, b] : x ≥ z ≥ y; λ2 > 0)

≤ λ2

� ((n + 1) α)

∫ x

y
(z − y)(n+1)α−1 (z − y) dz =

λ2

� ((n + 1)α)

∫ x

y
(z − y)(n+1)α dz = λ2

� ((n + 1) α)

(x − y)(n+1)α+1

((n + 1) α + 1)
. (10.3.25)
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We have proved that

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| ≤ λ2

� ((n + 1) α)

(x − y)(n+1)α+1

((n + 1) α + 1)
,

(10.3.26)

for any x, y ∈ [a, b] : x > y; 0 < α < 1.

Conclusion 10.8 Let λ = max (λ1,λ2). Then

| f (x) − f (y) − (A ( f )) (x, y) (x − y)| ≤ λ

� ((n + 1) α)

|x − y|(n+1)α+1

((n + 1) α + 1)
,

(10.3.27)

∀ x, y ∈ [a, b] ; where 0 < α < 1, n ∈ N.

One may assume that
λ

� ((n + 1) α)
< 1. (10.3.28)

Above notice that (10.3.27) is trivial when x = y.

Now based on (10.3.16) and (10.3.27), we can apply our numerical methods
presented in this chapter to solve f (x) = 0.

To have (n + 1) α + 1 ≥ 2, we need to take 1 > α ≥ 1
n+1 , where n ∈ N.

Returning back to Proposition 10.2 we see by (10.2.10) and (10.3.27) that crucial
estimate (10.2.10) is satisfied, if we choose p = (i + 1) α, i ∈ N fixed and

g1 (s, t) = λ |s − t |p

� (p) (p + 1) μ
.
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Chapter 11
Secant-Like Methods and Modified
g-Fractional Calculus

We present local and semilocal convergence results for secant-type methods in order
to approximate a locally unique solution of a nonlinear equation in a Banach space
setting. In the last part of the study we present some choices of the operators involved
in fractional calculus where the operators satisfy the convergence conditions. It fol-
lows [5].

11.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (11.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (11.1.1) using Mathematical Modelling [8, 12, 16]. The solutions
of such equations can be found in closed form only in special cases. That is why
most solution methods for these equations are iterative. Iterative methods are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_11
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We introduce the secant-type method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (F) (xn, xn−1)
−1 F (xn) , (11.1.2)

where x−1, x0 ∈ D are initial points and A (F) (x, y) ∈ L (X, Y ) the space of
bounded linear operators from X into Y . There is a plethora on local as well as
semilocal convergence theorems for method (11.1.2) provided that the operator A is
an approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we
do not necessarily assume that operator A is related to F ′. This way we expand the
applicability of iterative algorithm (11.1.2). Notice that many well known methods
are special case of method (11.1.2).

Newton’s method: Choose A (F) (x, x) = F ′ (x) for each x ∈ D.

Secant method: Choose A (F) (x, y) = [x, y; F] ,where [x, y; F] denotes a
divided difference of order one [8, 12, 15].

The so called Newton-like methods and many other methods are special cases of
method (11.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the local
convergence analysis of method (11.1.2) is given in Sect. 11.2. Some applications
from fractional calculus are given in Sect. 11.3.

11.2 Convergence Analysis

We present the main semilocal convergence result for method (11.1.2).

Theorem 11.1 Let F : D ⊂ X → Y be a continuous operator and let A (F) (x, y)

∈ L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, a function ϕ :
[0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y, z ∈ D

A (F) (z, y)−1 ∈ L (Y, X) , (11.2.1)

max
{‖x−1 − x0‖ ,

∥
∥A (F) (x0, x−1)

−1 F (x0)
∥
∥} ≤ η, (11.2.2)

∥∥A (F) (z, y)−1 (F (z) − F (y) − A (F) (y, x) (z − y))
∥∥ ≤

ϕ (‖z − y‖ , ‖y − x‖) ‖z − y‖p+1 , (11.2.3)

q := ϕ (η, η) η p < 1 (11.2.4)

and
U (x0, r) ⊆ D, (11.2.5)
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where,
r = η

1 − q
. (11.2.6)

Then, the sequence {xn} generated by method (11.1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that

‖xn+1 − xn‖ ≤ ϕ (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1

≤ q ‖xn − xn−1‖ (11.2.7)

and
∥∥xn − x∗∥∥ ≤ qnη

1 − q
. (11.2.8)

Proof The iterate x1 is well defined by method (11.1.2) for n = 0 and (11.2.1). We
also have by (11.2.2) and (11.2.6) that

‖x1 − x0‖ = ∥∥A (F) (x0, x−1)
−1 F (x0)

∥∥ ≤ η < r , so we get that x1 ∈ U (x0, r)

and x2 is well defined (by (11.2.5)). Using (11.2.3) and (11.2.4) we get that

‖x2 − x1‖ =
∥∥A (F) (x1, x0)

−1 [
F (x1) − F (x0) − A (F) (x0, x−1) (x1 − x0)

]∥∥

≤ ϕ (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (11.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get
‖xk+2 − xk+1‖ =

∥∥A (F) (xk+1, xk)
−1 [

F (xk+1) − F (xk) − A (F) (xk, xk−1) (xk+1 − xk)
]∥∥

≤ ϕ (‖xk+1 − xk‖ , ‖xk − xk−1‖) ‖xk+1 − xk‖p+1

≤ ϕ (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖
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and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,

which completes the induction for (11.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (11.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 11.2 Let F : D ⊂ X → Y be a continuous operator and let
A (F) (x, y) ∈ L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
μ > 0, a function ϕ1 : [0,∞)2 → [0,∞) continuous and nondecreasing such that
for each x, y ∈ D

A (F) (x, y)−1 ∈ L (Y, X) ,
∥∥A (F) (x, y)−1

∥∥ ≤ μ,

max
{‖x−1 − x0‖ ,

∥∥A (F) (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (11.2.9)

‖F (z) − F (y) − A (F) (y, x) (z − y)‖ ≤ ϕ1 (‖z − y‖ , ‖x − y‖)

μ
‖z − y‖p+1 ,

(11.2.10)
q1 := ϕ1 (η, η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.
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Then, the conclusions of Theorem 11.1 for sequence {xn} hold with ϕ1, q1, r1, replac-
ing ϕ, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that

∥∥A (F) (xn, xn−1)
−1

[
F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)

]∥∥

≤ ∥
∥A (F) (xn, xn−1)

−1
∥
∥ ‖F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)‖

≤ ϕ1 (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .

Therefore, the proof of Theorem 11.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)‖ ≤
ϕ1 (‖xn − xn−1‖)

μ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 11.3 Under the hypotheses of Proposition 11.2, further suppose that
there exists ϕ2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that

‖F (z) − F (x) − A (F) (z, y) (z − x)‖ ≤ ϕ2 (‖z − x‖ , ‖y − x‖)
μ

‖z − x‖p+1

(11.2.11)
and

ϕ2 (r1, η + r1) r p
1 < 1. (11.2.12)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 11.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (F) (xn, xn−1)
−1 F (xn)

∥∥ =
∥∥A (F) (xn, xn−1)

−1
[
A (F) (xn, xn−1)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥
∥A (F) (xn, xn−1)

−1
∥
∥

∥
∥F

(
y∗) − F (xn) − A (F) (xn, xn−1)

(
y∗ − xn

)∥∥ ≤

μ
ϕ1 (‖xn − y∗‖ , ‖xn−1 − y∗‖)

μ

∥∥xn − y∗∥∥p+1 ≤

ϕ2 (r1, η + r1) r p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,
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so we deduce that limn→∞xn = y∗. But we have that limn→∞xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the iterative algorithm (11.1.2).

Proposition 11.4 Let F : D ⊂ X → Y be a continuous operator and let
A (F) (y, x) ∈ L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function
ϕ3 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

F
(
x∗) = 0, A (F) (y, x)−1 ∈ L (Y, X) ,

∥∥A (F) (y, x)−1 [
F (x) − F

(
x∗) − A (F) (y, x)

(
x − x∗)]∥∥ ≤

ϕ3
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1
, (11.2.13)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := ϕ3 (t, t) t p − 1.

Then, sequence {xn} generated by method (11.1.2) for x−1, x0 ∈ U (x∗, r2) − {x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥
∥xn+1 − x∗∥∥ ≤ ϕ2

(∥∥xn − x∗∥∥ ,
∥
∥xn−1 − x∗∥∥) ∥

∥xn − x∗∥∥p+1
<

∥
∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x−1, x0 ∈ U (x∗, r2) − {x∗}. Then, we get in
turn that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (F) (x0, x−1)

−1 F (x0)
∥∥ =

∥∥A (F) (x0, x−1)
−1

[
F

(
x∗) − F (x0) − A (F) (x0, x−1)

(
x∗ − x0

)]∥∥ ≤

ϕ2
(∥∥x0 − x∗∥∥ ,

∥
∥x−1 − x∗∥∥) ∥

∥x0 − x∗∥∥p+1
< ϕ3 (r2, r2) r p

2

∥
∥x0 − x∗∥∥ =

∥∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (F) (xk, xk−1)
−1 F (xk)

∥∥ ≤
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∥∥A (F) (xk, xk−1)
−1

[
F

(
x∗) − F (xk) − A (F) (xk, xk−1)

(
x∗ − xk

)]∥∥ ≤

ϕ2
(∥∥xk − x∗∥∥ ,

∥∥xk−1 − x∗∥∥) ∥∥xk − x∗∥∥p+1
<

ϕ3 (r2, r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows limk→∞xk = x∗ and xk+1 ∈ U (x∗, r2) . �

Remark 11.5 (a) Hypothesis (11.2.3) specializes to Newton-Mysowski-type, if
A (F) (x) = F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then
our results extend the applicability of iterative algorithm (11.1.2).

(b) Theorem 11.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (11.2.13) can be replaced by the stronger

∥∥A (F) (y, x)−1 [F (x) − F (z) − A (F) (y, x) (x − z)]
∥∥ ≤

ϕ3 (‖z − y‖ , ‖z − x‖) ‖z − y‖p+1 .

11.3 Applications to Modified g-Fractional Calculus

Let 0 < α ≤ 1, m = �α
 = 1 (�·
 ceiling of number), g is strictly increasing and
g ∈ AC ([a, b]) (absolutely continuous functions, f : [a, b] → R. Assume that(

f ◦ g−1
) ∈ AC ([g (a) , g (b)]) (so the above imply that f ∈ C ([a, b])).

Also assume that
(

f ◦ g−1
)′ ◦ g ∈ L∞ ([a, b]). In both backgrounds here we

follow [4] and Chap.24.
(I) The right generalized g-fractional derivative of f of order α is defined as

follows:

(
Dα

b−;g f
)
(x) := −1

� (1 − α)

∫ b

x
(g (t) − g (x))−α g′ (t)

(
f ◦ g−1

)′
(g (t)) dt ,

(11.3.1)
a ≤ x ≤ b.

If 0 < α < 1, then
(

Dα
b−;g f

)
∈ C ([a, b]).

Also we define

(
D1

b−;g f
)
(x) := −

((
f ◦ g−1

)′ ◦ g
)

(x) , (11.3.2)

(
D0

b−;g f
)
(x) := f (x) , ∀ x ∈ [a, b] .

http://dx.doi.org/10.1007/978-3-319-26721-0_24
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When g = id, then

Dα
b−;g f (x) = Dα

b−;id f (x) = Dα
b− f (x) , (11.3.3)

the usual right Caputo fractional derivative.
Denote by

Dnα
b−;g := Dα

b−;g Dα
b−;g . . . Dα

b−;g (n times), n ∈ N. (11.3.4)

We consider the right generalized fractional Riemann-Liouville integral

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, a ≤ x ≤ b.

(11.3.5)
Also denote by

I nα
b−;g := I α

b−;g I α
b−;g . . . I α

b−;g (n times). (11.3.6)

We will be using the following modified g-right generalized Taylor’s formula.

Theorem 11.6 ([4]) Let here 0 < α ≤ 1, k = 0, 1, . . . , n + 1; and denote
Fb

k := Dkα
b−;g f . Assume that Fb

k ◦ g−1 ∈ AC ([g (a) , g (b)]), and
(
Fb

k ◦ g−1
)′ ◦ g ∈

L∞ ([a, b]) , for all k = 0, 1, . . . , n + 1. Then

f (x) − f (b) =
n∑

i=1

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) + (11.3.7)

1

� ((n + 1) α)

∫ b

x
(g (t) − g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

b−;g f
)

(t) dt,

∀ x ∈ [a, b] .

Here we are going to operate more generally. We consider f ∈ C1 ([a, b]). We
define the following right generalized g-fractional derivative:

(
Dα

y−;g f
)
(x) := −1

� (1 − α)

∫ y

x
(g (t) − g (x))−α g′ (t)

(
f ◦ g−1

)′
(g (t)) dt,

(11.3.8)
all a ≤ x ≤ y; y ∈ [a, b] ,

(
D1

y−;g f
)
(x) := −

((
f ◦ g−1

)′ ◦ g
)

(x) , ∀ x ∈ [a, b] . (11.3.9)
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Similarly we define:

(
Dα

x−;g f
)
(y) := −1

� (1 − α)

∫ x

y
(g (t) − g (y))−α g′ (t)

(
f ◦ g−1

)′
(g (t)) dt,

(11.3.10)
all a ≤ y ≤ x; x ∈ [a, b] ,

(
D1

x−;g f
)
(y) := −

((
f ◦ g−1

)′ ◦ g
)

(y) , ∀ y ∈ [a, b] . (11.3.11)

When 0 < α < 1, Dα
y−;g f and Dα

x−;g f are continuous functions on [a, b]. Note here
that by convention we have that

(
Dα

y−;g f
)

(x) = 0, for x > y

and(
Dα

x−;g f
)

(y) = 0, for y > x

(11.3.12)

Denote by

F y
k := Dkα

y−;g f , F x
k := Dkα

x−;g f , ∀ x, y ∈ [a, b] . (11.3.13)

We assume that

Fz
k ◦ g−1 ∈ AC ([g (a) , g (b)]) , and

(
Fz

k ◦ g−1)′ ◦ g ∈ L∞ ([a, b]) , (11.3.14)

k = 0, 1, . . . , n + 1; for z = x, y; ∀ x, y ∈ [a, b] ; 0 < α < 1.
We also observe that (0 < α < 1)

∣
∣(Dα

b−;g f
)
(x)

∣
∣ ≤ 1

� (1 − α)

∫ b

x
(g (t) − g (x))−α g′ (t)

∣
∣∣
(

f ◦ g−1
)′

(g (t))
∣
∣∣ dt ≤

(11.3.15)∥∥
∥
(

f ◦ g−1
)′ ◦ g

∥∥
∥∞,[a,b]

� (1 − α)

∫ b

x
(g (t) − g (x))−α g′ (t) dt =

∥∥
∥
(

f ◦ g−1
)′ ◦ g

∥∥
∥∞,[a,b]

� (1 − α)

(g (b) − g (x))1−α

1 − α
=

∥
∥∥
(

f ◦ g−1
)′ ◦ g

∥
∥∥∞,[a,b]

� (2 − α)
(g (b) − g (x))1−α , ∀ x ∈ [a, b] .
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We have proved that

∣∣(Dα
b−;g f

)
(x)

∣∣ ≤

∥∥∥
(

f ◦ g−1
)′ ◦ g

∥∥∥∞,[a,b]

� (2 − α)
(g (b) − g (x))1−α (11.3.16)

≤

∥∥
∥
(

f ◦ g−1
)′ ◦ g

∥∥
∥∞,[a,b]

� (2 − α)
(g (b) − g (a))1−α , ∀ x, y ∈ [a, b] .

Clearly here we have (
Dα

b−;g f
)
(b) = 0, 0 < α < 1. (11.3.17)

In particular it holds

(
Dα

x−;g f
)
(x) = (

Dα
y−;g f

)
(y) = 0, ∀ x, y ∈ [a, b] ; 0 < α < 1. (11.3.18)

By (11.3.7) we derive

f (x) − f (y) =
n∑

i=2

(g (y) − g (x))iα

� (iα + 1)

(
Diα

y−;g f
)
(y) + (11.3.19)

1

� ((n + 1) α)

∫ y

x
(g (t) − g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

y−;g f
)

(t) dt,

∀ x < y; x, y ∈ [a, b]; 0 < α < 1, and also it holds:

f (y) − f (x) =
n∑

i=2

(g (x) − g (y))iα

� (iα + 1)

(
Diα

x−;g f
)
(x) + (11.3.20)

1

� ((n + 1) α)

∫ x

y
(g (t) − g (y))(n+1)α−1 g′ (t)

(
D(n+1)α

x−;g f
)

(t) dt,

∀ y < x; x, y ∈ [a, b]; 0 < α < 1.
We define also the following linear operator

(A1 ( f )) (x, y) :=
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=2

(g(y)−g(x))iα−1

�(iα+1)

(
Diα

y−;g f
)

(y) −
(

D(n+1)α
y−;g f (x)

)
(g(y)−g(x))(n+1)α−1

�((n+1)α+1) , x < y,

n∑

i=2

(g(x)−g(y))iα−1

�(iα+1)

(
Diα

x−;g f
)

(x) −
(

D(n+1)α
x−;g f (y)

)
(g(x)−g(y))(n+1)α−1

�((n+1)α+1) , x > y,

f ′ (x) , when x = y,

(11.3.21)
∀ x, y ∈ [a, b]; 0 < α < 1.
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We may assume that

|(A1 ( f )) (x, x) − (A1 ( f )) (y, y)| = ∣∣ f ′ (x) − f ′ (y)
∣∣

= ∣∣( f ′ ◦ g−1
)
(g (x)) − (

f ′ ◦ g−1
)
(g (y))

∣∣ ≤ � |g (x) − g (y)| , (11.3.22)

∀ x, y ∈ [a, b] ; with � > 0.
We estimate and have:
(i) case x < y:

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| =
∣∣
∣∣

1

� ((n + 1) α)

∫ y

x
(g (t) − g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

y−;g f
)

(t) dt−

(
D(n+1)α

y−;g f (x)
) (g (y) − g (x))(n+1)α

� ((n + 1) α + 1)

∣∣∣
∣∣
= (11.3.23)

1

� ((n + 1) α)
·

∣∣∣∣

∫ y

x
(g (t) − g (x))(n+1)α−1 g′ (t)

((
D(n+1)α

y−;g f
)

(t) −
(

D(n+1)α
y−;g f

)
(x)

)
dt

∣∣∣∣ ≤

1

� ((n + 1) α)
·

∫ y

x
(g (t) − g (x))(n+1)α−1 g′ (t)

∣∣∣
(

D(n+1)α
y−;g f

)
(t) −

(
D(n+1)α

y−;g f
)

(x)

∣∣∣ dt

(11.3.24)
(we assume that

∣∣
∣
(

D(n+1)α
y−;g f

)
(t) −

(
D(n+1)α

y−;g f
)

(x)

∣∣
∣ ≤ λ1 |g (t) − g (x)| , (11.3.25)

∀ t, x, y ∈ [a, b] : y ≥ t ≥ x; λ1 > 0)

≤ λ1

� ((n + 1) α)

∫ y

x
(g (t) − g (x))(n+1)α−1 g′ (t) (g (t) − g (x)) dt = (11.3.26)

λ1

� ((n + 1) α)

∫ y

x
(g (t) − g (x))(n+1)α g′ (t) dt =
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λ1

� ((n + 1) α)

(g (y) − g (x))(n+1)α+1

((n + 1) α + 1)
. (11.3.27)

We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤

λ1

� ((n + 1) α)

(g (y) − g (x))(n+1)α+1

((n + 1) α + 1)
, (11.3.28)

for any x, y ∈ [a, b] : x < y; 0 < α < 1.
(ii) case x > y:

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| =

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| = (11.3.29)

∣∣∣∣
1

� ((n + 1) α)

∫ x

y
(g (t) − g (y))(n+1)α−1 g

(′t
) (

D(n+1)α
x−;g f

)
(t) dt−

(
D(n+1)α

x−;g f
)

(y)
(g (x) − g (y))(n+1)α

� ((n + 1) α + 1)

∣
∣∣∣∣
= (11.3.30)

1

� ((n + 1) α)
·

∣∣∣∣

∫ x

y
(g (t) − g (y))(n+1)α−1 g′ (t)

((
D(n+1)α

x−;g f
)

(t) −
(

D(n+1)α
x−;g f

)
(y)

)
dt

∣∣∣∣ ≤

1

� ((n + 1) α)

∫ x

y
(g (t) − g (y))(n+1)α−1 g′ (t)

∣
∣∣D(n+1)α

x−;g f (t) − D(n+1)α
x−;g f (y)

∣
∣∣ dt

(we assume that

∣∣∣D(n+1)α
x−;g f (t) − D(n+1)α

x−;g f (y)

∣∣∣ ≤ λ2 |g (t) − g (y)| , (11.3.31)

∀ t, y, x ∈ [a, b] : x ≥ t ≥ y; λ2 > 0)

≤ λ2

� ((n + 1)α)

∫ x

y
(g (t) − g (y))(n+1)α−1 g′ (t) (g (t) − g (y)) dt = (11.3.32)

λ2

� ((n + 1) α)

∫ x

y
(g (t) − g (y))(n+1)α g′ (t) dt =
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λ2

� ((n + 1) α)

(g (x) − g (y))(n+1)α+1

((n + 1) α + 1)
.

We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤

λ2

� ((n + 1) α)

(g (x) − g (y))(n+1)α+1

((n + 1) α + 1)
, (11.3.33)

∀ x, y ∈ [a, b] : x > y; 0 < α < 1.

Conclusion 11.7 Set λ = max (λ1,λ2). We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤

λ

� ((n + 1) α)

|g (x) − g (y)|(n+1)α+1

((n + 1) α + 1)
, (11.3.34)

∀ x, y ∈ [a, b] ; 0 < α < 1, n ∈ N.

(Notice that (11.3.34) is trivially true when x = y.)

One may assume that
λ

� ((n + 1) α)
< 1. (11.3.35)

Nowbasedon (11.3.22) and (11.3.34),we can apply our numericalmethods presented
in this chapter to solve f (x) = 0.

To have (n + 1) α + 1 ≥ 2, we need to take 1 > α ≥ 1
n+1 , where n ∈ N.

Some examples of g follow:

g (x) = ex , x ∈ [a, b] ⊂ R,

g (x) = sin x,

g (x) = tan x,

where x ∈ [− π
2 + ε, π

2 − ε
]
, ε > 0 small.

(11.3.36)

Indeed, the above examples of g are strictly increasing and absolutely continuous
functions.

(II) The left generalized g-fractional derivative of f of order α is defined as
follows:

(
Dα

a+;g f
)
(x) = 1

� (1 − α)

∫ x

a
(g (x) − g (t))−α g′ (t)

(
f ◦ g−1

)′
(g (t)) dt ,

(11.3.37)
∀ x ∈ [a, b] .

If 0 < α < 1, then
(

Dα
a+;g f

)
∈ C ([a, b]).
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Also, we define
D1

a+;g f (x) =
((

f ◦ g−1
)′ ◦ g

)
(x) , (11.3.38)

D0
a+;g f (x) = f (x) , ∀ x ∈ [a, b] .

When g = id, then
Dα

a+;g f = Dα
a+;id f = Dα

∗a f,

the usual left Caputo fractional derivative.
Denote by

Dnα
a+;g := Dα

a+;g Dα
a+;g . . . Dα

a+;g (n times), n ∈ N. (11.3.39)

We consider the left generalized fractional Riemann-Liouville integral

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, a ≤ x ≤ b.

(11.3.40)
Also denote by

I nα
a+;g := I α

a+;g I α
a+;g . . . I α

a+;g (n times). (11.3.41)

We will be using the following modified g-left generalized Taylor’s formula:

Theorem 11.8 ([4]) Let here 0 < α ≤ 1, k = 0, 1, . . . , n + 1; and denote
Ga

k := Dkα
a+;g f . Assume that Ga

k ◦ g−1 ∈ AC ([g (a) , g (b)]), and
(
Ga

k ◦ g−1
)′ ◦ g ∈

L∞ ([a, b]), for all k = 0, 1, . . . , n + 1. Then

f (x) − f (a) =
n∑

i=1

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) + (11.3.42)

1

� ((n + 1) α)

∫ x

a
(g (x) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

a+;g f
)

(t) dt,

∀ x ∈ [a, b] .

Here we are going to operate more generally. We consider f ∈ C1 ([a, b]). We
define the following left generalized g-fractional derivative:

(
Dα

y+;g f
)
(x) = 1

� (1 − α)

∫ x

y
(g (x) − g (t))−α g′ (t)

(
f ◦ g−1)′

(g (t)) dt,

(11.3.43)
for any y ≤ x ≤ b; x, y ∈ [a, b] ,

(
D1

y+;g f
)
(x) = (

f ◦ g−1)′
(g (x)) , ∀ x ∈ [a, b] . (11.3.44)
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Similarly, we define

(
Dα

x+;g f
)
(y) = 1

� (1 − α)

∫ y

x
(g (y) − g (t))−α g′ (t)

(
f ◦ g−1

)′
(g (t)) dt,

(11.3.45)
for any x ≤ y ≤ b; x, y ∈ [a, b] ,

(
D1

x+;g f
)
(y) = (

f ◦ g−1
)′

(g (y)) , ∀ y ∈ [a, b] . (11.3.46)

When 0 < α < 1, Dα
y+;g f and Dα

x+;g f are continuous functions on [a, b]. Note here
that by convention, we have that

(
Dα

y+;g f
)

(x) = 0, when x < y,

and(
Dα

x+;g f
)

(y) = 0, when y < x .

(11.3.47)

Denote by

G y
k := Dkα

y+;g f , Gx
k := Dkα

x+;g f , ∀ x, y ∈ [a, b] . (11.3.48)

We assume that

Gz
k ◦ g−1 ∈ AC ([g (a) , g (b)]) , and

(
Gz

k ◦ g−1
)′ ◦ g ∈ L∞ ([a, b]) , (11.3.49)

k = 0, 1, . . . , n + 1; for z = y, x; ∀ x, y ∈ [a, b] ; 0 < α < 1.
We also observe that (0 < α < 1)

∣∣(Dα
a+;g f

)
(x)

∣∣ ≤ 1

� (1 − α)

∫ x

a
(g (x) − g (t))−α g′ (t)

∣∣∣
(

f ◦ g−1)′
(g (t))

∣∣∣ dt ≤
∥∥∥
(

f ◦ g−1
)′ ◦ g

∥∥∥∞,[a,b]

� (1 − α)

∫ x

a
(g (x) − g (t))−α g′ (t) dt =

∥∥∥
(

f ◦ g−1
)′ ◦ g

∥∥∥∞,[a,b]

� (1 − α)

(g (x) − g (a))1−α

1 − α
= (11.3.50)

∥∥
∥
(

f ◦ g−1
)′ ◦ g

∥∥
∥∞,[a,b]

� (2 − α)
(g (x) − g (a))1−α .
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We have proved that

∣∣(Dα
a+;g f

)
(x)

∣∣ ≤

∥
∥∥
(

f ◦ g−1
)′ ◦ g

∥
∥∥∞,[a,b]

� (2 − α)
(g (x) − g (a))1−α

≤

∥∥∥
(

f ◦ g−1
)′ ◦ g

∥∥∥∞,[a,b]

� (2 − α)
(g (b) − g (a))1−α , ∀ x ∈ [a, b] . (11.3.51)

In particular it holds (
Dα

a+;g f
)
(a) = 0, 0 < α < 1, (11.3.52)

and

(
Dα

y+;g f
)
(y) = (

Dα
x+;g f

)
(x) = 0, ∀ x, y ∈ [a, b] ; 0 < α < 1. (11.3.53)

By (11.3.42) we derive

f (x) − f (y) =
n∑

i=2

(g (x) − g (y))iα

� (iα + 1)

(
Diα

y+;g f
)
(y) +

1

� ((n + 1)α)

∫ x

y
(g (x) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

y+;g f
)

(t) dt, (11.3.54)

for any x > y : x, y ∈ [a, b]; 0 < α < 1, also it holds

f (y) − f (x) =
n∑

i=2

(g (y) − g (x))iα

� (iα + 1)

(
Diα

x+;g f
)
(x) + (11.3.55)

1

� ((n + 1) α)

∫ y

x
(g (y) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

x+;g f
)

(t) dt,

for any y > x : x, y ∈ [a, b]; 0 < α < 1.
We define also the following linear operator

(A2 ( f )) (x, y) :=
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=2

(g(x)−g(y))iα−1

�(iα+1)

(
Diα

y+;g f
)

(y) +
(

D(n+1)α
y+;g f

)
(x)

(g(x)−g(y))(n+1)α−1

�((n+1)α+1) , x > y,

n∑

i=2

(g(y)−g(x))iα−1

�(iα+1)

(
Diα

x+;g f
)

(x) +
(

D(n+1)α
x+;g f

)
(y)

(g(y)−g(x))(n+1)α−1

�((n+1)α+1) , y > x,

f ′ (x) , when x = y,

(11.3.56)
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∀ x, y ∈ [a, b]; 0 < α < 1.
We may assume that

|(A2 ( f )) (x, x) − (A2 ( f )) (y, y)| = ∣∣ f ′ (x) − f ′ (y)
∣∣ (11.3.57)

≤ �∗ |g (x) − g (y)| , ∀ x, y ∈ [a, b] ;

with �∗ > 0.
We estimate and have
(i) case of x > y:

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| = (11.3.58)

∣∣∣∣
1

� ((n + 1) α)

∫ x

y
(g (x) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

y+;g f
)

(t) dt−

(
D(n+1)α

y+;g f
)

(x)
(g (x) − g (y))(n+1)α

� ((n + 1) α + 1)

∣∣
∣∣∣
=

1

� ((n + 1) α)
·

∣∣∣∣

∫ x

y
(g (x) − g (t x))(n+1)α−1 g′ (t)

((
D(n+1)α

y+;g f
)

(t) −
(

D(n+1)α
y+;g f

)
(x)

)
dt

∣∣∣∣ ≤
(11.3.59)

1

� ((n + 1) α)
·

∫ x

y
(g (x) − g (t))(n+1)α−1 g′ (t)

∣∣
∣
(

D(n+1)α
y+;g f

)
(t) −

(
D(n+1)α

y+;g f
)

(x)

∣∣
∣ dt

(we assume here that

∣∣∣
(

D(n+1)α
y+;g f

)
(t) −

(
D(n+1)α

y+;g f
)

(x)

∣∣∣ ≤ ρ1 |g (t) − g (x)| , (11.3.60)

∀ t, x, y ∈ [a, b] : x ≥ t ≥ y; ρ1 > 0)

≤ ρ1

� ((n + 1) α)

∫ x

y
(g (x) − g (t))(n+1)α−1 g′ (t) (g (x) − g (t)) dt =

ρ1

� ((n + 1) α)

∫ x

y
(g (x) − g (t))(n+1)α g′ (t) dt =
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ρ1

� ((n + 1) α)

(g (x) − g (y))(n+1)α+1

((n + 1) α + 1)
. (11.3.61)

We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ1

� ((n + 1) α)

(g (x) − g (y))(n+1)α+1

((n + 1) α + 1)
, (11.3.62)

∀ x, y ∈ [a, b] : x > y; 0 < α < 1.
(ii) case of y > x :

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| = (11.3.63)

| f (y) − f (x) − (A2 ( f )) (x, y) (g (y) − g (x))| =
∣∣∣∣

1

� ((n + 1) α)

∫ y

x
(g (y) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

x+;g f
)

(t) dt−

(
D(n+1)α

x+;g f
)

(y)
(g (y) − g (x))(n+1)α

� ((n + 1) α + 1)

∣∣∣∣∣
=

1

� ((n + 1) α)
·

∣∣∣
∣

∫ y

x
(g (y) − g (t))(n+1)α−1 g′ (t)

((
D(n+1)α

x+;g f
)

(t) −
(

D(n+1)α
x+;g f

)
(y)

)
dt

∣∣∣
∣ ≤

1

� ((n + 1) α)
·

∫ y

x
(g (y) − g (t))(n+1)α−1 g′ (t)

∣
∣∣
(

D(n+1)α
x+;g f

)
(t) −

(
D(n+1)α

x+;g f
)

(y)

∣
∣∣ dt

(11.3.64)
(we assume here that

∣∣∣
(

D(n+1)α
x+;g f

)
(t) −

(
D(n+1)α

x+;g f
)

(y)

∣∣∣ ≤ ρ2 |g (t) − g (y)| , (11.3.65)

∀ t, y, x ∈ [a, b] : y ≥ t ≥ x; ρ2 > 0)

≤ ρ2

� ((n + 1) α)

∫ y

x
(g (y) − g (t))(n+1)α−1 g′ (t) (g (y) − g (t)) dt =
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ρ2

� ((n + 1) α)

(g (y) − g (x))(n+1)α+1

((n + 1) α + 1)
. (11.3.66)

We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ2

� ((n + 1) α)

(g (y) − g (x))(n+1)α+1

((n + 1) α + 1)
,

∀ x, y ∈ [a, b] : y > x; 0 < α < 1.

Conclusion 11.9 Set ρ = max (ρ1, ρ2). Then

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ

� ((n + 1) α)

|g (x) − g (y)|(n+1)α+1

((n + 1) α + 1)
, (11.3.67)

∀ x, y ∈ [a, b] ; 0 < α < 1.

(Notice (11.3.67) is trivially true when x = y.)
One may assume that

ρ

� ((n + 1) α)
< 1. (11.3.68)

Nowbasedon (11.3.57) and (11.3.67),we can apply our numericalmethods presented
in this chapter to solve f (x) = 0.

Remark 11.10 (a) Returning back to Conclusion 11.7, we see that Proposition 11.2
can be used, if g (t) = t , F (t) = f (t), A (F) (s, t) = A1 ( f ) (s, t) for each s, t ∈
[a, b], p = (i + 1) α, i ∈ N fixed and

ϕ1 (s, t) = λ |s − t |p

� (p) (p + 1) μ

for each s, t ∈ [a, b] .
(b) According to Conclusion 11.9, as in (a) but we must choose A (F) (s, t) =

A2 ( f ) (s, t) and

ϕ1 (s, t) = ρ |s − t |p

� (p) (p + 1) μ

for each s, t ∈ [a, b] .
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Chapter 12
Secant-Like Algorithms and Generalized
Fractional Calculus

We present local and semilocal convergence results for secant-like algorithms in
order to approximate a locally unique solution of a nonlinear equation in a Banach
space setting. In the last part of the study we present some choices of the operators
involved in fractional calculus where the operators satisfy the convergence condi-
tions. It follows [5].

12.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (12.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (12.1.1) using Mathematical Modelling [8, 12, 16]. The solutions
of such equations can be found in closed form only in special cases. That is why
most solution methods for these equations are iterative. Iterative methods are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

We introduce the secant-type method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (F) (xn, xn−1)
−1 F (xn) , (12.1.2)

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_12
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where x−1, x0 ∈ D are initial points and A (F) (x, y) ∈ L (X, Y ) the space of
bounded linear operators from X into Y . There is a plethora on local as well as
semilocal convergence theorems for method (12.1.2) provided that the operator A is
an approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we
do not necessarily assume that operator A is related to F ′. This way we expand the
applicability of iterative algorithm (12.1.2). Notice that many well known methods
are special case of method (12.1.2).

Newton’s method: Choose A (F) (x, x) = F ′ (x) for each x ∈ D.
Secant method: Choose A (F) (x, y) = [x, y; F], where [x, y; F] denotes a

divided difference of order one [8, 12, 15].
The so called Newton-like algorithms and many other methods are special cases

of method (12.1.2).
The rest of the chapter is organized as follows. The semilocal as well as the local

convergence analysis of method (12.1.2) is given in Sect. 12.2. Some applications
from fractional calculus are given in Sect. 12.3.

12.2 Convergence Analysis

We present the main semilocal convergence result for method (12.1.2).

Theorem 12.1 Let F : D ⊂ X → Y be a continuous operator and let A (F)

(x, y) ∈ L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, a function
ϕ : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y, z ∈ D

A (F) (z, y)−1 ∈ L (Y, X) , (12.2.1)

max
{‖x−1 − x0‖ ,

∥∥A (F) (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (12.2.2)

∥∥A (F) (z, y)−1 (F (z) − F (y) − A (F) (y, x) (z − y))
∥∥ ≤

ϕ (‖z − y‖ , ‖y − x‖) ‖z − y‖p+1 , (12.2.3)

q := ϕ (η, η) η p < 1 (12.2.4)

and
U (x0, r) ⊆ D, (12.2.5)

where,
r = η

1 − q
. (12.2.6)

Then, the sequence {xn} generated by method (12.1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that
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‖xn+1 − xn‖ ≤ ϕ (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1

≤ q ‖xn − xn−1‖ (12.2.7)

and
∥∥xn − x∗∥∥ ≤ qnη

1 − q
. (12.2.8)

Proof The iterate x1 is well defined by method (12.1.2) for n = 0 and (12.2.1). We
also have by (12.2.2) and (12.2.6) that ‖x1 − x0‖ = ∥∥A (F) (x0, x−1)

−1 F (x0)
∥∥ ≤

η < r , so we get that x1 ∈ U (x0, r) and x2 is well defined (by (12.2.5)). Using
(12.2.3) and (12.2.4) we get that

‖x2 − x1‖ = ∥∥A (F) (x1, x0)
−1

[
F (x1) − F (x0) − A (F) (x0, x−1) (x1 − x0)

]∥∥

≤ ϕ (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (12.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get
‖xk+2 − xk+1‖ =

∥∥A (F) (xk+1, xk)
−1

[
F (xk+1) − F (xk) − A (F) (xk, xk−1) (xk+1 − xk)

]∥∥

≤ ϕ (‖xk+1 − xk‖ , ‖xk − xk−1‖) ‖xk+1 − xk‖p+1

≤ ϕ (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,



200 12 Secant-Like Algorithms and Generalized Fractional Calculus

which completes the induction for (12.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (12.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 12.2 Let F : D ⊂ X → Y be a continuous operator and let
A (F) (x, y) ∈ L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
μ > 0, a function ϕ1 : [0,∞)2 → [0,∞) continuous and nondecreasing such that
for each x, y ∈ D

A (F) (x, y)−1 ∈ L (Y, X) ,
∥∥A (F) (x, y)−1

∥∥ ≤ μ,

max
{‖x−1 − x0‖ ,

∥∥A (F) (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (12.2.9)

‖F (z) − F (y) − A (F) (y, x) (z − y)‖ ≤ ϕ1 (‖z − y‖ , ‖x − y‖)

μ
‖z − y‖p+1 ,

(12.2.10)
q1 := ϕ1 (η, η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.

Then, the conclusions of Theorem 12.1 for sequence {xn} hold with ϕ1, q1, r1, replac-
ing ϕ, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that
∥∥A (F) (xn, xn−1)

−1
[
F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)

]∥∥

≤ ∥
∥A (F) (xn, xn−1)

−1
∥
∥ ‖F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)‖

≤ ϕ1 (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .
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Therefore, the proof of Theorem 12.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (F) (xn−1, xn−2) (xn − xn−1)‖ ≤
ϕ1 (‖xn − xn−1‖)

μ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 12.3 Under the hypotheses of Proposition 12.2, further suppose that
there exists ϕ2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that

‖F (z) − F (x) − A (F) (z, y) (z − x)‖ ≤ ϕ2 (‖z − x‖ , ‖y − x‖)
μ

‖z − x‖p+1

(12.2.11)
and

ϕ2 (r1, η + r1) r p
1 < 1. (12.2.12)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1).

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 12.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (F) (xn, xn−1)
−1 F (xn)

∥∥ =
∥∥A (F) (xn, xn−1)

−1 [
A (F) (xn, xn−1)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥
∥A (F) (xn, xn−1)

−1
∥
∥

∥
∥F

(
y∗) − F (xn) − A (F) (xn, xn−1)

(
y∗ − xn

)∥∥ ≤

μ
ϕ1 (‖xn − y∗‖ , ‖xn−1 − y∗‖)

μ

∥∥xn − y∗∥∥p+1 ≤

ϕ2 (r1, η + r1) r p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,

so we deduce that limn→∞ xn = y∗. But we have that limn→∞ xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the iterative algorithm (12.1.2).

Proposition 12.4 Let F : D ⊂ X → Y be a continuous operator and let
A (F) (y, x) ∈ L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function
ϕ3 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D
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F
(
x∗) = 0, A (F) (y, x)−1 ∈ L (Y, X) ,

∥∥A (F) (y, x)−1
[
F (x) − F

(
x∗) − A (F) (y, x)

(
x − x∗)]∥∥ ≤

ϕ3
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1
, (12.2.13)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := ϕ3 (t, t) t p − 1.

Then, sequence {xn} generated by method (12.1.2) for x−1, x0 ∈ U (x∗, r2) − {x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ ϕ2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1
<

∥∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x−1, x0 ∈ U (x∗, r2) − {x∗}. Then, we get in
turn that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (F) (x0, x−1)

−1 F (x0)
∥∥ =

∥
∥A (F) (x0, x−1)

−1
[
F

(
x∗) − F (x0) − A (F) (x0, x−1)

(
x∗ − x0

)]∥∥ ≤

ϕ2
(∥∥x0 − x∗∥∥ ,

∥∥x−1 − x∗∥∥) ∥∥x0 − x∗∥∥p+1
< ϕ3 (r2, r2) r p

2

∥∥x0 − x∗∥∥ =
∥
∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (F) (xk, xk−1)
−1 F (xk)

∥∥ ≤
∥∥A (F) (xk, xk−1)

−1
[
F

(
x∗) − F (xk) − A (F) (xk, xk−1)

(
x∗ − xk

)]∥∥ ≤

ϕ2
(∥∥xk − x∗∥∥ ,

∥∥xk−1 − x∗∥∥) ∥∥xk − x∗∥∥p+1
<

ϕ3 (r2, r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows limk→∞ xk = x∗ and xk+1 ∈ U (x∗, r2). �
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Remark 12.5 (a) Hypothesis (12.2.3) specializes to Newton-Mysowski-type, if
A (F) (x) = F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then
our results extend the applicability of iterative algorithm (12.1.2).

(b) Theorem 12.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (12.2.13) can be replaced by the stronger

∥∥A (F) (y, x)−1 [F (x) − F (z) − A (F) (y, x) (x − z)]
∥∥ ≤

ϕ3 (‖z − y‖ , ‖z − x‖) ‖z − y‖p+1 .

12.3 Applications to g-Fractional Calculus

Here both backgrounds needed come from [4] and Chap.24. See also the related [3].
(I) We need:

Definition 12.6 Let α > 0, �α
 = n, �·
 the ceiling of the number. Here let g ∈
AC ([a, b]) (absolutely continuous functions) and strictly increasing. We assume
that

(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]), where f : [a, b] → N.
We define the left generalized g-fractional derivative of f of order α as follows:

(
Dα

a+;g f
)
(x) := 1

� (n − α)

∫ x

a
(g (x) − g (t))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt,

(12.3.1)
a ≤ x ≤ b, where � is the gamma function.
If α /∈ N, we have that Dα

a+;g f ∈ C ([a, b]).
We set

Dn
a+;g f (x) =

((
f ◦ g−1

)(n) ◦ g
)

(x) , (12.3.2)

D0
a+;g f (x) = f (x) , ∀x ∈ [a, b] .

When g = id, then (
Dα

a+;g f
) = (

Dα
a+;id f

) = (
Dα

∗a f
)
, (12.3.3)

the usual left Caputo fractional derivative.

We will use the following g-left fractional generalized Taylor’s formula from [4].

Theorem 12.7 Let g be strictly increasing function and g ∈ AC ([a, b]). We
assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]) (it means
(

f ◦ g−1
)(n−1) ∈ AC

([g (a) , g (b)])), where N � n = �α
, α > 0. Also, we assume that
(

f ◦ g−1
)(n)

◦g ∈ L∞ ([a, b]). Then

http://dx.doi.org/10.1007/978-3-319-26721-0_24


204 12 Secant-Like Algorithms and Generalized Fractional Calculus

f (x) − f (a) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (x) − g (a))k + (12.3.4)

1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt,

∀ x ∈ [a, b].
The remainder of (12.3.4) is a continuous function in x ∈ [a, b].

Here we are going to operate more generally. We consider f ∈ Cn ([a, b]). We
define the following left g-fractional derivative of f of order α as follows:

(
Dα

y+;g f
)
(x) := 1

� (n − α)

∫ x

y
(g (x) − g (t))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt,

(12.3.5)
for any a ≤ y ≤ x ≤ b;

Dn
y+;g f (x) =

((
f ◦ g−1

)(n) ◦ g
)

(x) , ∀x, y ∈ [a, b] , (12.3.6)

and
D0

y+;g f (x) = f (x) , ∀ x ∈ [a, b] . (12.3.7)

For α > 0, α /∈ N, by convention we set that

(
Dα

y+;g f
)
(x) = 0, for x < y, ∀ x, y ∈ [a, b] . (12.3.8)

Similarly, we define

(
Dα

x+;g f
)
(y) := 1

� (n − α)

∫ y

x
(g (y) − g (t))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt,

(12.3.9)
for any a ≤ x ≤ y ≤ b;

Dn
x+;g f (y) =

((
f ◦ g−1

)(n) ◦ g
)

(y) , ∀ x, y ∈ [a, b] , (12.3.10)

and
D0

x+;g f (y) = f (y) , ∀ y ∈ [a, b] . (12.3.11)

For α > 0, α /∈ N, by convention we set that

(
Dα

x+;g f
)
(y) = 0, for y < x, ∀ x, y ∈ [a, b] . (12.3.12)
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By assuming
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]), we get that

∣∣
∣
(

Dα
a+;g f

)
(x)

∣∣
∣ ≤ 1

� (n − α)

∫ x

a
(g (x) − g (t))n−α−1 g′ (t)

∣∣
∣
∣
(

f ◦ g−1
)(n)

(g (t))

∣∣
∣
∣ dt

(12.3.13)

≤

∥∥∥
(

f ◦ g−1
)(n) ◦ g

∥∥∥∞,[a,b]

� (n − α)

∫ x

a
(g (x) − g (t))n−α−1 g′ (t) dt =

∥∥∥
(

f ◦ g−1
)(n) ◦ g

∥∥∥∞,[a,b]

� (n − α + 1)
(g (x) − g (a))n−α ≤

∥∥∥
(

f ◦ g−1
)(n) ◦ g

∥∥∥∞,[a,b]

� (n − α + 1)
(g (b) − g (a))n−α , ∀ x ∈ [a, b] . (12.3.14)

That is (
Dα

a+;g f
)
(a) = 0, (12.3.15)

and (
Dα

y+;g f
)
(y) = (

Dα
x+;g f

)
(x) = 0, ∀ x, y ∈ [a, b] . (12.3.16)

Thus when α > 0, α /∈ N, both Dα
y+;g f, Dα

x+;g f ∈ C ([a, b]).

Notice also, that
(

f ◦ g−1
) ∈ ACn ([g (x) , g (b)]) and

(
f ◦ g−1

)(n) ◦ g ∈
L∞ ([x, b]), and of course g ∈ AC ([x, b]), and strictly incrasing over [x, b] ,
∀ x ∈ [a, b].

Hence, by Theorem 12.7 we obtain

f (x) − f (y) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k +

1

� (α)

∫ x

y
(g (x) − g (t))α−1 g′ (t)

(
Dα

y+;g f
)
(t) dt, ∀ x ∈ [y, b] , (12.3.17)

and

f (y) − f (x) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (x))

k! (g (y) − g (x))k +

1

� (α)

∫ y

x
(g (y) − g (t))α−1 g′ (t)

(
Dα

x+;g f
)
(t) dt, ∀ y ∈ [x, b] , (12.3.18)
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We define also the following linear operator

(A1 ( f )) (x, y) :=
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1∑

k=1

( f ◦g−1)
(k)

(g(y))

k! (g (x) − g (y))k−1 +
(

Dα
y+;g f

)
(x)

(g(x)−g(y))α−1

�(α+1) , for x > y,

n−1∑

k=1

( f ◦g−1)
(k)

(g(x))

k! (g (y) − g (x))k−1 +
(

Dα
x+;g f

)
(y)

(g(y)−g(x))α−1

�(α+1) , for x < y,

f (n) (x) , when x = y,

(12.3.19)
∀ x, y ∈ [a, b]; α > 0, n = �α
.

We may assume that

|(A1 ( f )) (x, x) − (A1 ( f )) (y, y)| = ∣∣ f (n) (x) − f (n) (y)
∣∣ (12.3.20)

∣∣( f (n) ◦ g−1
)
(g (x)) − (

f (n) ◦ g−1
)
(g (y))

∣∣ ≤ � |g (x) − g (y)| , ∀ x, y ∈ [a, b] ;

where � > 0.
We estimate and have:
(i) case of x > y:

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| =
∣∣∣∣

1

� (α)

∫ x

y
(g (x) − g (t))α−1 g′ (t)

(
Dα

y+;g f
)
(t) dt−

(
Dα

y+;g f
)
(x)

(g (x) − g (y))α

� (α + 1)

∣
∣∣∣ = (12.3.21)

1

� (α)

∣∣∣
∣

∫ x

y
(g (x) − g (t))α−1 g′ (t)

((
Dα

y+;g f
)
(t) − (

Dα
y+;g f

)
(x)

)
dt

∣∣∣
∣ ≤

1

� (α)

∫ x

y
(g (x) − g (t))α−1 g′ (t)

∣∣(Dα
y+;g f

)
(t) − (

Dα
y+;g f

)
(x)

∣∣ dt (12.3.22)

(we assume that

∣∣(Dα
y+;g f

)
(t) − (

Dα
y+;g f

)
(x)

∣∣ ≤ λ1 |g (t) − g (x)| , (12.3.23)

∀ t, x, y ∈ [a, b] : x ≥ t ≥ y; λ1 > 0)
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≤ λ1

� (α)

∫ x

y
(g (x) − g (t))α−1 g′ (t) (g (x) − g (t)) dt =

λ1

� (α)

∫ x

y
(g (x) − g (t))α g′ (t) dt = λ1

� (α)

(g (x) − g (y))α+1

(α + 1)
. (12.3.24)

We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤

λ1

� (α)

(g (x) − g (y))α+1

(α + 1)
, (12.3.25)

∀ x, y ∈ [a, b] : x > y.
(ii) case of y > x : We have that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| = (12.3.26)

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| =
∣
∣∣∣

1

� (α)

∫ y

x
(g (y) − g (t))α−1 g′ (t)

(
Dα

x+;g f
)
(t) dt−

(
Dα

x+;g f
)
(y)

(g (y) − g (x))α

� (α + 1)

∣∣∣
∣ =

1

� (α)

∣∣∣∣

∫ y

x
(g (y) − g (t))α−1 g′ (t)

((
Dα

x+;g f
)
(t) − (

Dα
x+;g f

)
(y)

)
dt

∣∣∣∣ ≤
(12.3.27)

1

� (α)

∫ y

x
(g (y) − g (t))α−1 g′ (t)

∣∣(Dα
x+;g f

)
(t) − (

Dα
x+;g f

)
(y)

∣∣ dt (12.3.28)

(we assume here that

∣∣(Dα
x+;g f

)
(t) − (

Dα
x+;g f

)
(y)

∣∣ ≤ λ2 |g (t) − g (y)| , (12.3.29)

∀ t, y, x ∈ [a, b] : y ≥ t ≥ x;λ2 > 0)

≤ λ2

� (α)

∫ y

x
(g (y) − g (t))α−1 g′ (t) (g (y) − g (t)) dt = (12.3.30)

λ2

� (α)

∫ y

x
(g (y) − g (t))α g′ (t) dt = λ2

� (α)

(g (y) − g (x))α+1

(α + 1)
. (12.3.31)
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We have proved that

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤ (12.3.32)

λ2

� (α)

(g (y) − g (x))α+1

(α + 1)
, ∀ x, y ∈ [a, b] : y > x .

Conclusion 12.8 Set λ := max (λ1,λ2) . Then

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| ≤

λ

� (α)

|g (x) − g (y)|α+1

(α + 1)
, ∀ x, y ∈ [a, b] . (12.3.33)

Notice that (12.3.33) is trivially true when x = y.
One may assume that

λ

� (α)
< 1. (12.3.34)

Nowbasedon (12.3.20) and (12.3.33),we can apply our numericalmethods presented
in this chapter to solve f (x) = 0.

(II) In the next background again we use [4]. We need:

Definition 12.9 Let α > 0, �α
 = n, �·
 the ceiling of the number. Here let g ∈
AC ([a, b]) and strictly increasing. We assume that

(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]),
where f : [a, b] → R.

We define the right generalized g-fractional derivative of f of order α as follows:

(
Dα

b−;g f
)
(x) := (−1)n

� (n − α)

∫ b

x
(g (t) − g (x))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt ,

(12.3.35)
∀ x ∈ [a, b].

If α /∈ N, we have that
(

Dα
b−;g f

)
∈ C ([a, b]).

We set that
Dn

b−;g f (x) := (−1)n
((

f ◦ g−1
)(n) ◦ g

)
(x) , (12.3.36)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] . (12.3.37)

When g = id, then

Dα
b−;g f (x) = Dα

b−;id f (x) = Dα
b− f (x) , (12.3.38)

the usual right Caputo fractional derivative.
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We will use the following g-right fractional generalized Taylor’s formula from
[4].

Theorem 12.10 Let g be strictly increasing function and g ∈ AC ([a, b]). We
assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), where N � n = �α
, α > 0. Also we

assume that
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) − f (b) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (b))

k! (g (x) − g (b))k +

1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt, (12.3.39)

all a ≤ x ≤ b.

The remainder of (12.3.39) is a continuous function in x ∈ [a, b].

Here we are going to operate more generally. We consider f ∈ Cn ([a, b]). We
define the following right g-fractional derivative of f of order α as follows:

(
Dα

y−;g f
)
(x) = (−1)n

� (n − α)

∫ y

x
(g (t) − g (x))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt,

(12.3.40)
∀ x ∈ [a, y]; where y ∈ [a, b] ;

(
Dn

y−;g f
)
(x) = (−1)n

((
f ◦ g−1

)(n) ◦ g
)

(x) , ∀ x, y ∈ [a, b] , (12.3.41)

(
D0

y−;g f
)
(x) = f (x) , ∀ x ∈ [a, b] . (12.3.42)

For α > 0, α /∈ N, by convention we set that

(
Dα

y−;g f
)
(x) = 0, for x > y, ∀ x, y ∈ [a, b] . (12.3.43)

Similarly, we define

(
Dα

x−;g f
)
(y) = (−1)n

� (n − α)

∫ x

y
(g (t) − g (y))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt,

(12.3.44)
∀ y ∈ [a, x], where x ∈ [a, b] ;

(
Dn

x−;g f
)
(y) = (−1)n

((
f ◦ g−1

)(n) ◦ g
)

(y) , ∀ x, y ∈ [a, b] , (12.3.45)

(
D0

x−;g f
)
(y) = f (y) , ∀ y ∈ [a, b] . (12.3.46)
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For α > 0, α /∈ N, by convention we set that

(
Dα

x−;g f
)
(y) = 0, for y > x, ∀ x, y ∈ [a, b] . (12.3.47)

By assuming
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]), we get that

∣
∣(Dα

b−;g f
)
(x)

∣
∣ ≤

∥∥∥
(

f ◦ g−1
)(n) ◦ g

∥∥∥∞,[a,b]

� (n − α + 1)
(g (b) − g (x))n−α ≤ (12.3.48)

∥∥
∥
(

f ◦ g−1
)(n) ◦ g

∥∥
∥∞,[a,b]

� (n − α + 1)
(g (b) − g (a))n−α , ∀ x ∈ [a, b] .

That is (
Dα

b−;g f
)
(b) = 0, (12.3.49)

and (
Dα

y−;g f
)
(y) = (

Dα
x−;g f

)
(x) = 0, ∀ x, y ∈ [a, b] . (12.3.50)

Thus when α > 0, α /∈ N, both Dα
y−;g f, Dα

x−;g f ∈ C ([a, b]).

Notice also, that
(

f ◦ g−1
) ∈ ACn ([g (a) , g (x)]) and

(
f ◦ g−1

)(n) ◦ g ∈
L∞ ([a, x]), and of course g ∈ AC ([a, x]), and strictly increasing over [a, x] , ∀x ∈
[a, b].

Hence by Theorem 12.10 we obtain

f (x) − f (y) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k +

1

� (α)

∫ y

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

y−;g f
)
(t) dt, all a ≤ x ≤ y ≤ b.

(12.3.51)
Also, we have

f (y) − f (x) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (x))

k! (g (y) − g (x))k +

1

� (α)

∫ x

y
(g (t) − g (y))α−1 g′ (t)

(
Dα

x−;g f
)
(t) dt, all a ≤ y ≤ x ≤ b.

(12.3.52)
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We define also the following linear operator

(A2 ( f )) (x, y) :=
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−1∑

k=1

( f ◦g−1)
(k)

(g(y))

k! (g (x) − g (y))k−1 −
(

Dα
y−;g f

)
(x)

(g(y)−g(x))α−1

�(α+1) , for x < y,

n−1∑

k=1

( f ◦g−1)
(k)

(g(x))

k! (g (y) − g (x))k−1 −
(

Dα
x−;g f

)
(y)

(g(x)−g(y))α−1

�(α+1) , for x > y,

f (n) (x) , when x = y,

(12.3.53)
∀ x, y ∈ [a, b]; α > 0, n = �α
 .

We may assume that

|(A2 ( f )) (x, x) − (A2 ( f )) (y, y)| = ∣∣ f (n) (x) − f (n) (y)
∣∣ (12.3.54)

≤ �∗ |g (x) − g (y)| , ∀ x, y ∈ [a, b] ;

where �∗ > 0.
We estimate and have
(i) case of x < y:

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| =
∣∣∣∣

1

� (α)

∫ y

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

y−;g f
)
(t) dt−

(
Dα

y−;g f
)
(x)

(g (y) − g (x))α

� (α + 1)

∣
∣∣∣ = (12.3.55)

1

� (α)

∣∣
∣∣

∫ y

x
(g (t) − g (x))α−1 g′ (t)

((
Dα

y−;g f
)
(t) − (

Dα
y−;g f

)
(x)

)
dt

∣∣
∣∣ ≤

1

� (α)

∫ y

x
(g (t) − g (x))α−1 g′ (t)

∣∣(Dα
y−;g f

)
(t) − (

Dα
y−;g f

)
(x)

∣∣ dt (12.3.56)

(we assume that
∣∣(Dα

y−;g f
)
(t) − (

Dα
y−;g f

)
(x)

∣∣ ≤ ρ1 |g (t) − g (x)| , (12.3.57)

∀ t, x, y ∈ [a, b] : y ≥ t ≥ x; ρ1 > 0)

≤ ρ1

� (α)

∫ y

x
(g (t) − g (x))α−1 g′ (t) (g (t) − g (x)) dt =

ρ1

� (α)

∫ y

x
(g (t) − g (x))α g′ (t) dt = ρ1

� (α)

(g (y) − g (x))α+1

(α + 1)
. (12.3.58)
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We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ1

� (α)

(g (y) − g (x))α+1

(α + 1)
, (12.3.59)

∀ x, y ∈ [a, b] : x < y.

(ii) case of x > y:

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| =

| f (y) − f (x) − (A2 ( f )) (x, y) (g (y) − g (x))| = (12.3.60)

| f (y) − f (x) + (A2 ( f )) (x, y) (g (x) − g (y))| =
∣∣
∣∣

1

� (α)

∫ x

y
(g (t) − g (y))α−1 g′ (t)

(
Dα

x−;g f
)
(t) dt−

(
Dα

x−;g f
)
(y)

(g (x) − g (y))α

� (α + 1)

∣∣∣∣ =

1

� (α)

∣
∣∣∣

∫ x

y
(g (t) − g (y))α−1 g′ (t)

((
Dα

x−;g f
)
(t) − (

Dα
x−;g f

)
(y)

)
dt

∣
∣∣∣ ≤
(12.3.61)

1

� (α)

∫ x

y
(g (t) − g (y))α−1 g′ (t)

∣∣(Dα
x−;g f

)
(t) − (

Dα
x−;g f

)
(y)

∣∣ dt (12.3.62)

(we assume that

∣∣(Dα
x−;g f

)
(t) − (

Dα
x−;g f

)
(y)

∣∣ ≤ ρ2 |g (t) − g (y)| , (12.3.63)

∀ t, y, x ∈ [a, b] : x ≥ t ≥ y; ρ2 > 0)

≤ ρ2

� (α)

∫ x

y
(g (t) − g (y))α−1 g′ (t) (g (t) − g (y)) dt =

ρ2

� (α)

∫ x

y
(g (t) − g (y))α g′ (t) dt = (12.3.64)

ρ2

� (α)

(g (x) − g (y))α+1

(α + 1)
. (12.3.65)
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We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ2

� (α)

(g (x) − g (y))α+1

(α + 1)
, ∀ x, y ∈ [a, b] : x > y. (12.3.66)

Conclusion 12.11 Set ρ := max (ρ1, ρ2). Then

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤

ρ

� (α)

|g (x) − g (y)|α+1

(α + 1)
, ∀ x, y ∈ [a, b] . (12.3.67)

Notice that (12.3.67) is trivially true when x = y.

One may assume that
ρ

� (α)
< 1. (12.3.68)

Nowbasedon (12.3.54) and (12.3.67),we can apply our numericalmethods presented
in this chapter to solve f (x) = 0.

In both fractional applications α + 1 ≥ 2, iff α ≥ 1.
Also some examples for g follow:

g (x) = ex , x ∈ [a, b] ⊂ R,

g (x) = sin x,

g (x) = tan x,

where x ∈ [−π
2 + ε, π

2 − ε
]
, where ε > 0 small.

(12.3.69)

Indeed, the above examples of g are strictly increasing and absolutely continuous
functions.

Remark 12.12 (a) Returning back to Conclusion 12.8, we see that Proposition 12.2
can be applied, if p = α, g (t) = t , F (t) = f (t), A (F) (s, t) = A1 ( f ) (s, t) and

ϕ1 (s, t) = λ |s − t |p

(α + 1) � (α)μ

for each s, t ∈ [a, b].
(b) According to Conclusion 12.11, as in (a) but we must choose A (F) (s, t) =

A2 ( f ) (s, t) and

ϕ1 (s, t) = ρ |s − t |p

(α + 1) � (α)μ

for each s, t ∈ [a, b].
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Chapter 13
Secant-Like Methods and Generalized
g-Fractional Calculus of Canavati-Type

We present local and semilocal convergence results for secant-like methods in order
to approximate a locally unique solution of a nonlinear equation in a Banach space
setting. Finally, we present some applications from generalized g-fractional calculus
involving Canavati-type functions. It follows [5].

13.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (13.1.1)

where F is a continuous operator defined on a subset D of a Banach space X with
values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (13.1.1) using Mathematical Modelling [8, 12, 16]. The solutions
of such equations can be found in closed form only in special cases. That is why
most solution methods for these equations are iterative. Iterative methods are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

We introduce the secant-like method defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn, xn−1)
−1 F (xn) , (13.1.2)

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_13
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where x−1, x0 ∈ D are initial points and A (x, y) ∈ L (X, Y ) the space of bounded
linear operators from X into Y . There is a plethora on local as well as semilo-
cal convergence theorems for method (13.1.2) provided that the operator A is an
approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. In the present study we do
not necessarily assume that operator A is related to F ′. This way we expand the
applicability of iterative algorithm (13.1.2). Notice that many well known methods
are special case of method (13.1.2).

Newton’s method: Choose A (x, x) = F ′ (x) for each x ∈ D.

Secant method: Choose A (x, y) = [x, y; F] , where [x, y; F] denotes a
divided difference of order one [8, 12, 15].

The so called Newton-like methods and many other methods are special cases of
method (13.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the local
convergence analysis of method (13.1.2) is given in Sect. 13.2. Some applications
from fractional calculus are given in Sect. 13.3.

13.2 Convergence Analysis

We present the main semilocal convergence result for method (13.1.2).

Theorem 13.1 Let F : D ⊂ X → Y be a continuous operator and let A (x, y) ∈
L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, a function g :
[0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y, z ∈ D

A (z, y)−1 ∈ L (Y, X) , (13.2.1)

max
{‖x−1 − x0‖ ,

∥∥A (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (13.2.2)

∥∥A (z, y)−1 (F (z) − F (y) − A (y, x) (z − y))
∥∥ ≤

g (‖z − y‖ , ‖y − x‖) ‖z − y‖p+1 , (13.2.3)

q := g (η, η) η p < 1 (13.2.4)

and
U (x0, r) ⊆ D, (13.2.5)

where,
r = η

1 − q
. (13.2.6)
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Then, the sequence {xn} generated by method (13.1.2) is well defined, remains in
U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r) such that

‖xn+1 − xn‖ ≤ g (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1

≤ q ‖xn − xn−1‖ (13.2.7)

and
∥∥xn − x∗∥∥ ≤ qnη

1 − q
. (13.2.8)

Proof The iterate x1 is well defined by method (13.1.2) for n = 0 and (13.2.1). We
also have by (13.2.2) and (13.2.6) that

‖x1 − x0‖ = ∥∥A (x0, x−1)
−1 F (x0)

∥∥ ≤ η < r , so we get that x1 ∈ U (x0, r) and
x2 is well defined (by (13.2.5)). Using (13.2.3) and (13.2.4) we get that

‖x2 − x1‖ = ∥∥A (x1, x0)
−1

[
F (x1) − F (x0) − A (x0, x−1) (x1 − x0)

]∥∥

≤ g (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p+1 ≤ q ‖x1 − x0‖ ,

which shows (13.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get
‖xk+2 − xk+1‖ =

∥∥A (xk+1, xk)
−1

[
F (xk+1) − F (xk) − A (xk, xk−1) (xk+1 − xk)

]∥∥ ≤

g (‖xk+1 − xk‖ , ‖xk − xk−1‖) ‖xk+1 − xk‖p+1 ≤

g (‖x1 − x0‖ , ‖x0 − x−1‖) ‖x1 − x0‖p ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,
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which completes the induction for (13.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (13.2.8). �

Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 13.2 Let F : D ⊂ X → Y be a continuous operator and let A (x, y) ∈
L (X, Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1, μ > 0, a function
g1 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for each x, y ∈ D

A (x, y)−1 ∈ L (Y, X) ,
∥
∥A (x, y)−1

∥
∥ ≤ μ,

max
{‖x−1 − x0‖ ,

∥∥A (x0, x−1)
−1 F (x0)

∥∥} ≤ η, (13.2.9)

‖F (z) − F (y) − A (y, x) (z − y)‖ ≤ g1 (‖z − y‖ , ‖x − y‖)
μ

‖z − y‖p+1 ,

(13.2.10)
q1 := g1 (η, η) η p < 1

and
U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
.

Then, the conclusions of Theorem 13.1 for sequence {xn} hold with g1, q1, r1, replac-
ing g, q and r, respectively. Moreover, x∗ is a solution of the equation F (x) = 0.

Proof Notice that

∥∥A (xn, xn−1)
−1

[
F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)

]∥∥

≤ ∥∥A (xn, xn−1)
−1

∥∥ ‖F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)‖

≤ g1 (‖xn − xn−1‖ , ‖xn−1 − xn−2‖) ‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ .
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Therefore, the proof of Theorem 13.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (xn−1, xn−2) (xn − xn−1)‖ ≤
g1 (‖xn − xn−1‖)

μ
‖xn − xn−1‖p+1 ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 13.3 Under the hypotheses of Proposition 13.2, further suppose that
there exists g2 : [0,∞)2 → [0,∞) continuous and nondecreasing such that

‖F (z) − F (x) − A (z, y) (z − x)‖ ≤ g2 (‖z − x‖ , ‖y − x‖)
μ

‖z − x‖p+1

(13.2.11)
and

g2 (r1, η + r1) r p
1 < 1. (13.2.12)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1).

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 13.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (xn, xn−1)
−1 F (xn)

∥∥ =
∥∥A (xn, xn−1)

−1 [
A (xn, xn−1)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤

∥
∥A (xn, xn−1)

−1
∥
∥

∥
∥F

(
y∗) − F (xn) − A (xn, xn−1)

(
y∗ − xn

)∥∥ ≤

μ
g1 (‖xn − y∗‖ , ‖xn−1 − y∗‖)

μ

∥∥xn − y∗∥∥p+1 ≤

g2 (r1, η + r1) r p
1

∥∥xn − x∗∥∥ <
∥∥xn − y∗∥∥ ,

so we deduce that limn→∞ xn = y∗. But we have that limn→∞ xn = x∗. Hence, we
conclude that x∗ = y∗. �

Next, we present a local convergence analysis for the iterative algorithm (13.1.2).

Proposition 13.4 Let F : D ⊂ X → Y be a continuous operator and let A (y, x) ∈
L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, a function g3 : [0,∞)2 → [0,∞)

continuous and nondecreasing such that for each x, y ∈ D
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F
(
x∗) = 0, A (y, x)−1 ∈ L (Y, X) ,

∥∥A (y, x)−1
[
F (x) − F

(
x∗) − A (y, x)

(
x − x∗)]∥∥ ≤

g3
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1
, (13.2.13)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g3 (t, t) t p − 1.

Then, sequence {xn} generated by method (13.1.2) for x−1, x0 ∈ U (x∗, r2) − {x∗}
is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ g2
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p+1
<

∥∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x−1, x0 ∈ U (x∗, r2) − {x∗}. Then, we get in
turn that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (x0, x−1)

−1 F (x0)
∥∥ =

∥
∥A (x0, x−1)

−1
[
F

(
x∗) − F (x0) − A (x0, x−1)

(
x∗ − x0

)]∥∥ ≤

g2
(∥∥x0 − x∗∥∥ ,

∥∥x−1 − x∗∥∥) ∥∥x0 − x∗∥∥p+1
< g3 (r2, r2) r p

2

∥∥x0 − x∗∥∥ =
∥
∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (xk, xk−1)
−1 F (xk)

∥∥ ≤
∥∥A (xk, xk−1)

−1
[
F

(
x∗) − F (xk) − A (xk, xk−1)

(
x∗ − xk

)]∥∥ ≤

g2
(∥∥xk − x∗∥∥ ,

∥∥xk−1 − x∗∥∥) ∥∥xk − x∗∥∥p+1
<

g3 (r2, r2) r p
2

∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows limk→∞ xk = x∗ and xk+1 ∈ U (x∗, r2) . �
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Remark 13.5 (a) Hypothesis (13.2.3) specializes to Newton-Mysowski-type, if
A (x) = F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then our
results extend the applicability of iterative algorithm (13.1.2).

(b) Theorem 13.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (13.2.13) can be replaced by the stronger

∥∥A (y, x)−1 [F (x) − F (z) − A (y, x) (x − z)]
∥∥ ≤

g3 (‖z − y‖ , ‖z − x‖) ‖z − y‖p+1 .

13.3 Applications to g-Fractional
Calculus of Canavati Type

Here both needed backgrounds come from [4] and Chap.25.
Let ν > 1, ν /∈ N, with integral part [ν] = n ∈ N. Let g : [a, b] → R be

a strictly increasing function, such that g ∈ C1 ([a, b]), g−1 ∈ Cn ([a, b]), and let
f ∈ Cn ([a, b]). It clear then we obtain that

(
f ◦ g−1

) ∈ Cn ([g (a) , g (b)]). Let
α := ν − [ν] = ν − n (0 < α < 1).

(I) Let h ∈ C ([g (a) , g (b)]), we define the left Riemann-Liouville fractional
integral as

(
J z0
ν h

)
(z) := 1

� (ν)

∫ z

z0

(z − t)ν−1 h (t) dt, (13.3.1)

for g (a) ≤ z0 ≤ z ≤ g (b), where � is the gamma function.
We define the subspace Cν

g(x) ([g (a) , g (b)]) of Cn ([g (a) , g (b)]), where x ∈
[a, b]:

Cν
g(x) ([g (a) , g (b)]) :=

{
h ∈ Cn ([g (a) , g (b)]) : J g(x)

1−α h(n) ∈ C1 ([g (x) , g (b)])
}

. (13.3.2)

So let h ∈ Cν
g(x) ([g (a) , g (b)]); we define the left g-generalized fractional derivative

of h of order ν, of Canavati type, over [g (x) , g (b)] as

Dν
g(x)h :=

(
J g(x)
1−α h(n)

)′
. (13.3.3)

Clearly, for h ∈ Cν
g(x) ([g (a) , g (b)]), there exists

(
Dν

g(x)h
)
(z) = 1

� (1 − α)

d

dz

∫ z

g(x)

(z − t)−α h(n) (t) dt, (13.3.4)

for all g (x) ≤ z ≤ g (b).

http://dx.doi.org/10.1007/978-3-319-26721-0_25
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In particular, when f ◦ g−1 ∈ Cν
g(x) ([g (a) , g (b)]) we have that

(
Dν

g(x)

(
f ◦ g−1)) (z) = 1

� (1 − α)

d

dz

∫ z

g(x)

(z − t)−α
(

f ◦ g−1)(n)
(t) dt,

(13.3.5)
for all z : g (x) ≤ z ≤ g (b).

We have that Dn
g(x)

(
f ◦ g−1

) = (
f ◦ g−1

)(n)
and D0

g(x)

(
f ◦ g−1

) = f ◦ g−1.

In [4] we proved for
(

f ◦ g−1
) ∈ Cν

g(x) ([g (a) , g (b)]), where x ∈ [a, b], (left
fractional Taylor’s formula) that

f (y) − f (x) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (x))

k! (g (y) − g (x))k + (13.3.6)

1

� (ν)

∫ g(y)

g(x)

(g (y) − t)ν−1
(
Dν

g(x)

(
f ◦ g−1

))
(t) dt, for all y ∈ [a, b] : y ≥ x .

Alternatively, for
(

f ◦ g−1
) ∈ Cν

g(y) ([g (a) , g (b)]), where y ∈ [a, b], we can
write (again left fractional Taylor’s formula) that:

f (x) − f (y) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k + (13.3.7)

1

� (ν)

∫ g(x)

g(y)

(g (x) − t)ν−1
(
Dν

g(y)

(
f ◦ g−1

))
(t) dt, for all x ∈ [a, b] : x ≥ y.

Here we consider f ∈ Cn ([a, b]), such that
(

f ◦ g−1
) ∈ Cν

g(x) ([g (a) , g (b)]),
for every x ∈ [a, b]; which is the same as

(
f ◦ g−1

) ∈ Cν
g(y) ([g (a) , g (b)]), for

every y ∈ [a, b] (i.e. exchange roles of x and y); we write that as
(

f ◦ g−1
) ∈

Cν
g+ ([g (a) , g (b)]).
We have that

(
Dν

g(y)

(
f ◦ g−1

))
(z) = 1

� (1 − α)

d

dz

∫ z

g(y)

(z − t)−α
(

f ◦ g−1
)(n)

(t) dt,

(13.3.8)
for all z : g (y) ≤ z ≤ g (b).
So here we work with f ∈ Cn ([a, b]), such that

(
f ◦ g−1

) ∈ Cν
g+ ([g (a) , g (b)]).
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We define the left linear fractional operator

(A1 ( f )) (x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
k=1

( f ◦g−1)
(k)

(g(x))

k! (g (y) − g (x))k−1 +(
Dν

g(x)

(
f ◦ g−1

))
(g (y))

(g(y)−g(x))ν−1

�(ν+1) , y > x,

∑n−1
k=1

( f ◦g−1)
(k)

(g(y))

k! (g (x) − g (y))k−1 +(
Dν

g(y)

(
f ◦ g−1

))
(g (x))

(g(x)−g(y))ν−1

�(ν+1) , x > y,

f (n) (x) , x = y.

(13.3.9)

We may assume that

|(A1 ( f )) (x, x) − (A1 ( f )) (y, y)| = ∣∣ f (n) (x) − f (n) (y)
∣∣ =

∣∣( f (n) ◦ g−1) (g (x)) − (
f (n) ◦ g−1) (g (y))

∣∣ ≤ � |g (x) − g (y)| , (13.3.10)

where � > 0; for any x, y ∈ [a, b].
We make the following estimations:
(i) case of y > x : We have that

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| =
∣∣∣
∣

1

� (ν)

∫ g(y)

g(x)

(g (y) − t)ν−1
(
Dν

g(x)

(
f ◦ g−1

))
(t) dt−

(
Dν

g(x)

(
f ◦ g−1

))
(g (y))

(g (y) − g (x))ν

� (ν + 1)

∣∣∣∣ = 1

� (ν)
·

∣∣
∣∣

∫ g(y)

g(x)

(g (y) − t)ν−1
((

Dν
g(x)

(
f ◦ g−1

))
(t) − (

Dν
g(x)

(
f ◦ g−1

))
(g (y))

)
dt

∣∣
∣∣

(13.3.11)

≤ 1

� (ν)
·

∫ g(y)

g(x)

(g (y) − t)ν−1
∣
∣(Dν

g(x)

(
f ◦ g−1

))
(t) − (

Dν
g(x)

(
f ◦ g−1

))
(g (y))

∣
∣ dt

(we assume here that

∣∣(Dν
g(x)

(
f ◦ g−1

))
(t) − (

Dν
g(x)

(
f ◦ g−1

))
(g (y))

∣∣ ≤ λ1 |t − g (y)| , (13.3.12)

for every t, g (y) , g (x) ∈ [g (a) , g (b)] such that g (y) ≥ t ≥ g (x) ; λ1 > 0)
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≤ λ1

� (ν)

∫ g(y)

g(x)

(g (y) − t)ν−1 (g (y) − t) dt = (13.3.13)

λ1

� (ν)

∫ g(y)

g(x)

(g (y) − t)ν dt = λ1

� (ν)

(g (y) − g (x))ν+1

(ν + 1)
. (13.3.14)

We have proved that

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| ≤ λ1

� (ν)

(g (y) − g (x))ν+1

(ν + 1)
,

(13.3.15)
for all x, y ∈ [a, b] : y > x .

(ii) Case of x > y : We observe that

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| =

| f (x) − f (y) − (A1 ( f )) (x, y) (g (x) − g (y))| =
∣
∣∣∣

1

� (ν)

∫ g(x)

g(y)

(g (x) − t)ν−1
(
Dν

g(y)

(
f ◦ g−1

))
(t) dt−

(
Dν

g(y)

(
f ◦ g−1

))
(g (x))

(g (x) − g (y))ν

� (ν + 1)

∣∣∣∣ = 1

� (ν)
· (13.3.16)

∣∣
∣∣

∫ g(x)

g(y)

(g (x) − t)ν−1
((

Dν
g(y)

(
f ◦ g−1

))
(t) − (

Dν
g(y)

(
f ◦ g−1

))
(g (x))

)
dt

∣∣
∣∣

≤ 1

� (ν)
·

∫ g(x)

g(y)

(g (x) − t)ν−1
∣∣(Dν

g(y)

(
f ◦ g−1

))
(t) − (

Dν
g(y)

(
f ◦ g−1

))
(g (x))

∣∣ dt

(13.3.17)
(we assume that

∣∣(Dν
g(y)

(
f ◦ g−1

))
(t) − (

Dν
g(y)

(
f ◦ g−1

))
(g (x))

∣∣ ≤ λ2 |t − g (x)| , (13.3.18)

for all t, g (x) , g (y) ∈ [g (a) , g (b)] such that g (x) ≥ t ≥ g (y) ; λ2 > 0)

≤ λ2

� (ν)

∫ g(x)

g(y)

(g (x) − t)ν−1 (g (x) − t) dt = (13.3.19)
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λ2

� (ν)

∫ g(x)

g(y)

(g (x) − t)ν dt = λ2

� (ν)

(g (x) − g (y))ν+1

(ν + 1)
.

We have proved that

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| ≤ λ2

� (ν)

(g (x) − g (y))ν+1

(ν + 1)
,

(13.3.20)
for any x, y ∈ [a, b] : x > y.

Conclusion 13.6 Set λ := max (λ1,λ2). Then

| f (y) − f (x) − (A1 ( f )) (x, y) (g (y) − g (x))| ≤ λ

� (ν)

|g (y) − g (x)|ν+1

(ν + 1)
,

(13.3.21)
∀ x, y ∈ [a, b] (the case of x = y is trivially true).

We may choose that λ
�(ν)

< 1.
Also we notice here that ν + 1 > 2.
(II) Let h ∈ C ([g (a) , g (b)]), we define the right Riemann-Liouville fractional

integral as
(
J ν

z0−h
)
(z) := 1

� (ν)

∫ z0

z
(t − z)ν−1 h (t) dt, (13.3.22)

for g (a) ≤ z ≤ z0 ≤ g (b).
We define the subspace Cν

g(x)− ([g (a) , g (b)]) of Cn ([g (a) , g (b)]), where x ∈
[a, b] :

Cν
g(x)− ([g (a) , g (b)]) :=

{
h ∈ Cn ([g (a) , g (b)]) : J 1−α

g(x)−h(n) ∈ C1 ([g (a) , g (x)])
}

. (13.3.23)

So, let h ∈ Cν
g(x)− ([g (a) , g (b)]); we define the right g-generalized fractional deriv-

ative of h of order ν, of Canavati type, over [g (a) , g (x)] as

Dν
g(x)−h := (−1)n−1

(
J 1−α
g(x)−h(n)

)′
. (13.3.24)

Clearly, for h ∈ Cν
g(x)− ([g (a) , g (b)]), there exists

(
Dν

g(x)−h
)
(z) = (−1)n−1

� (1 − α)

d

dz

∫ g(x)

z
(t − z)−α h(n) (t) dt, (13.3.25)

for all g (a) ≤ z ≤ g (x) ≤ g (b) .
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In particular, when f ◦ g−1 ∈ Cν
g(x) ([g (a) , g (b)]) we have that

(
Dν

g(x)−
(

f ◦ g−1)) (z) = (−1)n−1

� (1 − α)

d

dz

∫ g(x)

z
(t − z)−α

(
f ◦ g−1)(n)

(t) dt,

(13.3.26)
for all g (a) ≤ z ≤ g (x) ≤ g (b) .

We get that

(
Dn

g(x)−
(

f ◦ g−1
))

(z) = (−1)n
(

f ◦ g−1
)(n)

(z) , (13.3.27)

and (
D0

g(x)−
(

f ◦ g−1
))

(z) = (
f ◦ g−1

)
(z) , (13.3.28)

for all z ∈ [g (a) , g (x)] .
In [4] we proved for

(
f ◦ g−1

) ∈ Cν
g(x)− ([g (a) , g (b)]), where x ∈ [a, b], ν ≥ 1

(right fractional Taylor’s formula) that:

f (y) − f (x) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (x))

k! (g (y) − g (x))k +

1

� (ν)

∫ g(x)

g(y)

(t − g (y))ν−1
(
Dν

g(x)−
(

f ◦ g−1
))

(t) dt, all a ≤ y ≤ x . (13.3.29)

Alternatively, for
(

f ◦ g−1
) ∈ Cν

g(y)− ([g (a) , g (b)]), where y ∈ [a, b], ν ≥ 1
(again right fractional Taylor’s formula) that:

f (x) − f (y) =
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (y))

k! (g (x) − g (y))k +

1

� (ν)

∫ g(y)

g(x)

(t − g (x))ν−1
(
Dν

g(y)−
(

f ◦ g−1
))

(t) dt, all a ≤ x ≤ y. (13.3.30)

Here we consider f ∈ Cn ([a, b]), such that
(

f ◦ g−1
) ∈ Cν

g(x)− ([g (a) , g (b)]),
for every x ∈ [a, b]; which is the same as

(
f ◦ g−1

) ∈ Cν
g(y)− ([g (a) , g (b)]), for

every y ∈ [a, b] ; (i.e. exchange roles of x and y) we write that as
(

f ◦ g−1
) ∈

Cν
g− ([g (a) , g (b)]).
We have that

(
Dν

g(y)−
(

f ◦ g−1
))

(z) = (−1)n−1

� (1 − α)

d

dz

∫ g(y)

z
(t − z)−α

(
f ◦ g−1

)(n)
(t) dt,

(13.3.31)
for all g (a) ≤ z ≤ g (y) ≤ g (b) .
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So, here we work with f ∈ Cn ([a, b]) , such that
(

f ◦ g−1
) ∈ Cν

g− ([g (a) , g (b)]).
We define the right linear fractional operator

(A2 ( f )) (x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n−1
k=1

( f ◦g−1)
(k)

(g(x))

k! (g (y) − g (x))k−1 −(
Dν

g(x)−
(

f ◦ g−1
))

(g (y))
(g(x)−g(y))ν−1

�(ν+1) , x > y,

∑n−1
k=1

( f ◦g−1)
(k)

(g(y))

k! (g (x) − g (y))k−1 −(
Dν

g(y)−
(

f ◦ g−1
))

(g (x))
(g(y)−g(x))ν−1

�(ν+1) , y > x,

f (n) (x) , x = y.

(13.3.32)

We may assume that

|(A2 ( f )) (x, x) − (A2 ( f )) (y, y)| = ∣∣ f (n) (x) − f (n) (y)
∣∣ ≤ �∗ |g (x) − g (y)| ,

(13.3.33)
where �∗ > 0; for any x, y ∈ [a, b].

We make the following estimations:
(i) case of x > y : We have that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| =

| f (y) − f (x) − (A2 ( f )) (x, y) (g (y) − g (x))| = (13.3.34)

| f (y) − f (x) + (A2 ( f )) (x, y) (g (x) − g (y))| =
∣∣∣∣

1

� (ν)

∫ g(x)

g(y)

(t − g (y))ν−1
(
Dν

g(x)−
(

f ◦ g−1
))

(t) dt−

(
Dν

g(x)−
(

f ◦ g−1
))

(g (y))
(g (x) − g (y))ν

� (ν + 1)

∣
∣∣∣ = 1

� (ν)
· (13.3.35)

∣∣∣∣

∫ g(x)

g(y)

(t − g (y))ν−1
((

Dν
g(x)−

(
f ◦ g−1

))
(t) − (

Dν
g(x)−

(
f ◦ g−1

))
(g (y))

)
dt

∣∣∣∣

≤ 1

� (ν)
·

∫ g(x)

g(y)

(t − g (y))ν−1
∣∣(Dν

g(x)−
(

f ◦ g−1
))

(t) − (
Dν

g(x)−
(

f ◦ g−1
))

(g (y))
∣∣ dt

(13.3.36)
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(we assume here that

∣∣(Dν
g(x)−

(
f ◦ g−1

))
(t) − (

Dν
g(x)−

(
f ◦ g−1

))
(g (y))

∣∣ ≤ ρ1 |t − g (y)| , (13.3.37)

for every t, g (y) , g (x) ∈ [g (a) , g (b)] such that g (x) ≥ t ≥ g (y) ; ρ1 > 0)

≤ ρ1

� (ν)

∫ g(x)

g(y)

(t − g (y))ν−1 (t − g (y)) dt =

ρ1

� (ν)

∫ g(x)

g(y)

(t − g (y))ν dt = ρ1

� (ν)

(g (x) − g (y))ν+1

(ν + 1)
. (13.3.38)

We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤ ρ1

� (ν)

(g (x) − g (y))ν+1

(ν + 1)
,

(13.3.39)
∀ x, y ∈ [a, b] : x > y.

(ii) Case of x < y : We have that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| =

| f (x) − f (y) + (A2 ( f )) (x, y) (g (y) − g (x))| = (13.3.40)

∣
∣∣∣

1

� (ν)

∫ g(y)

g(x)

(t − g (x))ν−1 (
Dν

g(y)−
(

f ◦ g−1)) (t) dt−

(
Dν

g(y)−
(

f ◦ g−1
))

(g (x))
(g (y) − g (x))ν

� (ν + 1)

∣∣∣
∣ = 1

� (ν)
·

∣∣∣∣

∫ g(y)

g(x)

(t − g (x))ν−1 ((
Dν

g(y)−
(

f ◦ g−1)) (t) − (
Dν

g(y)−
(

f ◦ g−1)) (g (x))
)

dt

∣∣∣∣

≤ 1

� (ν)
·

∫ g(y)

g(x)

(t − g (x))ν−1
∣∣(Dν

g(y)−
(

f ◦ g−1)) (t) − (
Dν

g(y)−
(

f ◦ g−1)) (g (x))
∣∣ dt

(13.3.41)
(we assume that

∣∣(Dν
g(y)−

(
f ◦ g−1)) (t) − (

Dν
g(y)−

(
f ◦ g−1)) (g (x))

∣∣ ≤ ρ2 |t − g (x)| , (13.3.42)

for any t, g (x) , g (y) ∈ [g (a) , g (b)] : g (y) ≥ t ≥ g (x) ; ρ2 > 0)



13.3 Applications to g-Fractional Calculus of Canavati Type 229

≤ ρ2

� (ν)

∫ g(y)

g(x)

(t − g (x))ν−1 (t − g (x)) dt =

ρ2

� (ν)

∫ g(y)

g(x)

(t − g (x))ν dt = (13.3.43)

ρ2

� (ν)

(g (y) − g (x))ν+1

(ν + 1)
. (13.3.44)

We have proved that

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤ ρ2

� (ν)

(g (y) − g (x))ν+1

(ν + 1)
,

(13.3.45)
∀ x, y ∈ [a, b] : x < y.

Conclusion 13.7 Set ρ := max (ρ1, ρ2). Then

| f (x) − f (y) − (A2 ( f )) (x, y) (g (x) − g (y))| ≤ ρ

� (ν)

|g (x) − g (y)|ν+1

(ν + 1)
,

(13.3.46)
∀ x, y ∈ [a, b] ((13.3.46) is trivially true when x = y).

One may choose ρ
�(ν)

< 1.
Here again ν + 1 > 2.

Conclusion 13.8 Based on (13.3.10) and (13.3.21) of (I), and based on (13.3.33)
and (13.3.46) of (II), using our numerical results presented earlier, we can solve
numerically f (x) = 0.

Some examples for g follow:

g (x) = ex , x ∈ [a, b] ⊂ R,

g (x) = sin x,

g (x) = tan x,

where x ∈ [− π
2 + ε, π

2 − ε
]
, with ε > 0 small.

Returning back to Proposition 13.2 we see by (13.2.10) and (13.3.21) that crucial
estimate (13.2.10) is satisfied, if we choose g (x) = x for each x ∈ [a, b] , p = ν,

g1 (s, t) = λ |s − t |p

� (p) (p + 1) μ

for each s, t ∈ [a, b] and A = A1 ( f ).
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Similarly by (13.2.10) and (13.3.46), we must choose g (x) = x for each x ∈
[a, b], p = ν,

g1 (s, t) = ρ |s − t |p

� (p) (p + 1)

for each s, t ∈ [a, b] and A = A2 ( f ).
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Chapter 14
Iterative Algorithms and Left-Right
Caputo Fractional Derivatives

We present a local as well as a semilocal convergence analysis for some iterative
algorithms in order to approximate a locally unique solution of a nonlinear equation
in aBanach space setting. In the application part of the study,we present some choices
of the operators involving the left and right Caputo derivative where the operators
satisfy the convergence conditions. It follows [5].

14.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of the nonlinear equation

F (x) = 0, (14.1.1)

where F is a Fréchet-differentiable operator defined on a subset D of a Banach space
X with values in a Banach space Y .

A lot of problems in Computational Sciences and other disciplines can be brought
in a form like (14.1.1) using Mathematical Modelling [8, 12, 16]. The solutions of
such equations can be found in closed form only in special cases. That is why most
solution methods for these equations are iterative. Iterative algorithms are usually
studied based on semilocal and local convergence. The semilocal convergencematter
is, based on the information around the initial point to give hypotheses ensuring the
convergence of the iterative algorithm;while the local one is, basedon the information
around a solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_14
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We introduce the iterative algorithm defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn)
−1 F (xn) , (14.1.2)

where x0 ∈ D is an initial point and A (x) ∈ L (X, Y ) the space of bounded linear
operators from X into Y . There is a plethora on local as well as semilocal con-
vergence theorems for iterative algorithm (14.1.2) provided that the operator A is
an approximation to the Fréchet-derivative F ′ [1, 2, 6–16]. Notice that many well
known methods are special case of interative algorithm (14.1.2).

Newton’s method: Choose A (x) = F ′ (x) for each x ∈ D.

Steffensen’s method: Choose A (x) = [x, G (x) ; F], where G : X → X is a
known operator and [x, y; F] denotes a divided difference of order one [8, 12, 15].

The so called Newton-like methods and many other methods are special cases of
iterative algorithm (14.1.2).

The rest of the chapter is organized as follows. The semilocal as well as the local
convergence analysis of iterative algorithm (14.1.2) is given in Sect. 14.2. Some
applications from fractional calculus are given in the concluding Sect. 14.3.

14.2 Convergence Analysis

We present the main semilocal convergence result for iterative algorithm (14.1.2).

Theorem 14.1 Let F : D ⊂ X → Y be a Fréchet-differentiable operator and
let A (x) ∈ L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, functions
g0 : [0, η] → [0,∞), g1 : [0,∞)2 → [0,∞) continuous and nondecreasing such
that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) , (14.2.1)

∥∥A (x0)
−1 F (x0)

∥∥ ≤ η, (14.2.2)

∥
∥A (y)−1

(
F (y) − F (x) − F ′ (x) (y − x)

)∥∥ ≤ g0 (‖x − y‖) ‖x − y‖p+1 ,

(14.2.3)∥∥A (y)−1
(

A (x) − F ′ (x)
)∥∥ ≤ g1 (‖y − x0‖ , ‖x − x0‖) . (14.2.4)

Moreover, suppose that function ϕ : [0,∞) → R defined by

ϕ (t) = (
1 − (

g0 (η) ηp + g1 (t, t)
))

t − η (14.2.5)

has a smallest positive zero r and

U (x0, r) ⊆ D. (14.2.6)
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Then, the sequence {xn} generated by iterative algorithm (14.1.2) is well defined,
remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to some x∗ ∈ U (x0, r)

such that
‖xn+1 − xn‖ ≤ [

g0 (‖xn − xn−1‖) ‖xn − xn−1‖p + (14.2.7)

g0 (‖xn−1 − x0‖)
] ‖xn − xn−1‖ ≤ q ‖xn − xn−1‖

and
∥∥xn − x∗∥∥ ≤ qnη

1 − q
, (14.2.8)

where
q := g0 (η) ηp + g1 (r, r) ∈ [0, 1).

Proof Notice that it follows from (14.2.5) and the definition of r that q ∈ [0, 1).
The iterate x1 is well defined by iterative algorithm (14.1.2) for n = 0 and (14.2.1)

for x = x0. We also have by (14.2.2) that ‖x1 − x0‖ = ∥∥A (x0)
−1 F (x0)

∥∥ ≤ η < r ,
so we get that x1 ∈ U (x0, r) and x2 is well defined (by (14.2.6)). Using (14.2.3) and
(14.2.4) we get that

‖x2 − x1‖ = ∥∥A (x1)
−1 [F (x1) − F (x0) − A (x0) (x1 − x0)]

∥∥ ≤
∥∥A (x1)

−1
(
F (x1) − F (x0) − F ′ (x0) (x1 − x0)

)∥∥+
∥∥A (x1)

−1
(

A (x0) − F ′ (x0)
)∥∥ ≤

(
g0 (η) ηp + g1 (η, 0)

) ‖x1 − x0‖ ≤ q ‖x1 − x0‖ ,

which shows (14.2.7) for n = 1. Then, we can have that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ ≤ q ‖x1 − x0‖ + ‖x1 − x0‖

= (1 + q) ‖x1 − x0‖ ≤ 1 − q2

1 − q
η < r,

so x2 ∈ U (x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q ‖xk − xk−1‖ and xk+1 ∈ U (x0, r) for each k =

1, 2, . . . , n we get

‖xk+2 − xk+1‖ = ∥∥A (xk+1)
−1 [

F (xk+1) − F (xk) − A (xk) (xk+1 − xk)
]∥∥

≤ ∥∥A (xk+1)
−1

(
F

(
xk+1 − F (xk) − F ′ (xk) (xk+1 − xk)

))∥∥

+ ∥∥A (xk+1)
−1

(
A (xk) − F ′ (xk)

)∥∥ ≤
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[
g0 (‖xk+1 − xk‖) ‖xk+1 − xk‖p + g1 (‖xk+1 − x0‖ , ‖xk − x0‖)

] ‖xk+1 − xk‖

≤ [
g0 (η) ηp + g1 (r, r)

] ‖xk+1 − xk‖ ≤ q ‖xk+1 − xk‖

and
‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖

≤ (
qk+1 + qk + · · · + 1

) ‖x1 − x0‖ ≤ 1 − qk+2

1 − q
‖x1 − x0‖

<
η

1 − q
= r,

which completes the induction for (14.2.7) and xk+2 ∈ U (x0, r). We also have that
for m ≥ 0

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖ + · · · + ‖xn+1 − xn‖

≤ (
qm−1 + qm−2 + · · · + 1

) ‖xn+1 − xn‖

≤ 1 − qm

1 − q
qn ‖x1 − x0‖ .

It follows that {xn} is a complete sequence in a Banach space X and as such it
converges to some x∗ ∈ U (x0, r) (sinceU (x0, r) is a closed set). By lettingm → ∞,
we obtain (14.2.8). �


Stronger hypotheses are needed to show that x∗ is a solution of equation F (x) = 0.

Proposition 14.2 Let F : D ⊂ X → Y be a Fréchet-differentiable operator and let
A (x) ∈ L (X, Y ). Suppose that there exist x0 ∈ D, η ≥ 0, p ≥ 1, λ > 0, functions
g0 : [0, η] → [0,∞), g : [0,∞) → [0,∞), continuous and nondecreasing such
that for each x, y ∈ D

A (x)−1 ∈ L (Y, X) ,
∥
∥A (x)−1

∥
∥ ≤ λ,

∥
∥A (x0)

−1 F (x0)
∥
∥ ≤ η, (14.2.9)

∥∥F (y) − F (x) − F ′ (x) (y − x)
∥∥ ≤ g0 (‖x − y‖)

λ
‖x − y‖p+1 , (14.2.10)

∥
∥A (x) − F ′ (x)

∥
∥ ≤ g (‖x − x0‖)

λ
. (14.2.11)

Moreover, suppose that function ψ : [0,∞) → R defined by

ψ (t) = (
1 − (

g0 (η) ηp + g (t)
))

t − η
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has a smallest positive zero r1 and

U (x0, r1) ⊆ D,

where,
r1 = η

1 − q1
and q1 = g0 (η) ηp + g (r) ∈ [0, 1] .

Then, the conclusions of Theorem 14.1 for sequence {xn} hold with g0
λ

, g
λ

, q1, r1,
replacing g0, g, q and r, respectively. Moreover, x∗ is a solution of the equation
F (x) = 0.

Proof Notice that

∥∥A (xn)
−1

[
F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)

]∥∥

≤ ∥∥A (xn)
−1

∥∥ ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖

≤ (
g0 (‖xn − xn−1‖) ‖xn − xn−1‖p + g (‖xn − x0‖)

) ‖xn − xn−1‖

≤ q1 ‖xn − xn−1‖ .

Therefore, the proof of Theorem 14.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn) − F (xn−1) − A (xn−1) (xn − xn−1)‖ ≤
∥
∥F (xn) − F (xn−1) − F ′ (xn−1) (xn − xn−1)

∥
∥ +

∥∥A (xn) − F ′ (xn)
∥∥ ‖xn − xn−1‖ ≤ q1 ‖xn − xn−1‖ ,

we deduce by letting n → ∞ that F (x∗) = 0. �

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 14.3 Under the hypotheses of Proposition 14.2, further suppose that

g0 (r1) r p
1 + g (r1) < 1. (14.2.12)

Then, x∗ is the only solution of equation F (x) = 0 in U (x0, r1) .

Proof The existence of the solution x∗ ∈ U (x0, r1) has been established in Propo-
sition 14.2. Let y∗ ∈ U (x0, r1) with F (y∗) = 0. Then, we have in turn that

∥∥xn+1 − y∗∥∥ = ∥∥xn − y∗ − A (xn)
−1 F (xn)

∥∥ =
∥∥A (xn)

−1 [
A (xn)

(
xn − y∗) − F (xn) + F

(
y∗)]∥∥ ≤
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∥∥A (xn)
−1

∥∥ ∥∥F
(
y∗) − F (xn) − F ′ (xn)

(
y∗ − xn

)∥∥

+ ∥∥(
A (xn) − F ′ (xn)

) (
y∗ − xn

)∥∥ ≤
[
g0

(∥∥y∗ − xn

∥∥) ∥∥y∗ − xn

∥∥p + g (‖xn − x0‖)
] ∥∥y∗ − xn

∥∥ ≤
(
g0 (r1) r p

1 + g (r1)
) ∥∥xn − y∗∥∥ <

∥∥xn − y∗∥∥ ,

so we deduce that limn→∞xn = y∗. But we have that limn→∞xn = x∗. Hence, we
conclude that x∗ = y∗. �


Next, we present a local convergence analysis for the iterative algorithm (14.1.2).

Proposition 14.4 Let F : D ⊂ X → Y be a Fréchet-differentiable operator and let
A (x) ∈ L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, functions g0 : [0,∞) →
[0,∞), g : [0,∞) → [0,∞) continuous and nondecreasing such that for each
x ∈ D

F
(
x∗) = 0, A (x)−1 ∈ L (Y, X) ,

∥
∥A (x)−1

[
F (x) − F

(
x∗) − F ′ (x)

(
x − x∗)]∥∥ ≤ g0

(∥∥x − x∗∥∥) ∥
∥x − x∗∥∥p+1

,

(14.2.13)∥∥A (x)−1
(

A (x) − F ′ (x)
)∥∥ ≤ g

(∥∥x − x∗∥∥)
(14.2.14)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g0 (t) t p + g (t) − 1.

Then, sequence {xn} generated by algorithm (14.1.2) for x0 ∈ U (x∗, r2) − {x∗} is
well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to x∗.
Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ (
g0

(∥∥xn − x∗∥∥) ∥∥xn − x∗∥∥p + g
(∥∥xn − x∗∥∥)) ∥∥xn − x∗∥∥

<
∥
∥xn − x∗∥∥ < r2.

Proof We have that h (0) = −1 < 0 and h (t) → +∞ as t → +∞. Then, it follows
from the intermediate value theorem that function h has positive zeros. Denote by r2
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the smallest such zero. By hypothesis x0 ∈ U (x∗, r2) − {x∗}. Then, we get in turn
that ∥∥x1 − x∗∥∥ = ∥∥x0 − x∗ − A (x0)

−1 F (x0)
∥∥ =

∥∥A (x0)
−1

[
F

(
x∗) − F (x0) − F ′ (x0)

(
x∗ − x0

)]∥∥

+ ∥∥A (x0)
−1

(
A (x0) − F ′ (x0)

) (
x∗ − x0

)∥∥ ≤

g0
(∥∥x0 − x∗∥∥) ∥

∥x0 − x∗∥∥p+1 + g
(∥∥x0 − x∗∥∥) ∥

∥x0 − x∗∥∥ <

(h (r2) + 1)
∥∥x0 − x∗∥∥ = ∥∥x0 − x∗∥∥ < r2,

which shows that x1 ∈ U (x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get that

∥∥xk+1 − x∗∥∥ = ∥∥xk − x∗ − A (xk)
−1 F (xk)

∥∥ ≤
∥∥A (xk)

−1
[
F

(
x∗) − F (xk) − A (xk)

(
x∗ − xk

)]∥∥+
∥∥A (xk)

−1
(

A (xk) − F ′ (xk)
) (

x∗ − xk
)∥∥ ≤

g0
(∥∥xk − x∗∥∥) ∥∥xk − x∗∥∥p + g

(∥∥xk − x∗∥∥) ∥∥xk − x∗∥∥ <

(h (r2) + 1)
∥∥xk − x∗∥∥ = ∥∥xk − x∗∥∥ < r2,

which shows lim k→∞xk = x∗ and xk+1 ∈ U (x∗, r2) . �

Remark 14.5 (a) Hypothesis (14.2.3) specializes to Newton-Mysowski-type, if
A (x) = F ′ (x) [8, 12, 15]. However, if F is not Fréchet-differentiable, then our
results extend the applicability of iterative algorithm (14.1.2).

(b) Theorem 14.1 has practical value although we do not show that x∗ is a solution
of equation F (x) = 0, since this may be shown in another way.

(c) Hypothesis (14.2.13) can be replaced by the stronger

∥∥A (x)−1 [F (x) − F (y) − A (x) (x − y)]
∥∥ ≤ g2 (‖x − y‖) ‖x − y‖p+1 .

The preceding results can be extended to hold for two point iterative algorithms
defined for each n = 0, 1, 2, . . . by

xn+1 = xn − A (xn, xn−1)
−1 F (xn) , (14.2.15)

where x−1, x0 ∈ D are initial points and A (w, v) ∈ L (X, Y ) for each v,w ∈ D.
If A (w, v) = [w, v; F], then iterative algorithm (14.2.15) reduces to the popular
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secant method, where [w, v; F] denotes a divided difference of order one for the
operator F . Many other choices for A are also possible [8, 12, 16].

If we simply replace A (x) by A (y, x) in the proof of Proposition 14.2 we arrive
at the following semilocal convergence result for iterative algorithm (14.2.15).

Theorem 14.6 Let F : D ⊂ X → Y be a Fréchet-differentiable operator and let
A (y, x) ∈ L (X, Y ) for each x, y ∈ D. Suppose that there exist x−1, x0 ∈ D, η ≥ 0,
p ≥ 1, μ > 0, functions g0 : [0, η] → [0,∞), g1 : [0,∞)2 → [0,∞) continuous
and nondecreasing such that for each x, y ∈ D:

A (y, x)−1 ∈ L (Y, X) ,
∥∥A (y, x)−1

∥∥ ≤ μ, (14.2.16)

min
{‖x0 − x−1‖ ,

∥∥A (x0, x−1)
−1 F (x0)

∥∥} ≤ η,

∥∥F (y) − F (x) − F ′ (y − x)
∥∥ ≤ g0 (‖x − y‖)

μ
‖x − y‖p+1 , (14.2.17)

∥∥A (y, x) − F ′ (x)
∥∥ ≤ g1 (‖y − x0‖ , ‖x − x0‖)

μ
.

Moreover, suppose that function ϕ given by (14.2.5) has a smallest positive zero r
such that

g0 (r) r p + g1 (r, r) < 1

and
U (x0, r) ⊆ D,

where,
r = η

1 − q

and q is defined in Theorem 14.1.
Then, sequence {xn} generated by iterative algorithm (14.2.15) is well defined,

remains in U (x0, r) for each n = 0, 1, 2, . . . and converges to the only solution of
equation F (x) = 0 in U (x0, r). Moreover, the estimates (14.2.7) and (14.2.8) hold.

Concerning, the local convergence of the iterative algorithm (14.2.15) we obtain
the analogous to Proposition 14.4 result.

Proposition 14.7 Let F : D ⊂ X → Y be a Fréchet-differentiable operator and
let A (y, x) ∈ L (X, Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, functions g2 :
[0,∞)2 → [0,∞), g3 : [0,∞)2 → [0,∞) continuous and nondecreasing such that
for each x, y ∈ D

F
(
x∗) = 0, A (y, x)−1 ∈ L (Y, X) ,

∥∥A (y, x)−1
[
F (y) − F

(
x∗) − A (y, x)

(
y − x∗)]∥∥ ≤
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g2
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥) ∥∥y − x∗∥∥p+1
,

∥∥A (y, x)−1 (
A (y, x) − F ′ (x)

)∥∥ ≤ g3
(∥∥y − x∗∥∥ ,

∥∥x − x∗∥∥)

and
U

(
x∗, r2

) ⊆ D,

where r2 is the smallest positive solution of equation

h (t) := g2 (t, t) t p + g3 (t, t) − 1.

Then, sequence {xn} generated by algorithm (14.2.15) for x−1, x0 ∈ U (x∗, r2) −
{x∗} is well defined, remains in U (x∗, r2) for each n = 0, 1, 2, . . . and converges to
x∗. Moreover, the following estimates hold

∥∥xn+1 − x∗∥∥ ≤ [
g2

(∥∥xn − x∗∥∥ ,
∥∥xn−1 − x∗∥∥) ∥∥xn − x∗∥∥p +

g3
(∥∥xn − x∗∥∥ ,

∥∥xn−1 − x∗∥∥)] ∥∥xn − x∗∥∥ <
∥∥xn − x∗∥∥ < r2.

14.3 Applications to Fractional Calculus

In this sectionwe apply Proposition 14.2 and iterative algorithm (14.1.2) to fractional
calculus for solving f (x) = 0.

Let 0 < α < 1, hence �α� = 1, where �·� is the ceiling of the number. Let also
c < a < b < d, and f ∈ C2 ([c, d]), with f ′′ �= 0.

Clearly we have

∣∣ f ′ (x) − f ′ (y)
∣∣ ≤ ∥∥ f ′′∥∥∞ |x − y| , ∀ x, y ∈ [c, d] . (14.3.1)

We notice that

f (x) − f (y) =
(∫ 1

0
f ′ (y + θ (x − y)) dθ

)
(x − y) . (14.3.2)

Therefore it holds ∣∣ f (x) − f (y) − f ′ (x) (x − y)
∣∣ =

∣∣∣∣

(∫ 1

0
f ′ (y + θ (x − y)) dθ

)
(x − y) −

(∫ 1

0
f ′ (x) dθ

)
(x − y)

∣∣∣∣ =

∣∣∣
∣

∫ 1

0

(
f ′ (y + θ (x − y)) − f ′ (x)

)
dθ

∣∣∣
∣ |x − y| ≤
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(∫ 1

0

∣∣ f ′ (y + θ (x − y)) − f ′ (x)
∣∣ dθ

)
|x − y| (14.3.1)≤

∥∥ f ′′∥∥∞

(∫ 1

0
|y + θ (x − y) − x | dθ

)
|x − y| =

∥∥ f ′′∥∥∞

(∫ 1

0
(1 − θ) |x − y| dθ

)
|x − y| = (14.3.3)

∥∥ f ′′∥∥∞

(∫ 1

0
(1 − θ) dθ

)
(x − y)2 =

∥∥ f ′′∥∥∞

(
(1 − θ)2

2

∣
∣∣∣

0

1

)

(x − y)2 =
∥∥ f ′′∥∥∞

2
(x − y)2 , ∀ x, y ∈ [c, d] .

We have proved that

∣∣ f (y) − f (x) − f ′ (x) (y − x)
∣∣ ≤

∥
∥ f ′′∥∥∞

2
(y − x)2 , ∀ x, y ∈ [c, d] . (14.3.4)

(I) The left Caputo fractional derivative of f of order α ∈ (0, 1), anchored at a, is
defined as follows:

(
Dα

∗a f
)
(x) = 1

� (1 − α)

∫ x

a
(x − t)−α f ′ (t) dt , ∀ x ∈ [a, d] , (14.3.5)

while
(
Dα∗a f

)
(x) = 0, for c ≤ x ≤ a.

Next we consider a < a∗ < b, and x ∈ [a∗, b], also x0 ∈ (c, a).
We define the function

A1 (x) := � (2 − α)

(x − a)1−α

(
Dα

∗a f
)
(x) , ∀ x ∈ [

a∗, b
]
. (14.3.6)

Notice that A1 (a) is undefined.
We see that

∣∣A1 (x) − f ′ (x)
∣∣ =

∣∣∣∣
� (2 − α)

(x − a)1−α

(
Dα

∗a f
)
(x) − f ′ (x)

∣∣∣∣ = (14.3.7)

∣
∣∣∣

� (2 − α)

(x − a)1−α

1

� (1 − α)

∫ x

a
(x − t)−α f ′ (t) dt − � (2 − α)

(x − a)1−α

(x − a)1−α

� (2 − α)
f ′ (x)

∣
∣∣∣

= � (2 − α)

(x − a)1−α
·
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∣∣∣∣
1

� (1 − α)

∫ x

a
(x − t)−α f ′ (t) dt − 1

� (1 − α)

∫ x

a
(x − t)−α f ′ (x) dt

∣∣∣∣ =

(1 − α)

(x − a)1−α

∣
∣∣∣

∫ x

a
(x − t)−α

(
f ′ (t) − f ′ (x)

)
dt

∣
∣∣∣ ≤ (14.3.8)

(1 − α)

(x − a)1−α

∫ x

a
(x − t)−α

∣∣ f ′ (t) − f ′ (x)
∣∣ dt

(14.3.1)≤

(1 − α)
∥∥ f ′′∥∥∞

(x − a)1−α

∫ x

a
(x − t)−α (x − t) dt = (1 − α)

∥∥ f ′′∥∥∞
(x − a)1−α

∫ x

a
(x − t)1−α dt =

(14.3.9)
(1 − α)

∥∥ f ′′∥∥∞
(x − a)1−α

(x − a)2−α

2 − α
= (1 − α)

(2 − α)

∥
∥ f ′′∥∥∞ (x − a) . (14.3.10)

We have proved that

∣∣A1 (x) − f ′ (x)
∣∣ ≤

(
1 − α

2 − α

)∥∥ f ′′∥∥∞ (x − a) ≤
(
1 − α

2 − α

) ∥∥ f ′′∥∥∞ (b − a) ,

(14.3.11)
∀ x ∈ [a∗, b] .

In particular, it holds that

∣∣A1 (x) − f ′ (x)
∣∣ ≤

(
1 − α

2 − α

)∥∥ f ′′∥∥∞ (x − x0) , (14.3.12)

where x0 ∈ (c, a), ∀ x ∈ [a∗, b] .
(II) The right Caputo fractional derivative of f of order α ∈ (0, 1), anchored at

b, is defined as follows:

(
Dα

b− f
)
(x) = −1

� (1 − α)

∫ b

x
(t − x)−α f ′ (t) dt , ∀ x ∈ [c, b] , (14.3.13)

while
(
Dα

b− f
)
(x) = 0, for d ≥ x ≥ b.

Next consider a < b∗ < b, and x ∈ [a, b∗], also x0 ∈ (b, d).
We define the function

A2 (x) := − � (2 − α)

(b − x)1−α

(
Dα

b− f
)
(x) , ∀ x ∈ [

a, b∗] . (14.3.14)

Notice that A2 (b) is undefined.
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We see that

∣
∣A2 (x) − f ′ (x)

∣
∣ =

∣∣
∣∣−

� (2 − α)

(b − x)1−α

(
Dα

b− f
)
(x) − f ′ (x)

∣∣
∣∣ =

∣
∣∣∣

� (2 − α)

(b − x)1−α

1

� (1 − α)

∫ b

x
(t − x)−α f ′ (t) dt − f ′ (x)

∣
∣∣∣ = (14.3.15)

∣∣∣∣
� (2 − α)

(b − x)1−α

1

� (1 − α)

∫ b

x
(t − x)−α f ′ (t) dt − � (2 − α)

(b − x)1−α

(b − x)1−α

� (2 − α)
f ′ (x)

∣∣∣∣

= � (2 − α)

(b − x)1−α
·

∣∣∣∣
1

� (1 − α)

∫ b

x
(t − x)−α f ′ (t) dt − 1

� (1 − α)

∫ b

x
(t − x)−α f ′ (x) dt

∣∣∣∣ =
(14.3.16)

� (2 − α)

(b − x)1−α

1

� (1 − α)

∣∣
∣∣

∫ b

x
(t − x)−α

(
f ′ (t) − f ′ (x)

)
dt

∣∣
∣∣ ≤

(1 − α)

(b − x)1−α

∫ b

x
(t − x)−α

∣∣ f ′ (t) − f ′ (x)
∣∣ dt

(14.3.1)≤

(1 − α)
∥∥ f ′′∥∥∞

(b − x)1−α

∫ b

x
(t − x)−α (t − x) dt = (1 − α)

∥∥ f ′′∥∥∞
(b − x)1−α

∫ b

x
(t − x)1−α dt =

(14.3.17)
(1 − α)

∥∥ f ′′∥∥∞
(b − x)1−α

(b − x)2−α

2 − α
= (1 − α)

∥∥ f ′′∥∥∞
(2 − α)

(b − x) .

We have proved that

∣
∣A2 (x) − f ′ (x)

∣
∣ ≤

(
1 − α

2 − α

) ∥
∥ f ′′∥∥∞ (b − x) ≤

(
1 − α

2 − α

) ∥
∥ f ′′∥∥∞ (b − a) ,

(14.3.18)
∀ x ∈ [a, b∗] .

In particular, it holds that

∣∣A2 (x) − f ′ (x)
∣∣ ≤

(
1 − α

2 − α

) ∥∥ f ′′∥∥∞ (x0 − x) , (14.3.19)

where x0 ∈ (b, d), ∀ x ∈ [a, b∗] .
The results of Proposition 14.2 can apply, if we choose A = Ai , i = 1, 2, p = 1,

g0 (t) = ‖ f ‖∞
λ

and g1 (t) = (1−α)‖ f ′′‖∞t
(2−α)λ

for each t ∈ [c, d] .
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Chapter 15
Iterative Methods on Banach Spaces
with a Convergence Structure
and Fractional Calculus

We present a semilocal convergence for some iterative methods on a Banach space
with a convergence structure to locate zeros of operators which are not necessarily
Fréchet-differentiable as in earlier studies such as [6–8, 15]. This way we expand
the applicability of these methods. If the operator involved is Fréchet-differentiable
one approach leads to more precise error estimates on the distances involved than
before [8, 15] and under the same hypotheses. Special cases are presented and some
examples from fractional calculus. It follows [5].

15.1 Introduction

In this study we are concerned with the problem of locating a locally unique zero
x∗ of an operator G defined on a convex subset D of a Banach X with values in a
Banach space Y . Our results will be presented for the operator F defined by

F (x) := J G (x0 + x) , (15.1.1)

where x0 is an initial point and J ∈ L (Y, X) the space of bounded linear operators
from Y into X .

A lot of real life problems can be formulated like (15.1.1) using Mathematical
Modelling [3, 4, 8, 9, 12]. The zeros of F can be found in closed form only in special
cases. That is why most solution methods for these problems are usually iterative.
There are mainly two types of convergence: semi-local and local convergence. The
semi-local convergence case is based on the information around an initial point to
find conditions ensuring the convergence of the iterative method; while the local
one is based on the information around a solution, to find estimates of the radii of
convergence balls [1, 2, 6–8, 10–17].

The most popular methods for approximating a zero of F are undoubtedly the
so called Newton-like methods. There is a plethora of local as well as semi-local
convergence results for these methods [1, 2, 6–8, 10–17].

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_15
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In the present study motivated by the works in [6–8, 15] we present a semi-
local convergence analysis involving operators F that are not necessarily Fréchet-
differentiable (as in [15]). Therefore, we expand the applicability of these methods
in this case. We also show that even in the special case of Newton’s method (i.e.
when F is Fréchet-differentiable) our technique leads to more precise estimates on
the distances involved under the same hypotheses as in [15].

The rest of the chapter is organized as follows. Tomake the paper as selfcontinued
as possible, we present some standard concepts on Banach spaces with a convergence
structure in Sect. 15.2. The semilocal convergence analysis of Newton-like methods
is presented in Sect. 15.3. Special cases and some examples from fractional calculus
involving the Caputo fractional derivative are given in the Sects. 15.4 and 15.5.

15.2 Banach Spaces with Convergence Structure

Wepresent some results on Banach spaceswith a convergence structure.More details
can be found in [6–8, 15] and the references there in.

Definition 15.1 A triple (X, V, E) is a Banach space with convergence structure, if
(i) (X, ‖·‖) is a real Banach space.
(ii) (V, C, ‖·‖V ) is a real Banach space which is partially ordered by the closed

convex cone C . The norm ‖·‖V is assumed to be monotone on C .
(iii) E is a closed convex cone in X × V such that {0} × C ⊆ E ⊆ X × C.

(iv) The operator / · / : D → C

/x/ := inf {q ∈ C | (x, q) ∈ E}

for each x ∈ Q, is well defined, where

Q := {x ∈ X |∃ q ∈ E : (x, q) ∈ E} .

(v) ‖x‖ ≤ ‖/x/‖V for each x ∈ Q.

Notice that it follows by the definition of Q that Q + Q ⊆ Q and for each θ > 0,
θQ ⊆ Q. Define the set

U (a) := {x ∈ X | (x, a) ∈ E} .

Let us provide some examples when X = R
k equipped with the max-norm [6–8,

15]:
(a) V = R; E := {

(x, q) ∈ R
k × R| ‖x‖∞ ≤ q

}
.

(b) V = R
k ; E := {

(x, q) ∈ R
k × R

k | |x | ≤ q
}
.

(c) V = R
k ; E := {

(x, q) ∈ R
k × R

k |0 ≤ x ≤ q
}
.

More cases can be found in [8, 15].
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Case (a) corresponds to the convergence analysis in a real Banach space; case (b)
can be used for componentwise error analysis and case (c) may be used for monotone
convergence analysis.

The convergence analysis is considered in the space X × V . If (xn, qn) ∈ ER is
an increasing sequence, then:

(xn, qn) ≤ (xn+m, qn+m) ⇒ 0 ≤ (xn+m − xn, qn+m − qn) .

Moreover, if qn → q (n → ∞) then, we get: 0 ≤ (xn+m − xn, q − qn). Hence, by
(v) of Definition 15.1

‖xn+m − xn‖ ≤ ‖q − qn‖V → 0 (n → ∞).

That is we conclude that {xn} is a complete sequence. Set qn = w0 − wn , where
{wn} ∈ CR is a decreasing sequence.

Then, we have that

0 ≤ (xn+m − xn, wn − wn+m) ≤ (xn+m − xn, wn) .

Furthermore, if xn → x∗ (n → ∞), then we deduce that /x∗ − xn/ ≤ wn .
Let L

(
X j

)
denote the space of multilinear, symmetric, bounded operators on a

Banach space X , H : X j → X.

Let also consider an ordered Banach space V :

L+
(
V j

) := {
L ∈ L

(
V j

) |0 ≤ xi ⇒ 0 ≤ L
(
x1, x2, . . . , x j

)}
.

Let VL be an open subset of an ordered Banach space V .
An operator L ∈ C1 (VL → V ) is defined to be order convex on an interval

[a, b] ⊆ VL , if for each c, d ∈ [a, b], c ≤ d ⇒ L ′ (d) − L ′ (c) ∈ L+ (V ) .

Definition 15.2 The set of bounds for an operator H ∈ L
(
X j

)
is defined by:

B (H) := {
L ∈ L+

(
V j

) | (xi , qi ) ∈ E ⇒ [
H

(
x1, . . . , x j

)
, L

(
q1, . . . , q j

)] ∈ E
}
.

Lemma 15.3 Let H : [0, 1] → L
(
X j

)
and L : [0, 1] → L+

(
V j

)
be continuous

operators. Then, we have that for each t ∈ [0, 1] : L (t) ∈ B (H (t)) ⇒ ∫ 1
0 L (t) dt ∈

B
(∫ 1

0 H (t) dt
)

.

Let T : Y → Y be an operator on a subset Y of a normed space. Denote by T n (x)

the result of n-fold application of T . In particular in case of convergence, we write

T ∞ (x) := lim
n→∞T n (x) .
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Next, we define the right inverse:

Definition 15.4 Let H ∈ L (X) and u ∈ X be given. Then,

H∗u := x∗ ⇔ x∗ ∈ T ∞ (0) , T (x) := (I − H) x + u ⇔ x∗ =
∞∑

j=0

(I − H) j u,

provided that this limit exists.

Finally, we need two auxiliary results on inequalities in normed spaces and the
Banach perturbation Lemma:

Lemma 15.5 Let L ∈ L+ (V ) and a, q ∈ C be given such that

Lq + a ≤ q and Lnq → 0 (n → ∞).

Then, the operator
(I − L)∗ : [0, a] → [0, a]

is well defined and continuous.

Lemma 15.6 Let H ∈ L (X), L ∈ B (H), u ∈ D and q ∈ C be given such that:

Lq + /u/ ≤ q and Lnq → 0 (n → ∞).

Then, the point given by x := (I − H)∗ u is well defined, belongs in D and

/x/ ≤ (I − L)∗ /u/ ≤ q.

15.3 Semilocal Convergence

We present the semilocal convergence in this section to determine a zero x∗ of the
operator (15.1.1) under certain conditions denoted by (A).

Let X be a Banach space with convergence structure (X, V, E), where V =
(V, C, ‖·‖V ), let operators F : D → X with D ⊆ X , A (·) : D → L (X), K , L , M :
VL → V with VL ⊆ V , K0 (·) , M (·) : VL → L+ (V ) and a point a ∈ C be such that
the following conditions (A) hold:

(A1) U (a) ⊆ D and [0, a] ⊆ VL .

(A2) L ≤ K ≤ M , K0 (·) ≤ M (·) .

(A3) K0 (0) ∈ B (I − A (0)), (−F (0) , K (0)) .

(A4) K0 (/x/) − K0 (0) ∈ B (A (0) − A (x)) .

(A5) K0 (c) (d − c) ≤ K (d) − K (c) and M (c) (d − c) ≤ M (d) − M (c) for
each c, d ∈ [0, a] with c ≤ d.
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(A6) L (/x/ + /y − x/) − L (/x/) − M (/x/) /y − x/ ∈ B (F (x) − F (y)

+A (x) (y − x)) .

(A7) M (a) a ≤ a.

(A8) M (a)n a → 0 (n → ∞).
Next, we can show the following semilocal convergence result of Newton-like

methods using the preceding notation.

Theorem 15.7 Suppose that the conditions (A) hold. Then
(i) the sequences {xn}, {δn} defined by

x0 = 0, xn+1 := xn + A∗ (xn) (−F (xn)) ,

δ0 = 0, δn+1 := L (δn) + M (/xn/) γn,

where γn := /xn+1 − xn/, are well defined, the sequence (xn, δn) ∈ (X × V )R

remains in ER, for each n = 0, 1, 2, . . . , is monotone, and

δn ≤ b, for each n = 0, 1, 2, . . . ,

where b := M∞
0 (0) is the smallest fixed point of M (·) in [0, a].

(ii) The Newton-like sequence {xn} is well defined, it remains in U (a) for each
n = 0, 1, 2, . . . , and converges to a unique zero x∗ of F in U (a).

Proof (i) We shall solve the equation

q = (I − A (xn)) q + (−F (xn)) , for each n = 0, 1, 2, . . . . (15.3.1)

First notice that the conditions of Theorem 15.7 are satisfied with b replacing a. If
n = 1 in (15.3.1) we get by (A2), (A3), (A5) and (A7) with q = b

K0 (0) b + / − F (0) / ≤ K (b) − K (0) + / − F (0) / ≤ K (b) ≤ M (b) b ≤ b.

That is x1 is well defined and (x1, b) ∈ E .
We get the estimate

x1 = (I − A (0)) x1 + (−F (0))

so,
/x1/ ≤ K0 (0) /x1/ + L (0) ≤ M (0) /x1/ + L (0) = δ1

and by (A2)

δ1 = M (0) /x1/ + L (0) ≤ M (0) (b) + L (0) ≤ M (b) (b − 0) + L (0)

≤ M (b) b − M (b) (0) + L (0) ≤ M (b) b ≤ b.
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Suppose that the sequence is well defined and monotone for k = 1, 2, . . . , n and
δk ≤ b. Using the induction hypotheses and (A6) we get in turn that

/ − F (xn) / = / − F (xn) + F (xn−1) + A (xn−1) (xn − xn−1) /

≤ L (/xn−1/ + γn−1) − L (/xn−1/) − M (/xn−1/) γn−1

≤ L (δn−1 + δn − δn−1) − L (δn−1) − M (/xn−1/) γn−1 (15.3.2)

= L (δn) − δn. (15.3.3)

By (A2)–(A4) we have the estimate

/I − A (xn) / ≤ /I − A (0) / + /A (0) − A (xn) / ≤ K0 (0) + K0 (/xn/) − K0 (0)

= K0 (/xn/) ≤ M (/xn/) .

Then, to solve the Eq. (15.3.1), let q = b − δn to obtain that

M (/xn/) (b − δn) + / − F (xn) / + δn ≤ M (δn) (b − δn) + L (δn)

≤ M (b) b ≤ b.

That is xn+1 is well defined by Lemma 15.5 and γn ≤ b − δn . Therefore, δn+1 is also
well defined and we can have:

δn+1 ≤ L (δn) + M (δn) (b − δn) ≤ M (b) b ≤ b.

We also need to show the monotonicity of (xn, δn) ≤ (xn+1, δn+1):

γn + δn ≤ M (/xn/) γn + / − F (xn) / + δn ≤ M (/xn/) γn + L (δn) = δn+1.

The induction is complete and the statement (i) is shown.
(ii) Using induction and the definition of sequence {δn} we get M (0)n (0) ≤

δn ≤ b, which implies δn → b, since M (0)n (0) → b. It follows from the discussion
in Sect. 15.2 that sequence {xn} converges to some x∗ ∈ U (b) (sinceU (b) is a closed
set). By letting n → ∞ in (15.3.3) we deduce that x∗ is a zero of F . Let y∗ ∈ U (a)

be a zero of F . Then as in [15] we get that

/y∗ − xn/ ≤ Mn (a) (a) − Mn (0) (0) ,

so, we conclude that x∗ = y∗. 
�
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Remark 15.8 Concerning a posteriori estimates, we can list a few. It follows from
the proof of Theorem 15.7 that

/x∗ − xn/ ≤ b − δn ≤ q − δn,

where we can use for q any solution of M (q) q ≤ q. We can obtain more precise
error estimates as in [15] by introducing monotone maps Rn under the (A) conditions
as follows:

Rn (q) := (I − K0/xn/)
∗ Sn (q) + γn,

where
Sn (q) := L (/xn/ + q) − L (/xn/) − M (/xn/) q.

Notice that operator Sn is monotone on the interval In := [0, a − /xn/]. Suppose that
there exists qn ∈ C such that /xn/ + qn ≤ a and

Sn (qn) + M (/xn/) (qn − γn) ≤ qn − γn.

It then follows that operator Rn : [0, qn] → [0, qn] is well defined and monotone by
Lemma 15.5 for each n = 0, 1, 2, . . .. A possible choice qn is a − δn . Indeed, this
follows from the implications

δn + γn ≤ δn+1 ⇒ M (a) (a) − L (δn) − M (/xn/) γn ≤ a − δn − γn ⇒

L (a) − L (δn) − M (/xn/) γn ≤ a − δn − γn ⇒

Sn (a − δn) + M (/xn/) (a − δn − γn) ≤ a − δn − γn.

The proofs of the next three results are omitted since they follow from the corre-
sponding ones in [6–8, 15] by simply using Rn and Sn instead of

R̃n (q) = (
I − L ′ (/xn/)

)∗
S̃n (q) + cn,

S̃n (q) = L (/xn/ + q) − L (/xn/) − L ′ (/xn/) q,

used in the preceding references, where cn = γn and for L ∈ C1 (VL → L) being
order convex of the interval [a, b] ⊂ VL . Let us also define the sequence {dn} by

d0 = 0, dn+1 = L (dn) + L ′ (/xn/) cn. (15.3.4)

Proposition 15.9 Suppose that there exists q ∈ In such that Rn (q) ≤ q. Then, the
following hold

γn ≤ Rn (q) =: q0 ≤ q
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and
Rn+1 (q0 − γn) ≤ q0 − γn.

Proposition 15.10 Suppose that the (A) conditions hold. Moreover, suppose that
there exist qn ∈ In such that Rn (qn) ≤ qn . Then, the sequence {pn} defined by

pn = qn, pn+1 := Rn (pm) − γn for m ≥ n

leads to the estimate /x∗ − xn/ ≤ pm .

Proposition 15.11 Suppose that the (A) conditions hold. Then for any q ∈ In satis-
fying Rn (q) ≤ q we have that

/x∗ − xn/ ≤ R∞
n (0) ≤ q.

The rest of the results in [6–8, 15] can be generalized along the same framework.

15.4 Special Cases and Examples

Special case: Newton’s method
Let us state Theorem 5 from [15] (see also [8]) sowe can compare it with Theorem

15.7.

Theorem 15.12 Suppose that X is a Banach space with convergence structure
(X, V, E) with V = (V, C, ‖·‖V ), let operator F ∈ C1 (D → X), operator L ∈
C1 (VL → V ) and a point a ∈ C such that the following conditions hold:

(h1) U (a) ⊆ D, [0, a] ⊆ VL .

(h2) L is order convex on [0, a] and satisfies for each x, y ∈ U (a),

/x/ + /y/ ≤ a : L ′ (/x/ + /y/) − L ′ (/x/) ∈ B
(
F ′ (x) − F ′ (x + y)

)
.

(h3) L ′ (0) ∈ B
(
I − F ′ (0)

)
, (−F (0) , L (0)) ∈ E .

(h4) L (a) ≤ a.

(h5) L ′ (a)n a → 0 (n → ∞).
Then, the sequence {xn} generated by Newton’s method for each n = 0, 1, 2, . . . ,

x0 := 0, xn+1 := xn + F ′ (/xn/)
∗ (−F (xn))

is well defined, remains in U (a) for each n = 0, 1, 2, . . . and converges to a unique
zero x∗ of F in U (a).

Moreover, the following estimates hold

/x∗ − xn/ ≤ b − dn,
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where the sequence {dn} is defined by (15.3.4).

Let L ∈ C1 (VL → V ), A (x) = F ′ (x), K0 = M = L ′ and K = L . Then,
Theorem 15.7 reduces to the weaker version of Theorem 15.12 given by:

Theorem 15.13 Suppose that the hypotheses of Theorem 15.12 but with (h2)
replaced by

(h′
2) L is order convex on [0, a] and satisfies for each x, y ∈ U (a), /x/ + /y/ ≤

a : L (/x/ + /y/) − L (/x/) − L ′ (/x/) /y − x/ ∈ B (F (x) − F (y)

+F ′ (x) (y − x)
)
.

Then, the conclusions of Theorem 15.12 hold.

Remark 15.14 Notice that condition (h2) implies condition (h′
2) but not necessarily

vice versa. Hence, Theorem 15.13 is weaker that Theorem 15.12.

Another improvement of Theorem 15.12 can be given as follows:
(h0

2) there exists: L0 which is order convex on [0, a] and satisfies for each /x/ ≤
a : L ′

0 (/x/) − L ′
0 (0) ∈ B

(
F ′ (0) − F ′ (x)

)
.

Notice however that
L ′
0 ≤ L ′ (15.4.1)

holds in general and L ′
L ′
0
can be arbitrarily large [8].

Notice that (h0
2) is not an additional to (h2) condition, since in practice the com-

putation of L ′ requires the computation of L ′
0 as a special case.

Condition (h3) can then certainly be replaced by the weaker
(h0

3) L ′
0 (0) ∈ B

(
I − F ′ (0)

)
, (−F (0) , L (0)) ∈ E .

Moreover, if
L (0) 0 ≤ L (0) , (15.4.2)

then condition (h0
3) can be replaced by the weaker

(h1
3) L ′

0 (0) ∈ B
(
I − F ′ (0)

)
, (−F (0) , L0 (0)) ∈ E .

Define sequence {d0
n } by

d0
0 := 0, d0

1 = L0
(
d0
0

) + L ′
0 (/x0/) c0, d0

2 = L0
(
d0
1

) + L ′
0 (/x1/) c1,

d0
n+1 := L

(
d0

n

) + L ′
0 (/xn/) cn , n = 2, 3, . . . .

Then, we present the following improvement of Theorem 15.12.

Theorem 15.15 Suppose that the hypotheses of Theorem 15.12 or Theorem 15.13
hold. Then, the conclusions hold with sequence {d0

n } replacing {dn} and L0, L ′
0

replacing L , L ′ in (h3) and (h5), respectively. Moreover, we have

d0
n ≤ dn for each n = 0, 1, 2, . . . . (15.4.3)
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Proof Simply notice that the following crucial estimate holds:

L ′
0 (/xn/)

(
b − d0

n

) + / − F (xn) / + d0
n

≤ L ′
0 (/xn/)

(
b − d0

n

) + L
(
d0

n

) − L
(
d0

n−1

) − L ′ (/xn−1/) cn−1

−L ′
0 (/xn−1/) cn−1 + L ′

0 (/xn−1/) cn−1 + d0
n

≤ L ′
0 (/xn/)

(
b − d0

n

) + L ′
0 (/xn−1/) cn−1 − L ′ (/xn−1/) cn−1 + L

(
d0

n

)

≤ L ′
0 (/xn/)

(
b − d0

n

) + L
(
d0

n

)

≤ L ′ (d0
n

) (
b − d0

n

) + L
(
d0

n

) ≤ L (b) ≤ b.

Finally, the estimate (15.4.3) follows by the definition of sequences {d0
n }, {dn},

(15.4.1) and a simply inductive argument. 
�
Remark 15.16 Estimate (15.4.3) holds as a strict inequality for n = 1, 2, . . . , if
(15.4.1) is a strict inequality. Hence, the error estimates are improved in this case
under the hypotheses of Theorem 15.12 or Theorem 15.13. Finally the a posteriori
results presented in Sect. 15.3 are also improved in this special case.

15.5 Applications to Fractional Calculus

In this section we apply our numerical method to fractional calculus.
In our cases we take J the identity map, the function G as f , and x0 = 0. We

want to solve
f (x) = 0. (15.5.1)

(I) Let 1 < ν < 2, i.e. �ν� = 2 (�·� ceiling of number); x, y ∈ [0, a], a > 0, and
f ∈ C2 ([0, a]).
We define the following left Caputo fractional derivatives (see [3], p. 270) by

(
Dν

∗y f
)
(x) := 1

� (2 − ν)

∫ x

y
(x − t)1−ν f ′′ (t) dt, (15.5.2)

when x ≥ y, and

(
Dν

∗x f
)
(y) := 1

� (2 − ν)

∫ y

x
(y − t)1−ν f ′′ (t) dt, (15.5.3)

when y ≥ x , where � is the gamma function.
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We define also the linear operator

(A0 ( f )) (x, y) :=

⎧
⎪⎨

⎪⎩

f ′ (y) + (
Dν∗y f

)
(x) · (x−y)ν−1

�(ν+1) , x > y,

f ′ (x) + (
Dν∗x f

)
(y) · (y−x)ν−1

�(ν+1) , y > x,

0, x = y.

(15.5.4)

When f is increasing and f ≥ 0, then (A0 ( f )) (x, y) ≥ 0.
By left fractional Caputo Taylor’s formula (see [9], p. 54 and [3], p. 395) we get

that

f (x) − f (y) = f ′ (y) (x − y) + 1

� (ν)

∫ x

y
(x − t)ν−1 Dν

∗y f (t) dt, for x > y,

(15.5.5)
and

f (y) − f (x) = f ′ (x) (y − x) + 1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt, for x < y,

(15.5.6)
equivalently, it holds

f (x) − f (y) = f ′ (x) (x − y) − 1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt, for x < y.

(15.5.7)
We would like to prove that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ c · (x − y)2

2
, (15.5.8)

for any x, y ∈ [0, a], 0 < c < 1.
When x = y the last condition (15.5.8) is trivial.
We assume x �= y. We distinguish the cases:
(1) x > y : We observe that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| = (15.5.9)

∣∣∣∣ f ′ (y) (x − y) + 1

� (ν)

∫ x

y
(x − t)ν−1 (

Dν
∗y f

)
(t) dt−

(
f ′ (y) + (

Dν
∗y f

)
(x) · (x − y)ν−1

� (ν + 1)

)
(x − y)

∣∣∣
∣ =

∣∣∣∣
1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

∗y f
)
(t) dt − (

Dν
∗y f

)
(x)

(x − y)ν

� (ν + 1)

∣∣∣∣ = (15.5.10)
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∣∣
∣∣

1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

∗y f
)
(t) dt − 1

� (ν)

∫ x

y
(x − t)ν−1

(
Dν

∗y f
)
(x) dt

∣∣
∣∣ =

(15.5.11)
1

� (ν)

∣∣∣
∣

∫ x

y
(x − t)ν−1

((
Dν

∗y f
)
(t) − (

Dν
∗y f

)
(x)

)
dt

∣∣∣
∣ ≤

1

� (ν)

∫ x

y
(x − t)ν−1

∣∣(Dν
∗y f

)
(t) − (

Dν
∗y f

)
(x)

∣∣ dt =: (ξ) , (15.5.12)

(assume that ∣
∣(Dν

∗y f
)
(t) − (

Dν
∗y f

)
(x)

∣
∣ ≤ λ1 |t − x |2−ν , (15.5.13)

for any t, x, y ∈ [0, a] : x ≥ t ≥ y, where λ1 < � (ν), i.e. ρ1 := λ1
�(ν)

< 1).
Therefore

(ξ) ≤ λ1

� (ν)

∫ x

y
(x − t)ν−1 (x − t)2−ν dt (15.5.14)

= λ1

� (ν)

∫ x

y
(x − t) dt = λ1

� (ν)

(x − y)2

2
= ρ1

(x − y)2

2
. (15.5.15)

We have proved that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ1
(x − y)2

2
, (15.5.16)

where 0 < ρ1 < 1, and x > y.

(2) x < y : We observe that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| = (15.5.17)

∣∣∣∣ f ′ (x) (x − y) − 1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt−

(
f ′ (x) + (

Dν
∗x f

)
(y) · (y − x)ν−1

� (ν + 1)

)
(x − y)

∣∣∣∣ =
∣∣
∣∣−

1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt + (
Dν

∗x f
)
(y)

(y − x)ν

� (ν + 1)

∣∣
∣∣ = (15.5.18)

∣∣∣
∣

1

� (ν)

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt − (
Dν

∗x f
)
(y)

(y − x)ν

� (ν + 1)

∣∣∣
∣ = (15.5.19)

1

� (ν)

∣∣∣∣

∫ y

x
(y − t)ν−1 Dν

∗x f (t) dt − 1

� (ν)

∫ y

x
(y − t)ν−1

(
Dν

∗x f
)
(y) dt

∣∣∣∣ =
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1

� (ν)

∣∣
∣∣

∫ y

x
(y − t)ν−1

(
Dν

∗x f (t) − Dν
∗x f (y)

)
dt

∣∣
∣∣ ≤ (15.5.20)

1

� (ν)

∫ y

x
(y − t)ν−1

∣∣Dν
∗x f (t) − Dν

∗x f (y)
∣∣ dt

(by assumption, ∣∣Dν
∗x f (t) − Dν

∗x f (y)
∣∣ ≤ λ2 |t − y|2−ν , (15.5.21)

for any t, y, x ∈ [0, a] : y ≥ t ≥ x).

≤ 1

� (ν)

∫ y

x
(y − t)ν−1 λ2 |t − y|2−ν dt

= λ2

� (ν)

∫ y

x
(y − t)ν−1 (y − t)2−ν dt (15.5.22)

= λ2

� (ν)

∫ y

x
(y − t) dt = λ2

� (ν)

(x − y)2

2
.

Assuming also ρ2 := λ2
�(ν)

< 1 (i.e. λ2 < � (ν)), we have proved that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ2
(x − y)2

2
, for x < y.

(15.5.23)
Conclusion: choosing λ := max (λ1,λ2) and ρ := λ

�(ν)
< 1, we have proved that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ
(x − y)2

2
, for any x, y ∈ [0, a] .

(15.5.24)
This is a condition needed to solve numerically f (x) = 0.

(II) Let n − 1 < ν < n, n ∈ N − {1}, i.e. �ν� = n; x, y ∈ [0, a], a > 0, and f ∈
Cn ([0, a]).

We define the following right Caputo fractional derivatives (see [4] , p. 336),

Dν
x− f (y) = (−1)n

� (n − ν)

∫ x

y
(z − y)n−ν−1 f (n) (z) dz, for y ≤ x, (15.5.25)

and

Dν
y− f (x) = (−1)n

� (n − ν)

∫ y

x
(z − x)n−ν−1 f (n) (z) dz, for x ≤ y. (15.5.26)

By right Caputo fractional Taylor’s formula (see [4], p. 341) we have
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f (x) − f (y) =
n−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz,

(15.5.27)
when x ≤ y, and

f (y) − f (x) =
n−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(z) dz,

(15.5.28)
when x ≥ y.

We define also the linear operator

(A0 ( f )) (x, y) :=

⎧
⎪⎨

⎪⎩

∑n−1
k=1

f (k)(x)

k! (y − x)k − (
Dν

x− f
)
(y) · (x−y)ν−1

�(ν+1) , x > y,
∑n−1

k=1
f (k)(y)

k! (x − y)k − (
Dν

y− f
)
(x) · (y−x)ν−1

�(ν+1) , y > x,

0, x = y.

(15.5.29)
When n = 2, and f is decreasing and f ≥ 0, then (A0 ( f )) (x, y) ≤ 0.

We would like to prove that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ c · |x − y|n
n

, (15.5.30)

for any x, y ∈ [0, a], 0 < c < 1.
When x = y the last condition (15.5.30) is trivial.
We assume x �= y. We distinguish the cases:
(1) x > y : We observe that

|( f (x) − f (y)) − (A0 ( f )) (x, y) · (x − y)| = (15.5.31)

|( f (y) − f (x)) − (A0 ( f )) (x, y) · (y − x)| =
∣∣
∣∣∣

(
n−1∑

k=1

f (k) (x)

k! (y − x)k + 1

� (ν)

∫ x

y
(z − y)ν−1 (

Dν
x− f

)
(z) dz

)

−

(
n−1∑

k=1

f (k) (x)

k! (y − x)k−1 − (
Dν

x− f
)
(y) · (x − y)ν−1

� (ν + 1)

)

(y − x)

∣∣∣∣∣
=

∣
∣∣∣

1

� (ν)

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(z) dz + (

Dν
x− f

)
(y)

(x − y)ν−1

� (ν + 1)
(y − x)

∣
∣∣∣ =

(15.5.32)∣∣
∣∣

1

� (ν)

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(z) dz − (

Dν
x− f

)
(y)

(x − y)ν

� (ν + 1)

∣∣
∣∣ =
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1

� (ν)

∣∣
∣∣

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(z) dz −

∫ x

y
(z − y)ν−1

(
Dν

x− f
)
(y) dz

∣∣
∣∣ =

1

� (ν)

∣∣∣∣

∫ x

y
(z − y)ν−1

((
Dν

x− f
)
(z) − (

Dν
x− f

)
(y)

)
dz

∣∣∣∣ ≤ (15.5.33)

1

� (ν)

∫ x

y
(z − y)ν−1

∣
∣(Dν

x− f
)
(z) − (

Dν
x− f

)
(y)

∣
∣ dz

(we assume that

∣∣(Dν
x− f

)
(z) − (

Dν
x− f

)
(y)

∣∣ ≤ λ1 |z − y|n−ν , (15.5.34)

λ1 > 0, for all x, z, y ∈ [0, a], with x ≥ z ≥ y)

≤ λ1

� (ν)

∫ x

y
(z − y)ν−1 (z − y)n−ν dz = (15.5.35)

= λ1

� (ν)

∫ x

y
(z − y)n−1 dz = λ1

� (ν)

(x − y)n

n

(assume λ1 < � (ν), i.e. ρ1 := λ1
�(ν)

< 1)

= ρ1
(x − y)n

n
.

We have proved, when x > y, that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ1
(x − y)n

n
. (15.5.36)

(2) y > x : We observe that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| =
∣∣∣
∣∣

(
n−1∑

k=1

f (k) (y)

k! (x − y)k + 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz

)

−

(
n−1∑

k=1

f (k) (y)

k! (x − y)k−1 − (
Dν

y− f
)
(x) · (y − x)ν−1

� (ν + 1)

)

(x − y)

∣
∣∣∣∣
= (15.5.37)

∣∣∣
∣

1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz − (

Dν
y− f

)
(x)

(y − x)ν

� (ν + 1)

∣∣∣
∣ = (15.5.38)
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∣∣
∣∣

1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(z) dz − 1

� (ν)

∫ y

x
(z − x)ν−1

(
Dν

y− f
)
(x) dz

∣∣
∣∣ =

1

� (ν)

∣∣∣∣

∫ y

x
(z − x)ν−1

((
Dν

y− f
)
(z) − (

Dν
y− f

)
(x)

)
dz

∣∣∣∣ ≤ (15.5.39)

1

� (ν)

∫ y

x
(z − x)ν−1

∣∣(Dν
y− f

)
(z) − (

Dν
y− f

)
(x)

∣∣ dz

(we assume that

∣∣(Dν
y− f

)
(z) − (

Dν
y− f

)
(x)

∣∣ ≤ λ2 |z − x |n−ν , (15.5.40)

λ2 > 0, for all y, z, x ∈ [0, a] with y ≥ z ≥ x)

≤ λ2

� (ν)

∫ y

x
(z − x)ν−1 (z − x)n−ν dz = (15.5.41)

λ2

� (ν)

∫ y

x
(z − x)n−1 dz = λ2

� (ν)

(y − x)n

n
.

Assume now that λ2 < � (ν), that is ρ2 := λ2
�(ν)

< 1.
We have proved, for y > x , that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ2
(y − x)n

n
. (15.5.42)

Set λ := max (λ1,λ2) , and

0 < ρ := λ

� (ν)
< 1. (15.5.43)

Conclusion: We have proved that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ
|x − y|n

n
, for any x, y ∈ [0, a] .

(15.5.44)
In the special case of 1 < ν < 2, we obtain that

| f (x) − f (y) − (A0 ( f )) (x, y) · (x − y)| ≤ ρ
(x − y)2

2
, (15.5.45)

for any x, y ∈ [0, a], 0 < ρ < 1.
This is a condition needed to solve numerically f (x) = 0.
(III) A simple instructive example follows:
Let f ∈ C1 ([0, a]), a > 0. We assume that
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∣∣ f ′ (x) − f ′ (y)
∣∣ ≤ λ |x − y| , where 0 < λ < 1, (15.5.46)

for every x, y ∈ [0, a]. Here we take A0 ( f ) (x) := f ′ (x), all x ∈ [0, a] .
We notice that

f (x) − f (y) =
(∫ 1

0
f ′ (y + θ (x − y)) dθ

)
(x − y) . (15.5.47)

Therefore it holds

| f (x) − f (y) − (A0 ( f )) (x) · (x − y)| = (15.5.48)

∣∣∣∣

(∫ 1

0
f ′ (y + θ (x − y)) dθ

)
(x − y) −

(∫ 1

0
f ′ (x) dθ

)
(x − y)

∣∣∣∣ =

∣∣∣
∣

∫ 1

0

(
f ′ (y + θ (x − y)) − f ′ (x)

)
dθ

∣∣∣
∣ |x − y| ≤

(∫ 1

0

∣∣ f ′ (y + θ (x − y)) − f ′ (x)
∣∣ dθ

)
|x − y| ≤ (15.5.49)

λ

(∫ 1

0
|y + θ (x − y) − x | dθ

)
|x − y| =

λ

(∫ 1

0
(1 − θ) |x − y| dθ

)
|x − y| = (15.5.50)

λ

⎛

⎝ (1 − θ)2

2

∣∣∣
∣∣

0

1

⎞

⎠ |x − y|2 = λ
(x − y)2

2
,

proving that

| f (x) − f (y) − (A0 ( f )) (x) · (x − y)| ≤ λ
(x − y)2

2
, (15.5.51)

for all x, y ∈ [0, a], a condition needed to solve numerically f (x) = 0.
Next, we connect the results of this section to a special case of Theorem 15.7 for

the real norm ‖·‖∞ as follows:
Define functions F and A by

F (x) = J f (x0 + x) and A (x) = J A0 (x) , (15.5.52)

where J = (A0 (0))−1 and x0 = 0.
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Choose L = K = M and K0 (·) = M (·), where L (t) = ‖F (0)‖ + 1
2ρt2 and

K0 (t) = M (t) = L ′ (t) = ρt , ρ = ‖J‖ ρ.

Then, conditions (A1)–(A6) are satisfied. Moreover, condition (A7) reduces to

2ρ ‖F (0)‖ < 1 (15.5.53)

for

a = 1 − √
1 − 2ρ ‖F (0)‖

ρ
.

Furthermore, condition (A8) holds, provided that (15.5.53) is a strict inequality.
Hence, we deduce that the conclusions of Theorem 15.7 hold for equation F (x) = 0,
where F is given by (15.5.52) provided that the Newton-Kantorovich-type condition
[8, 12] (15.5.53) holds as a strict inequality.
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Chapter 16
Inexact Gauss-Newton Method
for Singular Equations

A new semi-local convergence analysis of the Gauss-Newton method for solving
convex composite optimization problems is presented using the concept of quasi-
regularity for an initial point [13, 18, 22, 23, 25]. The convergence analysis is based
on a combination of a center-majorant and majorant function. The results extend
the applicability of the Gauss-Newton method under the same computational cost as
in earlier studies such as [5, 7, 13–43]. In particular, the advantages are: the error
estimates on the distances involved are tighter and the convergence ball is at least as
large. Numerical examples are also provided in this study. It follows [12].

16.1 Introduction

A lot of problems such as convex inclusion, minimax problems, penalization meth-
ods, goal programming, constrained optimization and other problems can be formu-
lated like

F(x) = 0, (16.1.1)

where D is open and convex and F : D ⊂ R
j → R

m is a nonlinear operator with its
Fréchet derivative denoted by F ′. The solutions of Eq. (16.1.1) can rarely be found
in closed form. That is why the solution methods for these equations are usually
iterative. In particular, the practice of numerical analysis for finding such solutions
is essentially connected to Newton-like methods [2, 6–9, 11, 13, 19, 20, 28, 29, 35,
37]. The study about convergence matter of iterative procedures is usually centered
on two types: semilocal and local convergence analysis. The semilocal convergence
matter is, based on the information around an initial point, to give criteria ensuring the
convergence of iterative procedures; while the local one is, based on the information

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_16
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around a solution, to find estimates of the radii of convergence balls. A plethora of
sufficient conditions for the local as well as the semilocal convergence of Newton-
like methods as well as an error analysis for such methods can be found in [11, 19,
20]. In the case m = j , the inexact Newton method was defined in [6] by:

xn+1 = xn + sn, F ′(xn)sn = −F(xn) + rn for each n = 0, 1, 2, . . . , (16.1.2)

where x0 is an initial point, the residual control rn satisfy

‖rn‖ ≤ λn‖F(xn)‖ for each n = 0, 1, 2, . . . , (16.1.3)

and {λn} is a sequence of forcing terms such that 0 ≤ λn < 1. Let x∗ be a solution
of (16.1.1) such that F ′(x∗) is invertible. As shown in [6], if λn ≤ λ < 1, then,
there exists r > 0 such that for any initial guess x0 ∈ U (x∗, r) := {x ∈ R

j :
‖x − x∗‖ < r}, the sequence {xn} is well defined and converges to a solution x∗ in
the norm ‖y‖∗ := ‖F ′(x∗)y‖, where ‖ · ‖ is any norm in R

j . Moreover, the rate of
convergence of {xn} to x∗ is characterized by the rate of convergence of {λn} to 0. It
is worth noting that, in [6], no Lipschitz condition is assumed on the derivative F ′ to
prove that {xn} is well defined and linearly converging. However, no estimate of the
convergence radius r is provided. A pointed out by [16] the result of [6] is difficult
to apply due to dependence of the norm ‖ · ‖∗, which is not computable.

The residual control (16.1.3) is non-affine invariant. The advantages of affine
versus non-affine invariant forms have been explained in [20]. That is why, Ypma
used in [41] the affine invariant condition of residual control in the form:

‖F ′(xn)
−1rn‖ ≤ λn‖F ′(xn)

−1F(xn)‖ for each n = 0, 1, 2, . . . , (16.1.4)

to study the local convergence of inexact Newton method (16.1.2). And the radius
of convergent result are also obtained.

To study the local convergence of inexact Newton method and inexact Newton-
like method (called inexact methods for short below), Morini presented in [32] the
following variation for the residual controls:

‖Pnrn‖ ≤ λn‖Pn F(xn)‖ for each n = 0, 1, 2, . . . , (16.1.5)

where {Pn} is a sequence of invertible operator fromR
j toR j and {λn} is the forcing

term. If Pn = I and Pn = F ′(xn) for each n, (16.1.5) reduces to (16.1.3) and (16.1.4),
respectively. These methods are linearly convergent under Lipschitz Condition. It is
worth nothing that the residual controls (16.1.5) are used in iterative methods if
preconditioning is applied and lead to a relaxation on the forcing terms. But we
also note that the results obtained in [32] do not provide an estimate of the radius of
convergence. This is why Chen and Li [16] obtained the local convergence properties
of inexact methods for (16.1.1) under a weak Lipschitz condition, which was first
introduced by Wang in [38] to study the local convergence behaviour of Newton’s
method. The result in [16] easily provides an estimate of convergence ball for the
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inexact methods. Furthermore, Ferreira and Gonçalves presented in [23] a new local
convergence analysis for inexact Newton-like under so-called majorant condition.

Recent attentions are focused on the study of finding zeros of singular nonlinear
systems by Gauss-Newton’s method, which is defined by

xn+1 = xn − F ′(xn)
†F(xn) for each n = 0, 1, 2, . . . , (16.1.6)

where x0 ∈ D is an initial point and F ′(xn)
† denotes theMoore-Penrose inverse of the

linear operator (of matrix) F ′(xn). Shub and Smale extended in [36] the Smale point
estimate theory (includes α-theory and γ-theory) to Gauss-Newton’s methods for
underdetermined analytic systems with surjective derivatives. For overdetermined
systems, Dedieu and Schub studied in [18] the local linear convergence properties
of Gauss-Newton’s for analytic systems with injective derivatives and provided esti-
mates of the radius of convergence balls for Gauss-Newton’s method. Dedieu and
Kim in [17] generalized both the results of the undetermined case and the overdeter-
mined case to such case where F ′(x) is of constant rank (not necessary full rank),
which has been improved by some authors in [1, 11, 14, 15, 20, 21].

Recently, several authors have studied the convergence behaviour of inexact ver-
sions of Gauss-Newton’s method for singular nonlinear systems. For example, Chen
[15] employed the ideas of [38] to study the local convergence properties of several
inexact Gauss-Newton type methods where a scaled relative residual control is per-
formed at each iteration under weak Lipschitz conditions. Ferreira, Gonçalves and
Oliveira presented in their recent paper [26] a local convergence analysis of an inex-
act version of Gauss-Newton’s method for solving nonlinear least squares problems.
Moreover, the radius of the convergence balls under the corresponding conditions
were estimated in these two papers. The preceding results were improved by Argyros
et al. [2–11] using the concept of the center Lipschitz condition (see also (16.2.8)
and the numerical examples) under the same computational cost on the parameters
and functions involved.

In the present study,we aremotivated by the elegantwork in [42, 43] and optimiza-
tion considerations.Usingmore precisemajorant condition and functions,weprovide
a new local convergence analysis for Gauss-Newton method under the same com-
putational cost and the following advantages: larger radius of convergence; tighter
error estimates on the distances ‖xn − x∗‖ for each n = 0, 1, . . . and a clearer
relationship between the majorant function (see (16.2.7)) and the associated least
squares problems (16.1.1). These advantages are obtained because we use a center-
typemajorant condition (see (16.2.8)) for the computation of inverses involvedwhich
is more precise that the majorant condition used in [21–26, 30, 31, 39–43]. More-
over, these advantages are obtained under the same computational cost, since as we
will see in Sects. 16.3 and 16.4, the computation of the majorant function requires
the computation of the center-majorant function. Furthermore, these advantages are
very important in computational mathematics, since we have a wider choice of ini-
tial guesses x0 and fewer computations to obtain a desired error tolerance on the
distances ‖xn − x∗‖ for each n = 0, 1, 2, . . .
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The rest of this study is organized as follows. In Sect. 16.2, we introduce some
preliminary notions and properties of the majorizing function. The main result about
the local convergence are stated in Sect. 16.3. In Sect. 16.4, we prove the local con-
vergence results given in Sect. 16.3. Section16.5 contains the numerical examples
and Sect. 16.6 the conclusion of this study.

16.2 Preliminaries

We present some standard results to make the study as selfcontained as possible.
More results can be found in [13, 35, 38].

Let A : R
j → R

m be a linear operator (or an m × j matrix). Recall that an
operator (or j × m matrix) A† : Rm → R

j is the Moore-Penrose inverse of A if it
satisfies the following four equations:

A†AA† = A†; AA†A = A; (AA†)∗ = AA†; (A†A) = A†A,

where A∗ denotes the adjoint of A. Let ker A and im A denote the kernel and image
of A, respectively. For a subspace E of R j , we use �E to denote the projection onto
E . Clearly, we have that

A†A = �ker A⊥ and AA† = �im A.

In particular, in the case when A is full row rank (or equivalently, when A is
surjective), AA† = IRm ; when A is full column rank (or equivalently, when A is
injective), A†A = IR j .

The following lemma gives a Banach-type perturbation bound forMoore-Penrose
inverse, which is stated in [25].

Lemma 16.1 ([25, Corollary 7.1.1, Corollary 7.1.2]). Let A and B be m× j matrices
and let r ≤ min{m, j}. Suppose that rank A = r , 1 ≤ rank B ≤ A and ‖A†‖‖B −
A‖ < 1. Then, rank B = r and

‖B†‖ ≤ ‖A†‖
1 − ‖A†‖‖B − A‖ ·

Also, we need the following useful lemma about elementary convex analysis.

Lemma 16.2 ([25, Proposition1.3]). Let R > 0. If ϕ : [0, R] → R is continuously
differentiable and convex, then, the following assertions hold:

(a)
ϕ(t) − ϕ(τ t)

t
≤ (1 − τ )ϕ′(t) for each t ∈ (0, R) and τ ∈ [0, 1].

(b)
ϕ(u) − ϕ(τu)

u
≤ ϕ(v) − ϕ(τv)

v
for each u, v ∈ [0, R), u < v and0 ≤ τ ≤ 1.
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From now on we suppose that the (I ) conditions listed below hold.
For a positive real R ∈ R

+, let

ψ : [0, R] × [0, 1) × [0, 1) → R

be a continuous differentiable function of three of its arguments and satisfy the
following properties:

(i) ψ(0,λ, θ) = 0 and
∂

∂t
ψ(t,λ, θ)

∣∣∣∣
t=0

= −(1 + λ + θ).

(ii)
∂

∂t
ψ(t,λ, θ) is convex and strictly increasing with respect to the argument t .

For fixed λ, θ ∈ [0, 1), we write hλ,θ(t) � ψ(t,λ, θ) for short below. Then the
above two properties can be restated as follows.

(iii) hλ,θ(0) = 0 and h′
λ,θ(0) = −(1 + λ + θ).

(iv) h′
λ,θ(t) is convex and strictly increasing.

(v) g : [0, R] → R is strictly increasing with g(0) = 0.
(vi) g′ is convex and strictly increasing with g′(0) = −1.

(vii) g(t) ≤ hλ,θ(t), g′(t) ≤ h′
λ,θ(t) for each t ∈ [0, R), λ, θ ∈ [0, 1].

Define

ζ0 := sup{t ∈ [0, R) : h′
0,0(t) < 0}, ζ := sup{t ∈ [0, R) : g′(t) < 0}, (16.2.1)

ρ0 := sup

{

t ∈ [0, ζ0) :
∣
∣∣∣∣
hλ,θ(t)

h′
0,0(t)

− t

∣
∣∣∣∣
< t

}

,

ρ = sup

{
t ∈ [0, ζ) :

∣∣∣∣
hλ,θ(t) − th′

0,0(t)

g′(t)

∣∣∣∣ < t

}
(16.2.2)

σ := sup{t ∈ [0, R) : U (x∗, t) ⊂ D}. (16.2.3)

The next two lemmas show that the constants ζ and ρ defined in (16.2.1) and
(16.2.2), respectively, are positive.

Lemma 16.3 The constant ζ defined in (16.2.1) is positive and
th′

0,0(t) − hλ,θ(t)

g′(t)
<

0 for each t ∈ (0, ζ).

Proof Since g′(0) = −1, there exists δ > 0 such that g′(t) < 0 for each t ∈ (0, δ).

Then, we get ζ ≥ δ(> 0). We must show that
th′

0,0(t) − hλ,θ(t)

g′(t)
< 0 for each

t ∈ (0, ζ). By hypothesis, functions h′
λ,θ, g

′(t) are strictly increasing, then functions
hλ,θ, g′(t) are strictly convex. It follows from Lemma 16.2 (i) and hypothesis (vi i)
that
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hλ,θ(t) − hλ,θ(0)

t
< h′

λ,θ(t), t ∈ (0, R).

In view of hλ,θ(0) = 0 and g′(t) < 0 for all t ∈ (0, ζ). This together with the last
inequality yields the desired inequality. �

Lemma 16.4 The constant ρ defined in (16.2.2) is positive. Consequently,∣∣∣∣
th′

0,0(t) − hλ,θ(t)

g′(t)

∣∣∣∣ < t for each t ∈ (0, ρ).

Proof Firstly, by Lemma 16.3, it is clear that

(
hλ,θ(t)

th′
0,0(t)

− 1

)
h′
0,0(t)

g′(t)
> 0 for t ∈

(0, ζ). Secondly, we get from Lemma 16.2 (i) that

lim
t→0

(
hλ,θ(t)

th′
0,0(t)

− 1

)
h′
0,0(t)

g′(t)
= 0.

Hence, there exists a δ > 0 such that

0 <

(
hλ,θ(t)

th′
0,0(t)

− 1

)
h′
0,0(t)

g′(t)
< 1, t ∈ (0, ζ).

That is ρ is positive. �

Define

r := min{ρ, δ}, (16.2.4)

where ρ and δ are given in (16.2.2) and (16.2.3), respectively. For any starting point
x0 ∈ U (x∗, r)\{x∗}, let {tn} be a sequence defined by:

t0 = ‖x0 − x∗‖, tn+1 =
∣∣∣∣∣

(

tn − hλ,θ(tn)

h′
0,0(tn)

)
h′
0,0(tn)

g′(tn)

∣∣∣∣∣
for each n = 0, 1, 2, . . .

(16.2.5)

Lemma 16.5 The sequence {tn} given by (16.2.5) is well defined, strictly decreasing,
remains in (0, ρ) for each n = 0, 1, 2, . . . and converges to 0.

Proof Since 0 < t0 = ‖x0 − x∗‖ < r ≤ ρ, using Lemma 16.4, we have that {tn}
is well defined, strictly decreasing and remains in [0, ρ) for each n = 0, 1, 2, . . .
Hence, there exists t∗ ∈ [0, ρ) such that lim

n→+∞ tn = t∗. That is, we have

0 ≤ t∗ =
(

hλ,θ(t∗)
h′
0,0(t

∗)
− t∗

)
h′
0,0(t

∗)
g′(t∗)

< ρ.
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If t∗ �= 0, it follows from Lemma 16.4 that

(
hλ,θ(t∗)
h′
0,0(t

∗)
− t∗

)
h′
0,0(t

∗)
g′(t∗)

< t∗,

which is a contradiction. Hence, we conclude that tn → 0 as n → +∞. �

If g(t) = hλ,θ(t), then Lemmas 16.3–16.5 reduce to the corresponding ones in
[42, 43]. Otherwise, i.e., if g(t) < hλ,θ(t), then our results are better, since

ζ0 < ζ and ρ0 < ρ.

Moreover, the scalar sequence used in [42, 43] is defined by

u0 = ‖x0 − x∗‖, un+1 =
∣∣∣∣∣
un − hλ,θ(un)

h′
0,0(un)

∣∣∣∣∣
for each n = 0, 1, 2, . . . (16.2.5′)

Using the properties of the functions hλ,θ, g, (16.2.5), (16.2.5′) and a simple inductive
argument we get that

t0 = u0, t1 = u1, tn < un, tn+1 − tn < un+1 − un for each n = 1, 2, . . .

and

t∗ ≤ u∗ = lim
n→+∞ un,

which justify the advantages of our approach as claimed in the introduction of this
study.

In Sect. 16.3 we shall show that {tn} is a majorizing sequence for {xn}.
We state the followingmodifiedmajorant condition for the convergence of various

Newton-like methods in [9–11, 13].

Definition 16.6 Let r > 0 be such that U (x∗, r) ⊂ D. Then, F ′ is said to satisfy
the majorant condition on U (x∗, r) if

‖F ′(x∗)†[F ′(x)−F ′(x∗+τ (x−x∗))]‖ ≤ h′
λ,θ(‖x−x∗‖)−h′

λ,θ(τ‖x−x∗‖) (16.2.6)

for any x ∈ U (x∗, r) and τ ∈ [0, 1].
In the case when F ′(x∗) is not surjective, the information on im F ′(x∗)⊥ may be

lost. This is why the above notion was modified in [42, 43] to suit the case when
F ′(x∗) is not surjective as follows:
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Definition 16.7 Let r > 0 be such that U (x∗, r) ⊂ D. Then, f ′ is said to satisfy
the modified majorant condition on U (x∗, r) if

‖F ′(x∗)†‖‖F ′(x) − F ′(x∗ + τ (x − x∗))‖ ≤ h′
λ,θ(‖x − x∗‖) − h′

λ,θ(τ‖x − x∗‖)
(16.2.7)

for any x ∈ U (x∗, r) and τ ∈ [0, 1].
If τ = 0, condition (16.2.7) reduces to

‖F ′(x∗)†‖‖F ′(x) − F ′(x∗)‖ ≤ h′
λ,θ(‖x − x∗‖) − h′

λ,θ(0). (16.2.7′)

In particular, for λ = θ = 0, condition (16.2.7′) reduces to

‖F ′(x∗)†‖‖F ′(x) − F ′(x∗)‖ ≤ h′
0,0(‖x − x∗‖) − h′

0,0(0). (16.2.7′′)

Condition (16.2.7′′) is used to produce the Banach-type perturbation Lemmas in
[42, 43] for the computation of the upper bounds on the norms ‖F ′(x)†‖. In this
study we use a more flexible function g than hλ,θ function for the same purpose. This
way the advantages as stated in the Introduction of this study can be obtained.

In order to achieve these advantages we introduce the following notion [2–11].

Definition 16.8 Let r > 0 be such that U (x∗, r) ⊂ D. Then g′ is said to satisfy the
center-majorant condition on U (x∗, r) if

‖F ′(x∗)†‖‖F ′(x) − F ′(x∗)‖ ≤ g′(‖x − x∗‖) − g′(0). (16.2.8)

Clearly,

g′(t) ≤ h′
λ,θ(t) for each t ∈ [0, R], λ, θ ∈ [0, 1] (16.2.9)

holds in general and
h′

λ,θ(t)

g′(t)
can be arbitrarily large [11].

It is worth noticing that (16.2.8) is not an additional condition to (16.2.7) since in
practice the computation of function hλ,θ requires the computation of g as a special
case (see also the numerical examples).

16.3 Local Convergence

In this section, we present local convergence for inexact Newton method (16.1.2).
Equation (16.1.1) is a surjective-undetermined (resp. injective-overdetermined)
system if the number of equations is less (resp. greater) than the number of
knowns and F ′(x) is of full rank for each x ∈ D. It is well known that, for
surjective-underdetermined systems, the fixed points of the Newton operator
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NF (x) := x − F ′(x)†F(x) are the zeros of F , while for injective-overdetermined
systems, the fixed points of NF are the least square solutions of (16.1.1), which, in
general, are not necessarily the zeros of F .

Next, we present the local convergence properties of inexact Newton method for
general singular systems with constant rank derivatives.

Theorem 16.9 Let F : D ⊂ R
j → R

m be continuously Fréchet differentiable
nonlinear operator, D is open and convex. Suppose that F(x∗) = 0, F ′(x∗) �= 0 and
that F ′ satisfies the modified majorant condition (16.2.7) and the center-majorant
condition (16.2.8) on U (x∗, r), where r is given in (16.2.4). In addition, we assume
that rank F ′(x) ≤ rank F ′(x∗) for any x ∈ U (x∗, r) and that

‖[IR j − F ′(x)†F ′(x)](x − x∗)‖ ≤ θ‖x − x∗‖, x ∈ U (x∗, r), (16.3.1)

where the constant θ satisfies 0 ≤ θ < 1. Let sequence {xn} be generated by inexact
Gauss-Newton method with any initial point x0 ∈ U (x∗, r)\{x∗} and the conditions
for the residual rn and the forcing term λn:

‖rn‖ ≤ λn‖F(xn)‖, 0 ≤ λn F ′(xk) ≤ λ for each n = 0, 1, 2, . . . (16.3.2)

Then, {xn} converges to a zero x∗ of F ′(·)†F(·) in U (x∗, r). Moreover, we have the
following estimate:

‖xn+1 − x∗‖ ≤ tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (16.3.3)

where the sequence {tn} is defined by (16.2.5).

Remark 16.10 (a) If g(t) = hλ,θ(t), then the results obtained in Theorem 16.9
reduce to the ones given in [42, 43].

(b) If g(t) and hλ,θ(t) are

g(t) = hλ,θ(t) = −(1 + λ + θ)t +
∫ t

0
L(u)(t − u) du, t ∈ [0, R], (16.3.4)

then the results obtained in Theorem 16.9 reduce to the one given in [25]. More-
over, if taking λ = 0 (in this case λn = 0 and rn = 0) in Theorem 16.9, we
obtain the local convergence of Newton’s method for solving the singular sys-
tems, which has been studied by Dedieu and Kim in [17] for analytic singular
systems with constant rank derivatives and Li, Xu in [39] and Wang in [38] for
some special singular systems with constant rank derivatives.

(c) If g(t) < hλ,θ(t) then the improvements as mentioned in the Introduction of this
study we obtained (see also the discussion above and below Definition 16.6)
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If F ′(x) is full column rank for every x ∈ U (x∗, r), then we have F ′(x)†

F ′(x) = IR j . Thus,

‖[IRm − F ′(x)†F ′(x)](x − x∗)‖ = 0,

i.e., θ = 0. We immediately have the following corollary:

Corollary 16.11 Suppose that rank F ′(x) ≤ rank F ′(x∗) and that

‖[IRm − F ′†(x)F ′(x)](x − x∗)‖ = 0,

for any x ∈ U (x∗, r). Suppose that F(x∗) = 0, F ′(x∗) �= 0 and that F ′ satisfies the
modifed majorant condition (16.2.7) and the center-majorant condition (16.2.8). Let
sequence {xn} be generated by inexact Gauss-Newton method with any initial point
x0 ∈ U (x∗, r)\{x∗} and the condition (16.3.2) for the residual rn and the forcing
term λn. Then, {xn} converges to a zero x∗ of F ′(·)†F(·) in U (x∗, r). Moreover, we
have the following estimate:

‖xn+1 − x∗‖ ≤ tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . , (16.3.5)

where the sequence {tn} is defined by (16.2.5) for θ = 0.

In the case when F ′(x∗) is full row rank, the modified majorant condition (16.2.7)
can be replaced by the majorant condition (16.2.6).

Theorem 16.12 Suppose that F(x∗) = 0, F ′(x∗) is full row rank, and that F ′
satisfies the majorant condition (16.2.6) and the center-majorant condition (16.2.8)
on U (x∗, r), where r is given in (16.2.4). In addition, we assume that rank F ′(x) ≤
rank F ′(x∗) for any x ∈ U (x∗, r) and that condition (16.3.1) holds. Let sequence
{xn} be generated by inexact Gauss-Newton method with any initial point x0 ∈
U (x∗, r)\{x∗} and the conditions for the residual rn and the forcing term λn:

‖F ′(x∗)†rn‖ ≤ λn‖F ′(x∗)†F(xn)‖, 0 ≤ λn F ′(x∗)†F ′(xn) ≤ λ (16.3.6)

for each n = 0, 1, 2, . . . .
Then, {xn} converges to a cero ζ of F(·) in U (x∗, r). Moreover, we have the

following estimate:

‖xn+1 − x∗‖ ≤ tn+1

tn
‖xn − x∗‖ for each n = 0, 1, 2, . . . ,

where the sentence {tn} is defined by (16.2.5).
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Remark 16.13 Comments as in Remark 16.10 can follow for this case.

Theorem 16.14 Suppose that F(x∗) = 0, F ′(x∗) is full row rank, and that F ′ satis-
fies the majorant condition (16.2.6) and the center-majorant condition on U (x∗, r),
where r is given in (16.2.4). In addition, we assume that rank F ′(x) ≤ rank F ′(x∗)
for any x ∈ U (x∗, r) and that condition (16.3.1) holds. Let sequence {xn} sequence
generated by inexact Gauss-Newton method with any initial point x0 ∈ U (x∗, r)\{x∗}
and the conditions for the control residual rn and the forcing term λn:

‖F ′(xn)
†rn‖ ≤ λn‖F ′(xn)

†F(xn)‖, 0 ≤ λn F ′(xn) ≤ λ for each n = 0, 1, 2, . . .
(16.3.7)

Then, {xn} converges to a zero x∗ of f (·) in U (x∗, r). Moreover, we have the following
estimate:

‖xn+1 − x∗‖ ≤ tn+1

tn
‖xk − x∗‖ for each n = 0, 1, 2, . . . ,

where sequence {tn} is defined by (16.2.5).

Remark 16.15 In the case when F ′(x∗) is invertible in Theorem 16.14, hλ,θ is given

by (16.3.4) and g(t) = −1 +
∫ t

0
L0(t)(t − u) du for each t ∈ [0, R], we obtain the

local convergence results of inexact Gauss-Newton method for nonsingular systems,
and the convergence ball r is this case satisfies

∫ r
0 L(u)u du

r
(
(1 − λ) − ∫ r

0 L0(u) du
) ≤ 1, λ ∈ [0, 1). (16.3.8)

In particular, if takingλ = 0, the convergence ball r determined in (16.3.8) reduces to
the one given in [38] byWang and the value r is the optimal radius of the convergence
ball when the equality holds. That is our radius is r larger than the one obtained in [38]
, if L0 < L (see also the numerical examples). Notice that L is used in [38] for the
estimate (16.3.8). Then, we can conclude that vanishing residuals, Theorem 16.14
merges into the theory of Newton’s method.

16.4 Proofs

In this section, we prove our main results of local convergence for inexact Gauss-
Newton method (16.1.2) given in Sect. 16.3.
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16.4.1 Proof of Theorem 16.9

Lemma 16.16 Suppose that F ′ satisfies the modified majorant condition onU (x∗, r)

and that ‖x∗ − x‖ < min{ρ, x∗}, where r , ρ and x∗ are defined in (16.2.4), (16.2.2)
and (16.2.1), respectively. Then, rank F ′(x) = rank F ′(x∗) and

‖F ′(x)†‖ ≤ − ‖F ′(x∗)†‖
g′(‖x − x∗‖) ·

Proof Since g′(0) = −1, we have

‖F ′(x∗)†‖‖F ′(x) − F ′(x∗)‖ ≤ g′(‖x − x∗‖) − g′(0) < −g′(0) = 1.

It follows from Lemma (16.1) that rank F ′(x) = rank F ′(x∗) and

‖F ′(x)†‖ ≤ ‖F ′(x∗)†‖
1 − (g′(‖x − x∗‖) − g′(0))

= − ‖F ′(x∗)†‖
g′(‖x − x∗‖) ·

�

Proof of Theorem 16.9 We shall prove by mathematical induction on n that {tn} is
the majorizing sequence for {xn}, i.e.,

‖x∗ − x j‖ ≤ t j for each j = 0, 1, 2, . . . (16.4.1)

Because t0 = ‖x0 − x∗‖, thus (16.4.1) holds for j = 0. Suppose that ‖x∗ − x j‖ ≤ t j

for some j = n ∈ N. For the case j = n + 1, we first have that,

xn+1 − x∗ = xn − x∗ − F ′(xn)
†[F(xn) − F(x∗)] + F ′(xn)

†rn

= F ′(xn)
†[F(x∗) − F(xn) − F ′(xn)(x∗ − xn)] + F ′(xn)

†rn

+[IR j − F ′(xn)
†F ′(xn)](xn − x∗)

= F ′(xn)
†
∫ 1

0
[F ′(xn) − F ′(x∗ + τ (xn − x∗))](xn − x∗) dτ

+F ′(xn)
†rn + [IR j − F ′(xn)

†F ′(xn)](xn − ζ). (16.4.2)

By using the modified majorant condition (16.2.7), Lemma 16.4, the inductive
hypothesis (16.4.1) and Lemma 16.2, we obtain in turn that

∥∥
∥∥F ′(xn)

†
∫ 1

0
[F ′(xn) − F ′(x∗ + τ (xn − x∗))](xn − x∗) dτ

∥∥
∥∥ ≤
(16.4.3)

− 1

g′(‖xn − x∗)‖
∫ 1

0
‖F ′(x∗)†‖‖F ′(xn) − F ′(x∗ + τ (xn − x∗))‖‖xn − x∗‖ dτ
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= − 1

g′(‖xn − x∗‖)
∫ 1

0

h′
λ,0(‖xn − x∗‖) − h′

λ,0(τ‖xn − x∗‖)
‖xn − x∗‖ dτ · ‖xn − x∗‖2

≤ − 1

g′(tn)

∫ 1

0

h′
λ,0(tn) − hλ,0(τ tn)

tn
dτ · ‖xn − x∗‖2

= − 1

g′(tn)
(tnh′

λ,0(tn) − hλ,0(tn))
‖xn − x∗‖2

t2n
·

In view of (16.3.2),

‖F ′(xn)
†rn‖ ≤ ‖F ′(xn)

†‖‖rn‖ ≤ λn‖F ′(xn)
†‖‖F(xn)‖. (16.4.4)

We have that

− F(xn) = F(x∗) − F(xn) − F ′(xn)(x∗ − xn) + F ′(xn)(x∗ − xn)

=
∫ 1

0
[F ′(xn) − F ′(x∗ + τ (xn − x∗))](xn − x∗) dτ

+F ′(xn)(x∗ − xn). (16.4.5)

Then, combining Lemmas 16.2, 16.16, the modified majorant condition (16.2.7), the
inductive hypothesis (16.4.1) and the condition (16.3.2), we obtain in turn that

λn‖F ′(xn)
†‖‖F(xn)‖

≤ λn‖F ′(xn)
†‖

∫ 1

0
‖F ′(xn) − F ′(x∗ + τ (xn − x∗))‖‖xn − x∗‖ dτ

+λn‖F ′(xn)
†‖‖F ′(xn)‖‖xn − x∗‖

≤ − λ

g′(tn)
(tnh′

λ,0(tn) − hλ,0(tn))
‖xn − x∗‖2

t2n
+ λtn

‖xn − x∗‖
tn

≤ λ
λtn + hλ,0(tn)

g′(tn)
‖xn − x∗‖

tn
. (16.4.6)

Combining (16.3.1), (16.4.3), (16.4.4) and (16.4.6), we get that

‖xn+1 − x∗‖ ≤

[
− tnh′

λ,0(tn) − hλ,0(tn)

g′(tn)
+ λ

λtn + hλ,0(tn)

g′(tn)
+ θtn

] ‖xn − x∗‖
tn

=
[
−tn + (1 + λ)

(
λtn

g′(tn)
+ hλ,0(tn)

g′(tn)

)
+ θtn

] ‖xn − x∗‖
tn

.
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But, we have that −1 < g′(t) < 0 for any t ∈ (0, ρ), so

(1 + λ)

(
λtn

g′(tn)
+ hλ,0(tn)

g′(tn)

)
+ θtn ≤ hλ,0(tn)

g′(tn)
+ θn

≤ hλ,0(tn) − θtn
g′(tn)

= hλ,θ(tn)

g′(tn)
.

Using the definition of {tn} given in (16.2.5), we get that

‖xn+1 − x∗‖ ≤ tn+1

tn
‖xn − x∗‖,

so we deduce that ‖xn+1 − x∗‖ ≤ tn+1, which completes the induction. In view of
the fact that {tn} converges to 0 (by Lemma 16.5), it follows from (16.4.1) that {xn}
converges to x∗ and the estimate (16.3.3) holds for all n ≥ 0. �

16.4.2 Proof of Theorem 16.12

Lemma 16.17 Suppose that F(x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies
the majorant condition (16.2.6) on U (x∗, r). Then, for each x ∈ U (x∗, r), we have
rank F ′(x) = rank F ′(x∗) and

‖[IR j − F ′(x∗)†(F ′(x∗) − F ′(x))]−1‖ ≤ − 1

g′(‖x − x∗‖) ·

Proof Since g′(0) = −1, we have

‖F ′(x∗)†[F ′(x) − F ′(x∗)]‖ ≤ g′(‖x − x∗‖) − g′(0) < −g′(0) = 1.

It follows from Banach lemma that [IR j − F ′(x∗)†(F ′(x∗) − F ′(x))]−1 exists and

‖[IR j − F ′(x∗)†(F ′(x∗) − F ′(x))]−1‖ ≤ − 1

g′(‖x − x∗‖) ·

Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm and

F ′(x) = F ′(x∗)[IR j − F ′(z∗)†(F ′(x∗) − F ′(x))],

which implies that F ′(x) is full row, i.e., rank F ′(x) = rank F ′(x∗). �

Proof of Theorem 16.12 Let F̂ : U (x∗, r) → R
m be defined by

F̂(x) = F ′(x∗)† F̂(x), x ∈ U (x∗, r),
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with residual r̂k = F ′(x∗)†rn . In view of

F̂ ′(x)† = [F ′(x∗)†F ′(x)]† = F ′(x)†F ′(x∗), x ∈ U (x∗, r),

we have that {xn} coincides with the sequence generated by inexact Gauss-Newton
method (16.1.2) for F̂ . Moreover, we get that

F̂ ′(x∗)† = (F ′(x∗)†F ′(x∗))† = F ′(x∗)†F ′(x∗).

Consequently,

‖F̂ ′(x∗)† F̂ ′(x∗)‖ = ‖F ′(x∗)†F ′(x∗)F ′(x∗)†F(x∗)‖ = ‖F ′(x∗)†F(x∗)‖.

Because ‖F ′(x∗)†F(x∗)‖ = ‖�ker F ′(x∗)⊥‖ = 1, thus, we have

‖F̂ ′(x∗)†‖ = ‖F̂ ′(x∗)† F̂ ′(x∗)‖ = 1.

Therefore, by (16.2.6), we can obtain that

‖F̂ ′(x∗)†‖‖F̂ ′(x) − F̂ ′(x∗ + τ (x − x∗))‖ =
‖F ′(x∗)†(F ′(x) − F ′(x∗ + τ (x − x∗)))‖ ≤

h′
λ,θ(‖x − x∗‖) − hλ,θ(τ‖x − x∗‖).

Hence, F̂ satisfies the modified majorant condition (16.2.7) on U (x∗, r). Then,
Theorem 16.9 is applicable and {xk} converges to x∗ follows. Note that, F̂ ′(·)† F̂(·) =
F ′(·)†F(·) and F(·) = F ′(·)F ′(·)†F(·). Hence, we conclude that x∗ is a zero
of F . �

16.4.3 Proof of Theorem 16.14

Lemma 16.18 Suppose that F(x∗) = 0, F ′(x∗) is full row rank and that F ′ satisfies
the majorant condition (16.2.6) on U (x∗, r). Then, we have

‖F ′(x)†F ′(x∗)‖ ≤ − 1

g′(‖x − x∗‖) for each x ∈ U (x∗, r).

Proof Since F ′(x∗) is full row rank, we have F ′(x∗)F ′(x∗)† = IRm . Then, we get
that

F ′(x)†F ′(x∗)(IR j − F ′(x∗)†(F ′(x∗) − F ′(x∗))) = F ′(x)†F ′(x), x ∈ U (x∗, r).
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By Lemma 16.17, IR j − F ′(x∗)†(F ′(x∗)− F ′(x)) is invertible for any x ∈ U (x∗, r).
Thus, in view of the equality A†A = �ker A⊥ for any m × j matrix A, we obtain that

F ′(x)†F ′(x∗) = �ker F ′(x)⊥[IR j − F ′(x∗)†(F ′(x∗) − F ′(x))]−1.

Therefore, by Lemma 16.17 we deduce that

‖F ′(x)†F ′(x∗)‖ ≤ ‖�ker F ′(x)⊥‖‖[IR j − F ′(x∗)†(F ′(x∗) − F ′(x))]−1‖

≤ − 1

g′(‖x − x∗‖) . �

Proof of Theorem 16.14 Using Lemma 16.18, majorant condition (16.2.6) and the
residual condition (16.3.7), respectively, instead of Lemma 16.16, modifiedmajorant
condition (16.2.7) and condition (16.3.2), one can complete the proof of Theorem
16.14 in an analogous way to the proof of Theorem 16.9. �

16.5 Numerical Examples

We present some numerical examples, where

g(t) < hλ,θ(t) (16.5.1)

and
g′(t) < h′

λ,θ(t). (16.5.2)

For simplicity we take F ′(x)† = F ′(x)−1 for each x ∈ D.

Example 16.19 Let X = Y = (−∞,+∞) and define function F : X → Y by

F(x) = d0x − d1 sin(1) + d1 sin(e
d2x )

where d0, d1, d2 are given real numbers. Then x∗ = 0. Define functions g and hλ,θ

by g(t) = L0
2 t2 − t and hλ,θ(t) = L

2 t2 − t . Then, it can easily be seen that for d2
sufficiently large and d1 sufficiently small L

L0
can be arbitrarily large. Hence, (16.5.1)

and (16.5.2) hold.

Example 16.20 Let F(x, y, z) = 0 be a nonlinear system,where F : D ⊆ R
3 → R

3

and F(x, y, z) = (x,
e − 1

2
y2 + y, ez − 1). It is obvious that (0, 0, 0) = x∗ is a

solution of the system.
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From F , we deduce

F ′(x) =
⎛

⎝
1 0 0
0 (e − 1)y 0
0 0 ez

⎞

⎠ and F ′(x∗) = diag{1, 1, 1},

where x = (x, y, z). Hence, [F ′(x∗)]−1 = diag{1, 1, 1}. Moreover, we can define

for L0 = e − 1 < L = e, g(t) = e − 1

2
t2 − t and hλ,θ(t) = e

2
t2 − t . Then, again

(16.5.1) and (16.5.2) hold.

Other examples where (16.5.1) and (16.5.2) are satisfied can be found in [2, 5, 8,
9, 11].

16.6 Conclusion

We expanded the applicability of inexact Gauss-Newton method under a majorant
and a center-majorant condition. The advantages of our analysis over earlier works
such as [5, 7–43] are also shown under the same computational cost for the functions
and constants involved. These advantages include: a large radius of convergence and
more precise error estimates on the distances ‖xn+1 − x∗‖ for each n = 0, 1, 2, . . .,
leading to awider choice of initial guesses and computation of less iterates xn in order
to obtain a desired error tolerance. Numerical examples show that the center-function
can be smaller than the majorant function.
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Chapter 17
The Asymptotic Mesh Independence
Principle

We present a new asymptotic mesh independence principle of Newton’s method
for discretized nonlinear operator equations. Our hypotheses are weaker than in
earlier studies such as [1, 9–13]. This way we extend the applicability of the mesh
independence principle which asserts that the behavior of the discretized version
is asymptotically the same as that of the original iteration and consequently, the
number of steps required by the two processes to converge within a given tolerance
is essentially the same. The results apply to solve a boundary value problem that
cannot be solved with the earlier hypotheses given in [13]. It follows [8].

17.1 Introduction

In this chapter we are concerned with the problem of approximating a solution x∗ of
the nonlinear operator equation

F(x) = 0, (17.1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. Throughout this study we assume
the existence of a unique solution x∗ of Eq. (17.1.1).

Many problems in computational Sciences can be written in a form like (17.1.1)
using Mathematical Model ling [6, 7, 9, 11, 13]. The solutions of Eq. (17.1.1) can
be found in closed form only in special cases. That is why most solution methods
for these equations are usually iterative.

Themost popularmethod for generating a sequence approximating x∗ is Newton’s
method which is defined for each n = 0, 1, 2, . . . by

F ′(xk)�xk = −F(xk), xk+1 = xk + �xk for each k = 0, 1, 2, . . . (17.1.2)

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_17
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assuming that the derivatives are invertible and x0 is an initial point. However, in
practice the computation of iterates {x∗} is very expensive or even impossible. That is
why, we can only solve discretized nonlinear equations defined on finite dimensional
spaces on a sequence of successively finer mesh levels such as

Fm(xm) = 0 for each m = 0, 1, 2, . . . , (17.1.3)

where Fm : Dm ⊂ Xm → Ym, Dm is a convex domain and Xm is a finite dimensional
subspace of X with values in a finite dimensional subspace Ym . The operator Fm

usually results from a Petrov-Galerkin discretization, such that Fm(xm) = rm F(xm),

where rm : Y → Ym is a linear restriction. Then, the corresponding discretized
Newton’s method for solving Eq. (17.1.3) is defined for each k = 0, 1, 2, . . . by

F ′
m(xk

m)�xk
m = −Fm(xk

m), xk+1
m = xk

m + �xk
m . (17.1.4)

We have that F ′
m = rm F ′ and in each Newton step, a system of linear equations must

be solved.
Themesh independence principle asserts that the behavior of (17.1.4) is essentially

the same as (17.1.2). Many authors have worked on the mesh independence principle
under various hypotheses [1–13].

In the present study we are motivated by the work of Weiser et al. in [13]. Their
paper presents an affine invariant theory on the asymptoticmesh independence princi-
ple of Newton’s method. It turns out that their approach is simpler and more intuitive
from the algorithmic point of view. Their theory is based on Lipschitz continuity con-
ditions on the operator F ′ and F ′

m . However, there are equations where the Lipschitz
continuity conditions do not hold (see e.g. the numerical example at the end of the
study). That is why, in the present study we extend the mesh independence principle
by considering the more general Hölder continuity conditions on the operators F ′
and F ′

m .

The chapter is organized as follows: In Sect. 17.2 we present the mesh indepen-
dence principle in the Hölder case, whereas in the concluding Sect. 17.3, we provide
a boundary value problem where the Lipschitz conditions given in [13] (or in earlier
studies such as [1, 9–12]) do not hold but our Hölder conditions hold.

17.2 The Mesh Independence Principle

We shall show the mesh independence principle in this section under Hölder conti-
nuity conditions on the operator F ′ and F ′

m . Let U (w, ξ), Ū (w, ξ) denote the open
and closed balls in X, respectively with center w ∈ X and radius ξ > 0.

Next, we present a generalized Newton-Mysovskhi-type semi-local convergence
result in affine-invariant form.
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Theorem 17.1 Let F : D ⊂ X → Y be a continuously Fréchet-differentiable
operator. Suppose: For each x ∈ D, F ′(x)−1 ∈ L(Y, X); the following holds for
collinear x, y, z ∈ D, v ∈ X and some L > 0, p ∈ [0, 1];

‖F ′(z)−1(F ′(y) − F ′(x))v‖ ≤ L‖y − x‖p‖v‖; (17.2.1)

For some x0 ∈ D with F(x0) 	= 0,

h0 = L‖�x0‖p < 1 + p (17.2.2)

and
Ū (x0, ρ) ⊆ D, (17.2.3)

where

ρ = ‖�x0‖
1 − h0

1+p

. (17.2.4)

Then, the sequence {xk} generated by Newton’s method (17.1.2) is well defined,
remains in U (x0, ρ) for each k = 0, 1, 2, . . . and converges to a unique solution
x∗ ∈ U (x0, ρ) of equation (17.1.1). Moreover, the following estimates hold

‖xk+1 − xk‖ ≤ L

1 + p
‖xk − xk−1‖1+p. (17.2.5)

Proof We shall show estimate (17.2.5) using Mathematical induction. The point x1

is well defined, since F ′(x0)−1 ∈ L(Y, X).Using (17.2.3), (17.2.4) and ‖x1 − x0‖ =
‖�x0‖ < ρ, we get that x1 ∈ Ū (x0, ρ) ⊆ D. We also have that x2 is well defined
by Newton’s method (17.1.2) for k = 1, since x1 ∈ D and F ′(x1)−1 ∈ L(Y, X). In
view of (17.1.2), we can write

F(x1) = F(x1) − F(x0) − F ′(x0)(x1 − x0)

=
∫ 1

0
[F ′(x0 + θ(x1 − x0)) − F ′(x0)](x1 − x0)dθ. (17.2.6)

It follows from (17.2.1) and (17.1.1) that

‖x2 − x1‖ = ‖F ′(x1)−1F(x1)‖
=

∫ 1

0
F ′(x1)−1[F ′(x0 + θ(x1 − x0)) − F ′(x0)](x1 − x0)dθ‖

≤ L
∫ 1

0
θ p‖x1 − x0‖1+pdθ = L

1 + p
‖x1 − x0‖1+p, (17.2.7)
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which shows (17.2.5) for k = 1. We also have by (17.2.2), (17.2.4) and (17.1.1) that

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖
≤ L

1 + p
‖x1 − x0‖1+p + ‖x1 − x0‖

= [ L

1 + p
‖x1 − x0‖p + 1]‖x1 − x0‖

= (
h0

1 + p
+ 1)‖�x0‖

= 1 − ( h0
1+p )2

1 − h0
1+p

‖�x0‖

<
‖�x0‖
1 − h0

1+p

= ρ,

which shows that x2 ∈ U (x0, ρ). Suppose that (17.2.5) holds for each integer i ≤ k
and xk+1 ∈ U (x0, ρ). Then, as in (17.2.6) we get that

F(xk+1) = F(xk+1) − F(xk) − F ′(xk)(xk+1 − xk)

=
∫ 1

0
[F ′(xk + θ(xk+1 − xk)) − F ′(xk)](xk+1 − xk)dθ

so

‖xk+2 − xk+1‖ = ‖F ′(xk+1)−1F(xk+1)‖
=

∫ 1

0
F ′(xk+1)−1[F ′(xk + θ(xk+1 − xk)) − F ′(xk)](xk+1 − xk)dθ‖

≤ L
∫ 1

0
θ p‖xk+1 − xk‖1+pdθ = L

1 + p
‖xk+1 − xk‖1+p,

which completes the induction for (17.2.5).We have shown ‖x2−x1‖ ≤ h0
1+p ‖�x0‖.

From, the estimate

‖x3 − x2‖ ≤ L

1 + p
‖x2 − x1‖1+p

≤ L

1 + p
(

L

1 + p
‖x1 − x0‖1+p)1+p

≤ L

1 + p
(

h0

1 + p
‖x1 − x0‖)1+p

= L

1 + p
‖x1 − x0‖p‖x1 − x0‖( h0

1 + p
)1+p

< (
h0

1 + p
)2+p‖x1 − x0‖ ≤ (

h0

1 + p
)2‖�x0‖,
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(since ( h0
1+p )p < 1 by (17.2.2)), similarly, we get that

‖xk+2 − xk+1‖ ≤ L

1 + p
‖xk+1 − xk‖1+p

...

≤ (
h0

1 + p
)k+1+p‖�x0‖

≤ (
h0

1 + p
)k+1‖�x0‖. (17.2.8)

Then, we get that

‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖ + ‖xk+1 − xk‖ + · · · + ‖x1 − x0‖
≤ ((

h0

1 + p
)k+1 + (

h0

1 + p
)k + · · · + 1)‖�x0‖

= 1 − ( h0
1+p )k+2

1 − h0
1+p

‖�x0‖

<
‖�x0‖
1 − h0

1+p

= ρ, (17.2.9)

which shows xk+2 ∈ U (x0, ρ).

It follows from (17.1.1) that {xk} is a complete sequence in a Banach space X and
as such it converges to some x∗ ∈ Ū (x0, ρ) (since Ū (x0, ρ) is a closed set). Then,
from the estimate

‖xk+2 − xk+1‖ ≤ ‖F ′(xk+1)−1F(xk+1)‖
≤ (

h0

1 + p
)k+1‖�x0‖ (17.2.10)

and the invertability of F ′(xk+1) we conclude by letting k → ∞ in (17.1.1) that
F(x∗) = 0. Finally, to show the uniqueness part, let Q = ∫ 1

0 F ′(y∗ + θ(x∗ − y∗))dθ

with F(y∗) = 0 and y∗ ∈ Ū (x0, ρ) we have that

‖y∗ + θ(x∗ − y∗) − x∗‖ ≤ (1 − θ)‖y∗ − x0‖ + θ‖x∗ − x0‖
≤ (1 − θ)ρ + θρ = ρ.

Hence, y∗ + θ(x∗ − y∗) ∈ D and Q is invertible. Then, from the identity 0 =
F(x∗) − F(y∗) = Q(x∗ − y∗), we deduce that x∗ = y∗. �

Remark 17.2 If p = 1, then Theorem 17.1 merges to the Newton-Mysorskikhi
Theorem [9] (see also [6, 7]).
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From now on we assume that Theorem 17.1 holds for (17.1.1)–(17.1.4). Notice
that in the case of (17.1.4) the analog of (17.2.5) is given by

‖xk+1
m − xk

m‖ ≤ Lm

1 + p
‖xk

m − xk−1
m ‖1+p, (17.2.11)

where Lm > 0 stand for the corresponding affine invariant Hölder parameter. Then,
there exist unique discrete solutions x∗

m of Eq. (17.1.3) for each m. The discretization
schemes must be chosen such that

lim
m→∞ x∗

m = x∗. (17.2.12)

Earlier papers such as [1–7, 10–12] have used the non-affine invariant conditions

‖F ′
m(xm)−1‖ ≤ βm, ‖F ′

m(xm + vm) − F ′
m(xm)‖ ≤ γm‖vm‖ (17.2.13)

βm ≤ β, γm ≤ γ (17.2.14)

and have restricted their analyses to smoother subset W ∗ ⊆ X such that

x∗, xk,�xk, xk − x∗ ∈ W ∗ (17.2.15)

for each k = 0, 1, 2, . . . . Notice however that due to the non-invariance conditions
(17.2.13) are expressed in terms of operator norms which depend on the relation
of the norms in the domain and the image of the operators Fm and F. As already
noted in [13], this requirement is not convenient for PDEs, since we may have
limm→∞ βm = ∞, contradicting assumption (17.2.14). Moreover, assumption
(17.2.15) is difficult to verify in many interesting cases. That is why in [13] a new
technique was developed using assumption

Lm ≤ βmγm (17.2.16)

instead of (17.2.13) and (17.2.14). Then, it was shown that Lm is bounded in the
limit as long as L is bounded–even if βm or γm are unbounded. Moreover, as in [13]
introduce linear projections

�m : X → Xm for each m = 0, 1, 2, . . .

and assume the stability condition

qm = sup
x∈W ∗,x 	=0

‖�m x‖
‖x‖ ≤ q̄ < ∞ (17.2.17)
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Moreover, define

δm = sup
x∈W ∗,x 	=0

‖x − �m x‖
‖x‖ for each m = 0, 1, 2, . . . . (17.2.18)

Notice that (17.2.18) is implied by the assumption

lim
m→∞ δm = 0. (17.2.19)

We also have that
qm ≥ 1 (17.2.20)

qm ≤ 1 + δm (17.2.21)

and
lim

m→∞ qm = 1. (17.2.22)

We need an auxiliary perturbation Lemma.

Lemma 17.3 Suppose: Newton sequences {xk}, {yk}given for each k=0, 1, 2, . . . by

xk+1 = xk + �xk, yk+1 = yk + �yk, (17.2.23)

where x0, y0 are initial points and �xk,�yk are the corresponding corrections are
well-defined; Hölder condition (17.2.1) is satisfied. Then, the following contraction
estimate holds:

‖xk+1 − yk+1‖ ≤ L(
1

1 + p
‖xk − yk‖ + ‖�yk‖)‖xk − yk‖p. (17.2.24)

Proof It is convenient to drop index k. Then, we can write

x + �x − y − �y = x − F ′(x)−1F(x) − y + F ′(y)−1F(y)

= x − F ′(x)−1F(x) + F ′(x)−1F(y) − F ′(x)−1F(y) − y + F ′(y)−1F(y)

= x − y − F ′(x)−1(F(x) − F(y)) + F ′(x)−1(F ′(y) − F ′(x))F ′(y)−1F(y)

= F ′(x)−1(F ′(x)(x − y) −
∫ 1

0
F ′(y + t (x − y))(x − y)dt)

+ F ′(x)−1(F ′(y) − F ′(x))�y.

Using (17.2.1), we get in turn that

‖xk+1 − yk+1‖ ≤
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∫ 1

0
‖F ′(xk)−1(F ′(xk) − F ′(yk + t (xk − yk)))(xk − yk)‖dt

+‖F ′(xk)−1(F ′(yk) − F ′(xk))�yk

≤ L

1 + p
‖xk − yk‖1+p + L‖xk − yk‖p‖�yk‖,

which shows (17.2.24). �

We also need an auxiliary result about zero of real functions.

Lemma 17.4 Let μ ≥ 1, p ∈ (0, 1] and η > 0. Suppose that

μη p < (
p

1 + p
)p. (17.2.25)

Then, the scalar function

ψ(t) = μ

1 + p
t1+p − t + η (17.2.26)

has two zeros μ−,μ+ such that

η < μ− < μ+ < (
1

μ
)

1
p . (17.2.27)

Proof We have that ψ′(t) = (1+ p)(μt p − 1). Set t∗ = ( 1
μ
)

1
p . Then, it follows from

(17.2.25) that ψ(t∗) < 0. Notice also that ψ(0) = η > 0 and ψ(η) = μ
1+p η1+p > 0.

�

Using the preceding notation and the two auxiliary results we can show a result
connecting the behaviour of the discrete versus the continuous Newton sequences.

Theorem 17.5 Suppose that for x0 = x0
m ∈ Xm the assumptions of Theorem 17.1

hold. Define for each discrete operator Fm and all arguments xm ∈ Dm := D ∩ Xm

F ′
m(xm)�xm = −Fm(xm), F(xm)�x = −F(xm). (17.2.28)

Moreover, suppose that the discretization is such that

‖�xm − �x‖ ≤ δm ≤ min{1, 1 + p − h0}
(1 + p)L

(17.2.29)

for each xm ∈ Dm . Furthermore, suppose Ū (x0, ρm) ∩ Xm ⊂ Dm for some μ > 0

ρm := ‖�x0‖
1 − h0

1+p

+
1+p

p μ
1
p δm

min{1, 1 + p − h0} . (17.2.30)
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Then, the sequence {xk
m} generated by the discrete Newton iterates remains in

U (x0, ρm) ∩ Xm . Moreover, the following estimates hold

‖xk
m − xk‖ ≤

1+p
p μ

1
p δm

min{1, 1 + p − h0} ≤ 1

L
(17.2.31)

for each k = 0, 1, 2, . . . and

lim
k→∞ sup ‖xk

m − xk‖ ≤ (1 + p)

p
δm . (17.2.32)

Proof As in [13] the discrete sequence starting at x0
m = x0,0 is denoted by {xk,k},

whereas the continuous Newton sequence starting at x0 = x0,0 is denoted by {xk,0}.
In between, we define more continuous Newton sequences, denoted by {xi,k} for
each k = i, i + 1, . . . , which start at the discrete Newton iterates xi

m = xi,i and also
run towards x∗. Using induction, we shall show

‖xk−1
m − x0‖ < ρm, (17.2.33)

where ρm is defined by (17.2.30). Clearly, (17.2.33) holds for k = 1. Let us introduce
two majorants

L‖�xk‖p ≤ hk, ‖xk
m − xk‖ ≤ εk . (17.2.34)

In view of Theorem 17.1 and (17.2.5), we have that

hk+1 = λh1+p
k , λ = (

1

1 + p
)p. (17.2.35)

In order for us to derive a majorant recursion for εk, we first need the estimate

‖xk+1,k+1 − xk+1,0‖ ≤ ‖xk+1,k+1 − xk+1,k‖ + ‖xk+1,k − xk+1,0‖. (17.2.36)

In view of the first term in (17.2.36) and (17.2.29) we obtain that

‖xk+1,k+1 − xk+1,k‖ = ‖xk
m + �xk

m − (xk,k + �xk,k)‖
= ‖�xk

m − �xk,k‖ ≤ δm . (17.2.37)

Using Lemma 17.3, we can obtain for the second term in (17.2.36) that

‖xk+1,k − xk+1,0‖ ≤ L(
1

1 + p
‖xk,k

m − xk,0‖ + ‖�xk,0)‖‖xk,k
m − xk,0‖. (17.2.38)
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Summing up, we get that

‖xk+1,k − xk+1,0‖ ≤ δm + L

1 + p
ε
1+p
k + hkε

p
k := εk+1. (17.2.39)

Hence, we have that

hk+1 = λhk, h0 = L‖�x0‖p,

εk+1 = δm + 1

1 + p
Lε

1+p
k + hkε

p, ε0 = 0. (17.2.40)

Then, by combining the majorant equations in (17.1), we get that for β ≥ 1

βLεk+1 + hk+1 = βLδm + βL2ε
1+p
k

1 + p
+ βLhkε

p
k + λh p

k

= βLδm + μ

1 + p
(βLεk + hk)

1+p

+[ βL2

1 + p
ε
1+p
k + βLε

p
k + λh p

k

− μ

1 + p
(βLεk + hk)

1+p] (17.2.41)

Clearly, the quantity inside the preceding bracket is negative for sufficiently large
μ > 0. Hence, the sequence ak defined by

ak+1 = βLδm + μ

1 + p
a1+p

k , a0 = h0 (17.2.42)

is a majorant for βLεk + hk . Suppose that

μ(βLδm)p < (
p

1 + p
)p. (17.2.43)

Then, according to Lemma 17.4 (see (17.2.25)), (17.2.42) has two equilibrium points
a− and a+ such that a− < a+ < ( 1

μ
)

1
p . Notice that (17.2.43) certainly holds for

1 ≤ β ≤ p

(1 + p)Lμ
1
p δm

. (17.2.44)

The sequence {ak} converges monotonically to a− for h0 < a+. We consider two
cases h0 ≤ 1 and h0 > 1. If h0 ≤ 1, set

β = p

(1 + p)Lμ
1
p δm
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such that h0 ≤ a− ≤ 1. Due to monotonicity the sequence {ak} is bounded above
from a− ≤ 1. Then, we have the upper bound

εk ≤ a−
βL

≤ 1 + p

p
δmμ

1
p ≤ 1

L
.

Hence, both (17.2.31) and (17.2.32) hold. If 1 < h0 < 1 + p, choose σ > 0
sufficiently small and

β = h0(1 + p − h0)

(1 + p + σ)Lδm

so that β ≥ 1 and h0 < a+ hold. Due to monotonicity, the sequence {ak} is bounded
from above by a0 = h0. Then, we have

εk ≤ h0

βL
= (1 + p + σ)δm

1 + p − h0

for sufficiently small σ > 0, which implies (17.2.31). Then, (17.2.32) follows from
ak → a−. Moreover, we get that

‖xk+1
m − x0‖ ≤ ‖xk+1 − x0‖ + εk+1

≤ ‖�x0‖
1 − h0

1+p

+
1+p

p μ
1
p δm

min{1, 1 + p − h0} = ρm .

�

Remark 17.6 If p = μ = 1. Theorem 17.5 merges to Theorem 2.2 in [13].

Corollary 17.7 Suppose that the hypotheses of Theorem 17.5 hold. Then, there exists
an accumulation point

x̂m ∈ Ū (x∗,
1 + p

p
μ

1
p δm) ∩ Xm ⊂ U (x∗,

1

L
) ∩ Xm .

This point need not be a solution of the discrete equation Fm(xm) = 0.

Lemma 17.8 Suppose that for the hypotheses of Theorem 17.1 hold for the operator
F : D ⊆ X → Y. Define um ∈ Xm, u ∈ X for each collinear xm, ym, zm ∈ Xm by

F ′(xm)u = (F ′(zm) − F ′(ym))vm

F ′
m(xm)um = (F ′

m(zm) − F ′
m(ym))vm

for arbitrary vm ∈ Xm . Suppose that the discretization method satisfies

‖u − um‖ ≤ σm‖zm − ym‖p‖vm‖.
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Then, there exist constants
Lm ≤ L + σm (17.2.45)

such that the affine invariant Hölder condition

‖um‖ ≤ Lm‖xm − ym‖‖vm‖

holds. We have in turn that

‖um‖ ≤ ‖u‖ + ‖um − u‖ ≤ L‖zm − ym‖p‖vm‖
+σm‖zm − ym‖p‖vm‖ = (L + σm)‖zm − ym‖p‖vm‖.

Corollary 17.9 Suppose that the hypotheses of Theorem 17.5 and Lemma 17.8 hold
for the discrete Newton sequence {xk

m}. Then, the sequence {xk
m} converges to a unique

discrete solution point x∗
m ∈ Ū (x∗, 1+p

p μ
1
p δm) ∩ Xm ⊂ U (x∗, 1

L ) ∩ Xm .

Proof Simply apply Theorem 17.1 to Fm with starting point x0
m = x0 and (17.2.45).

�

Remark 17.10 (a) If p = μ = 1 the last three results merge to the corresponding
ones in [13].

(b) If limm→∞ δm = limm→∞ σm = 0, then the convergence speed of the discrete
Newton method (17.1.4) is asymptotically the same with the continuous Newton
method (17.1.2).Moreover, if initial points x0 and x0

m are chosen, then the number
of iterations to achieve a desired error tolerance is nearly the same.

17.3 Numerical Examples

We present a numerical example where the earlier results in [1, 9–13] cannot apply
to solve a boundary value problem but our results can apply.

Example 17.11 Let X = Y = R
m−1 for a natural integer m ≥ 2. Let X and Y be

equipped with the max-norm ‖x‖ = max1≤i≤m−1 ‖xi‖. The corresponding matrix
norm is

‖R‖ = max
1≤i≤m−1

j=m−1∑

j=1

‖ri, j‖

for R = (ri, j )1≤i, j≤m−1.Weconsider the following twopoint boundary value problem
on the interval [0, 1]

v′′ + v1+p = 0 p ∈ (0, 1]
v(0) = v(1) = 0. (17.3.1)
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To discretize the above equation, we divide the interval [0, 1] into m equal parts
with length of each part h = 1

m and coordinate at each point : xi = ih with i =
0, 1, 2, . . . m. A second order finite difference discretization of (17.3.1) given by

v′′
i = vi−1 − 2vi + vi+1

h2
, i = 1, 2, . . . , m − 1

results in the following set of nonlinear equations

F(v) =
{

vi−1 + h2v
1+p
i − 2vi + vi+1 = 0

foreach i = 1, 2, . . . m − 1, v0 = vm = 0,
(17.3.2)

where v = [v1, v2, . . . , vm−1]T . The Fréchet-derivative of operator F is given by

A =

⎡

⎢⎢
⎢
⎣

(1 + p)h2 v
p
1 − 2 1 0 · · · · · · 0

1 (1 + p)h2 v
p
2 − 2 1 0 · · · 0

...
...

0 0 · · · · · · 1 (1 + p)h2 v
p
m−1 − 2

⎤

⎥⎥
⎥
⎦

Then, if we choose say p = 1
2 , the results in [1, 9–13] cannot apply, but ours can

apply, since (17.2.1) is satisfied for p = 1
2 and L ≥ 3

2h2‖F ′(x)−1‖.
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Chapter 18
Ball Convergence of a Sixth Order
Iterative Method

We present a local convergence analysis of a sixth order iterative method for approx-
imate a locally unique solution of an equation defined on the real line. Earlier studies
such as [26] have shown convergence of these methods under hypotheses up to the
fifth derivative of the function although only the first derivative appears in themethod.
In this study we expand the applicability of these methods using only hypotheses
up to the first derivative of the function. Numerical examples are also presented in
this study. It follows [5].

18.1 Introduction

Newton-like methods are famous for approximating a locally unique solution x∗ of
equation

F(x) = 0, (18.1.1)

where F : D ⊆ R → R is a differentiable nonlinear function and D is a convex
subset of R. These methods are studied based on: semi-local and local convergence
[2, 3, 21, 22, 27]. Themethods such asEuler’s,Halley’s, superHalley’s, Chebyshev’s
[2, 3, 7, 8, 10, 17, 23, 27] require the evaluation of the second derivative F ′′ at each
step. To avoid this computation, many authors have used higher order multi-point
methods [1, 2, 4, 12, 13, 15, 19, 22, 26, 27].

Newton’s method is undoubtedly the most popular method for approximating
a locally unique solution x∗ provided that the initial point is close enough to the
solution. In order to obtain a higher order of convergence Newton-like methods
have been studied such as Potra-Ptak, Chebyshev, Cauchy Halley and Ostrowski
method. The number of function evaluations per step increases with the order of
convergence. In the scalar case the efficiency index [18, 22, 27] E I = p

1
m provides
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DOI 10.1007/978-3-319-26721-0_18
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a measure of balance where p is the order of the method and m is the number of
function evaluations. According to the Kung-Traub conjecture the convergence of
any multi-point method without memory cannot exceed the upper bound 2m−1 [22,
27] (called the optimal order). Hence the optimal order for a method with three
function evaluations per step is 4. The corresponding efficiency index is E I = 4

1
3 =

1.58740... which is better than Newtons method which is E I = 2
1
2 = 1.414....

Therefore, the study of new optimal methods of order four is important.
We study the local convergence analysis of three step King-like method with a

parameter defined for each n = 0, 1, 2, . . . by

yn = xn − F(xn)

F ′(xn)

zn = yn − F(yn)F ′(xn)
−1F(xn)

F(xn) − 2F(yn)

xn+1 = zn − (F(xn) + αF(yn))F ′(xn)
−1F(zn)

F(xn) + (α − 2)F(yn)
, (18.1.2)

where x0 ∈ D is an initial point and α ∈ R a parameter. Sharma et al. [26] showed the
sixth order of convergence of method (18.1.2) using Taylor expansions and hypothe-
ses reaching up to the fourth derivative of function F although only the first deriva-
tive appears in method (18.1.2). These hypotheses limit the applicability of method
(18.1.2). As a motivational example, let us define function F on D = [− 1

2 ,
5
2 ] by

F(x) =
{

x3 ln x2 + x5 − x4, x �= 0
0, x = 0

Choose x∗ = 1. We have that

F ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

F ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x

F ′′′(x) = 6 ln x2 + 60x2 − 24x + 22.

Then, obviously function F does not have bounded third derivative in X, since
F ′′′(x) is unbounded at x = 0 (i.e., unbounded in D). The results in [26] require
that all derivatives up to the fourth are bounded. Therefore, the results in [26] can-
not be used to show the convergence of method (18.1.2). However, our results can
apply (see Example 3.3). Notice that, in-particular there is a plethora of iterative
methods for approximating solutions of nonlinear equations defined on R [2, 2,
4, 6, 8, 12, 13, 15, 19, 22, 26, 27]. These results show that if the initial point
x0 is sufficiently close to the solution x∗, then the sequence {xn} converges to
x∗. But how close to the solution x∗ the initial guess x0 should be? These local
results give no information on the radius of the convergence ball for the corre-
sponding method. We address this question for method (18.1.2) in Sect. 18.2. The
same technique can be used to other methods. In the present study we extend the

http://dx.doi.org/10.1007/978-3-319-26721-0_3
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applicability of these methods by using hypotheses up to the first derivative of func-
tion F and contractions. Moreover we avoid Taylor expansions and use instead
Lipschitz parameters. Indeed, Taylor expansions and higher order derivatives are
needed to obtain the equation of the local error and the order of convergence of the
method. Using our technique we find instead the computational order of convergence
(COC) or the approximate computational order of convergence that do not require
the usage of Taylor expansions or higher order derivatives (see Remark 2.2 part 4).
Moreover, using the Lipschitz constants we determine the radius of convergence of
method (18.1.2). Notice also that the local error in [26] cannot be used to determine
the radius of convergence of method (18.1.2). We do not address the global conver-
gence of the three-step King-like method (18.1.2) in this study. Notice however that
the global convergence of King’s method (drop the third step of method (18.1.2) to
obtain King’s method) has not been studied either. This is mainly due to the fact
that these methods are considered as special case of Newton-like methods for which
there are many results (see e.g. [21]). Therefore, one can simply specialize global
convergence results for Newton-likemethods to obtain the specific results formethod
(18.1.2) or King’s method.

The chapter is organized as follows. In Sect. 18.2 we present the local convergence
analysis. We also provide a radius of convergence, computable error bounds and
uniqueness result not given in the earlier studies using Taylor expansions. Special
cases and numerical examples are presented in the concluding Sect. 18.3.

18.2 Local Convergence Analysis

We present the local convergence analysis of method (18.1.2) in this section. Let
L0 > 0, L > 0, M ≥ 1 be given parameters. It is convenient for the local conver-
gence analysis of method (18.1.2) that follows to introduce some scalar functions
and parameters. Define functions g1, p, h p, q, hq on the interval [0, 1

L0
) by

g1(t) = Lt

2(1 − L0t)
,

p(t) = (
L0t

2
+ 2Mg1(t))t,

h p(t) = p(t) − 1,

q(t) = L0t

2
+ |α − 2|Mg1(t),

hq(t) = q(t) − 1

and parameter r1 by
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r1 = 2

2L0 + L
.

We have that h p(0) = hq(0) = −1 < 0 and hq(t) → +∞, h p(t) → +∞ as

t → 1
L0

−
. It follows from the intermediate value theorem that functions h p, hq have

zeros in the interval (0, 1
L0

). Denote by rp, rq the smallest such zeros. Moreover,
define functions g2 and h2 on the interval [0, rp) by

g2(t) = [1 + M2

(1 − L0t)(1 − p(t))
]g1(t)

and
h2(t) = g2(t) − 1.

We have that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−
p . Denote by r2 the

smallest zero of function h2 in the interval (0, rp). Furthermore, define functions g3
and h3 on the interval [0,min{rp, rq}) by

g3(t) = (1 + M

1 − L0t
+ 2M2g1(t)

(1 − L0t)(1 − q(t))
)g2(t)

and
h3(t) = g3(t) − 1.

We have that h3(0) = −1 < 0 since g1(0) = g2(0) = 0 and h3(t) → +∞
as t → min{rp, rq}. Denote by r3 the smallest zero of function h3 in the interval
(0,min{rp, rq}). Set

r = min{r1, r2, r3}. (18.2.1)

Then, we have that

0 < r ≤ r1 <
1

L0
(18.2.2)

and for each t ∈ [0, r)

0 ≤ g1(t) < 1 (18.2.3)

0 ≤ p(t) < 1. (18.2.4)

0 ≤ g2(t) < 1 (18.2.5)

0 ≤ q(t) < 1. (18.2.6)
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and
0 ≤ g3(t) < 1. (18.2.7)

Denote by U (v, ρ), Ū (v, ρ) stand respectively for the open and closed balls in R

with center v ∈ R and of radius ρ > 0. Next,we present the local convergence
analysis of method (18.1.2) using the preceding notation.

Theorem 18.1 Let F : D ⊂ R → R be a differentiable function. Suppose there
exist x∗ ∈ D, L0 > 0, L > 0, M ≥ 1 such that F(x∗) = 0, F ′(x∗) �= 0,

|F ′(x∗)−1(F ′(x) − F ′(x∗))| ≤ L0|x − x∗|, (18.2.8)

|F ′(x∗)−1(F ′(x) − F ′(y))| ≤ L|x − y|, (18.2.9)

|F ′(x∗)−1F ′(x)| ≤ M, (18.2.10)

and
Ū (x∗, r) ⊆ D; (18.2.11)

where the radius of convergence r is defined by (18.2.1). Then, the sequence {xn}
generated by method (18.1.2) for x0 ∈ U (x∗, r) − {x∗} is well defined, remains
in U (x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the following
estimates hold

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r, (18.2.12)

|zn − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|, (18.2.13)

and
|xn+1 − x∗| ≤ g3(|xn − x∗|)|xn − x∗| < |xn − x∗|, (18.2.14)

where the “g” functions are defined above Theorem 18.1. Furthermore, for T ∈
[r, 2

L0
) the limit point x∗ is the only solution of equation F(x) = 0 in Ū (x∗, T ) ∩ D.

Proof We shall show estimates (18.2.12)– (18.2.14) using mathematical induction.
By hypothesis x0 ∈ U (x∗, r) − {x∗}, (18.2.1) and (18.2.8), we have that

|F ′(x∗)−1(F ′(x0) − F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (18.2.15)

It follows from (18.2.15) and Banach Lemma on invertible functions [2, 3, 22, 23,
27] that F ′(x0) �= 0 and

|F ′(x∗)−1F ′(x0)| ≤ 1

1 − L0|x0 − x∗| . (18.2.16)
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Hence, y0 is well defined by the first sub-step of method (18.1.2 ) for n = 0. Using
(18.2.1), (18.2.3), (18.2.9) and (18.2.16) we get that

|y0 − x∗| = |x0 − x∗ − F ′(x0)
−1F(x0)|

≤ |F ′(x0)
−1F ′(x∗)||

∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))

−F ′(x0))(x0 − x∗)dθ |
≤ L|x0 − x∗|2

2(1 − L0|x0 − x∗|)
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (18.2.17)

which shows (18.2.12) for n = 0 and y0 ∈ U (x∗, r). We can write that

F(x0) = F(x0) − F(x∗) =
∫ 1

0
F ′(x∗ + θ(x0 − x∗)(x0 − x∗)dθ. (18.2.18)

Notice that |x∗ + θ(x0 − x∗)− x∗| = θ |x0 − x∗| < r. Hence, we get that x∗ + θ(x0 −
x∗) ∈ U (x∗, r). Then, by (18.2.10) and (18.2.18), we obtain that

|F ′(x∗)−1F(x0)| ≤ M |x0 − x∗|. (18.2.19)

We also have by (18.2.17) and (18.2.19) (for y0 = x0) that

|F ′(x∗)−1F(y0) ≤ M |y0 − x∗| ≤ Mg1(|x0 − x∗|)|x0 − x∗|, (18.2.20)

since y0 ∈ U (x∗, r). Next, we shall show F(x0) − 2F(y0) �= 0. Using (18.2.1),
(18.2.4), (18.2.8), (18.2.20) and the hypothesis x0 �= x∗, we have in turn that

|(F ′(x∗)(x0 − x∗))−1[F(x0) − F ′(x∗) − F ′(x∗)(x0 − x∗) − 2F(y0)|
≤ |x0 − x∗|−1[|F ′(x∗)−1(F(x0) − F ′(x∗) − F ′(x∗)(x0 − x∗))|

+2|F ′(x∗)−1F(y0)|
≤ |x0 − x∗|−1[ L0

2
|x0 − x∗|2 + 2Mg1(|x0 − x∗|)|x0 − x∗|

= p(|x0 − x∗|) < p(r) < 1. (18.2.21)

It follows from (18.2.21) that

|(F(x0) − 2F(y0))
−1F ′(x∗)| ≤ 1

|x0 − x∗|(1 − p(|x0 − x∗|)) . (18.2.22)
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Hence, z0 and x1 are is well defined for n = 0. Then, using (18.2.1), (18.2.5),
(18.2.16), (18.2.17), (18.2.20) and (18.2.22) we get in turn that

|z0 − x∗| ≤ |y0 − x∗| + M2|y0 − x∗||x0 − x∗|
(1 − L0|x0 − x∗|)(1 − p(|x0 − x∗|))|x0 − x∗|

≤ [1 + M2

(1 − L0|x0 − x∗|)(1 − p(|x0 − x∗|)) ]g1(|x0 − x∗|)|x0 − x∗|
≤ g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (18.2.23)

which show (18.2.13) for n = 0 and z0 ∈ U (x∗, r). Next, we show that F(x0) −
(α − 2)F(y0) �= 0. Using (18.2.1), (18.2.6), (18.2.8), (18.2.17) and x0 �= x∗, we
obtain in turn that

|(F ′(x∗)(x0 − x∗))−1[F(x0) − F ′(x∗) − F ′(x∗)(x0 − x∗) − (α − 2)F(y0)|
≤ |x0 − x∗|−1[|F ′(x∗)−1(F(x0) − F ′(x∗) − F ′(x∗)(x0 − x∗))|

+ |α − 2||F ′(x∗)−1F(y0)|
≤ |x0 − x∗|−1[ L0

2
|x0 − x∗| + |α − 2|M |y0 − x∗|]

≤ L0

2
|x0 − x∗| + |α − 2|Mg1(|x0 − x∗|)
= p(|x0 − x∗|) < p(r) < 1. (18.2.24)

It follows from (18.2.24) that

|(F ′(x∗)(x0 − x∗))−1F ′(x∗)| ≤ 1

|x0 − x∗|(1 − q(|x0 − x∗|)) . (18.2.25)

Hence, x1 is well defined by the third sub-step of method (18.1.2) for n = 0. Then
using (18.2.1), (18.2.7),(18.2.16), (18.2.19) (for z0 = x0), (18.2.23), (18.2.24) and
(18.2.25), we obtain in turn that

x1 − x∗ = z0 − x∗ − F ′(x0)
−1F(z0)

+[1 − F(x0) + αF(y0)

F(x0) + (α − 2)F(y0)
]F ′(x0)

−1F(z0)

so,

|x1 − x∗| = |z0 − x∗| + |F ′(x0)
−1F ′(x∗)||F ′(x∗)−1F(z0)|

+ 2|(F ′(x∗)(x0 − x∗))−1F ′(x∗)||F ′(x∗)−1F(y0)||F ′(x0)
−1F(x∗||F ′(x∗)−1F(z0)|

≤ |z0 − x∗| + M |z0 − x∗|
1 − L0|x0 − x∗|
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+ 2M2|y0 − x∗||z0 − x∗|
(1 − L0|x0 − x∗|)|x0 − x∗|(1 − q(|x0 − x∗|))

≤ [1 + M

1 − L0|x0 − x∗| + 2M2g1(|x0 − x∗|)
(1 − L0|x0 − x∗|)(1 − q(|x0 − x∗|)) ]|z0 − x∗|

= g3(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (18.2.26)

which shows (18.2.14) for n = 0 and x1 ∈ U (x∗, r). By simply replacing
x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates we arrive at estimates
(18.2.12) – (18.2.14). Then, it follows from the estimate |xk+1−x∗| < |xk −x∗| < r,
we deduce that xk+1 ∈ U (x∗, r) and limk→∞ xk = x∗. To show the uniqueness part,
let Q = ∫ 1

0 F ′(y∗ + θ(x∗ − y∗)dθ for some y∗ ∈ Ū (x∗, T ) with F(y∗) = 0. Using
(18.2.8), we get that

|F ′(x∗)−1(Q − F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗) − x∗|dθ (18.2.27)

≤
∫ 1

0
L0(1 − θ)|x∗ − y∗|dθ ≤ L0

2
T < 1.

It follows from (18.2.27) and the Banach Lemma on invertible functions that Q is
invertible. Finally, from the identity 0 = F(x∗) − F(y∗) = Q(x∗ − y∗), we deduce
that x∗ = y∗. 
�
Remark 18.2 1. In view of (18.2.8) and the estimate

|F ′(x∗)−1F ′(x)| = |F ′(x∗)−1(F ′(x) − F ′(x∗)) + I | (18.2.28)

≤ 1 + |F ′(x∗)−1(F ′(x) − F ′(x∗))| ≤ 1 + L0|x − x∗|

condition (18.2.10) can be dropped and M can be replaced by

M(t) = 1 + L0t

or
M(t) = M = 2,

since t ∈ [0, 1
L0

).

2. The results obtained here can be used for operators F satisfying autonomous
differential equations [2] of the form

F ′(x) = P(F(x))

where P is a continuous operator. Then, since F ′(x∗) = P(F(x∗)) = P(0),
we can apply the results without actually knowing x∗. For example, let F(x) =
ex − 1. Then, we can choose: P(x) = x + 1.
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3. In [2, 3] we showed that r1 = 2
2L0+L is the convergence radius of Newton’s

method:

xn+1 = xn − F ′(xn)
−1F(xn) for each n = 0, 1, 2, . . . (18.2.29)

under the conditions (18.2.8) and (18.2.9). It follows from the definition of r
that the convergence radius r of the method (18.1.2) cannot be larger than the
convergence radius r1 of the second orderNewton’smethod (18.2.29).As already
noted in [2, 3] r1 is at least as large as the convergence radius given byRheinboldt
[25]

rR = 2

3L
. (18.2.30)

The same value for rR was given by Traub [27]. In particular, for L0 < L we
have that

rR < r1

and
rR

r1
→ 1

3
as

L0

L
→ 0.

That is the radius of convergence r1 is at most three times larger than Rhein-
boldt’s.

4. It is worth noticing that method (18.1.2) is not changing when we use the condi-
tions of Theorem 18.1 instead of the stronger conditions used in [26]. Moreover,
we can compute the computational order of convergence (COC) defined by

ξ = ln

( |xn+1 − x∗|
|xn − x∗|

)
/ ln

( |xn − x∗|
|xn−1 − x∗|

)

or the approximate computational order of convergence

ξ1 = ln

( |xn+1 − xn|
|xn − xn−1|

)
/ ln

( |xn − xn−1|
|xn−1 − xn−2|

)
.

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fré chet
derivative of operator F.
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Table 18.1 Comparison table for radii

Method (18.1.2) Method in [4] Method in [6] r1 rR

0.2289 0.1981 0.2016 0.666666667 0.666666667

Table 18.2 Comparison table for radii

Method (18.1.2) Method in [4] Method in [6] r1 rR

0.0360 0.0354 0.0355 0.3249 0.2453

18.3 Numerical Examples

We present numerical examples in this section (Table18.1, 18.2).

Example 18.3 Let D = (−∞,+∞). Define function f of D by

f (x) = sin(x). (18.3.1)

Then we have for x∗ = 0 that L0 = L = M = 1. The parameters are

r1 = 0.6667, rp = 0.5858, rq = 0.7192, r2 = 0.3776, r3 = 0.2289 = r.

Example 18.4 Let D = [−1, 1]. Define function f of D by

f (x) = ex − 1. (18.3.2)

Using (18.3.2) and x∗ = 0,we get that L0 = e−1 < L = e, M = 2.The parameters
are

r1 = 0.3249, rp = 0.2916, rq = 0.2843, r2 = 0.09876, r3 = 0.0360 = r.

Example 18.5 Returning back to themotivational example at the introduction of this
study, we have L0 = L = 96.662907, M = 2. The parameters are

r1 = 0.0069, rp = 0.0101, rq = 0.0061, r2 = 0.0025, r3 = 0.0009 = r.
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Chapter 19
Broyden’s Method with Regularly
Continuous Divided Differences

In this chapter we provide a semilocal convergence analysis for Broyden’s method
in a Banach/Hilbert space setting using regularly continuous divided differences.
By using: more precise majorizing sequences; the same or weaker hypotheses and
the same computational cost as in [7] we provide a new convergence analysis for
Broyden’s method with the following advantages: larger convergence domain; finer
error bounds on the distances involved, and at least as precise information on the
location of the solution. It follows [5].

19.1 Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x∗ of equation

F(x) = 0, (19.1.1)

where F is a continuously Fréchet-differentiable operator defined on a convex subset
D of a Banach/Hilbert space X with values in a Hilbert space H .

A large number of problems in applied mathematics and also in engineering are
solved by finding the solutions of certain equations [1–4, 6–8]. The solution of these
equations can rarely be found inclosed form. That is why most solution methods for
these equations are iterative.

Methods are usually studied based on: semi–local and local convergence. The
semi–local convergence matter is, based on the information around an initial point,
to give conditions ensuring the convergence of the iterative procedure; while the local
one is, based on the information around a solution, to find a estimates of the radii of
convergence balls.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_19

309



310 19 Broyden’s Method with Regularly Continuous Divided Differences

Newton’s method
x+ := x − F ′(x)−1F(x), (19.1.2)

is undoubtedly the most popular iterative method for generating a sequence ap-
proximating x∗. The computation of the inverse F ′(x)−1 at every step may be very
expensive or impossible. That is why Broyden in [6] (for X = H = R

m) replace the
inverse Jacobian F ′(x)−1 by an m × m matrix A satisfying the equation

A(F(x) − F(x−)) = x − x−, (19.1.3)

where x− denotes the iteration preceding the current one x . This way the quasi-
Newton methods were introduced [6].

We study the semilocal convergence of Broyden’s method defined by

x+ = x − AF(x), A+ = A − AF(x+)〈A∗ AF(x), ·〉
〈A∗ AF(x), F(x+) − F(x)〉 , (19.1.4)

where A∗ is the adjoint of A and 〈·, ·〉 is the inner product in H .
Semilocal and local convergence results for Broyden’s method (19.1.4) and

more general Broyden–like methods have already been given in the literature un-
der Lipschitz–type conditions and for smooth operators F . Recently, in the elegant
study by A. Galperin [7] the semilocal convergence of Broyden’s method (19.1.4)
was given for nonsmooth operators using the notion regularly continuous divided
differences (RCDD) [1, 4, 8] (to be precised in Definition 19.1). The convergence
domain found in [7] is small in general. Hence, it is important to expand this domain
without adding hypotheses. This has already be done by us in [1–4] for Newton’s
method and the Secant method using the notion of the center regularly continuous
divided difference (CRCDD) which is always implied by the (RGDD) but not nec-
essarily viceversa. Here, we use this idea to present a new semilocal convergence
analysis of Broyden’s method with advantages over the work in [7] as already stated
in the abstract of this chapter.

19.2 Semilocal Convergence Analysis of Broyden’s Method

In the rest of the chapter we use the notation already established in [7].
Let h([x, y|F]) denote the quantity inf x,y{[x, y|F] : (x, y) ∈ D2}, and let N be

the class of continuous non-decreasing concave functionsω : [0,+∞) → [0,+∞),
such that ω(0) = 0.

We need the definition of RCDD.

Definition 19.1 [7] The dd[x, y|F] is said to be ω -regularly continuous on D
(ω-RCDD) if there exist an ω ∈ N (call it regularity modulus), and a constant
h ∈ [0, h([x, y|F])] such that for all x, y, u, v ∈ D
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ω−1

(
min{‖ [x, y|F] ‖, ‖ [u, v|F] ‖} − h+ ‖ [x, y|F] − [u, v|F] ‖

)

−ω−1

(
min{‖ [x, y|F] ‖, ‖ [u, v|F] ‖} − h

)
≤‖ x − u ‖ + ‖ y − v ‖ .

(19.2.1)

We also say that dd[x, y|F] is regularly continuous on D, if it has a regularity
modulus there.

A detailed discussion on the properties of a dd[x, y|F] which is ω-regularly
continuous on D is given in [7]. In the same reference a semilocal convergence
analysis is provided using only condition (19.2.1). However, in view of condition
(19.2.1), for x and y fixed and all u, v ∈ D, there exist ω0 ∈ N such that condition
(19.2.1) holds with ω0 replacing function ω. That, the ω0-CRCDD, is:

ω−1
0

(
min{‖ [x, y|F] ‖, ‖ [u, v|F] ‖} − h+ ‖ [x, y|F] − [u, v|F] ‖

)

−ω−1
0

(
min{‖ [x, y|F] ‖, ‖ [u, v|F] ‖} − h

)
≤‖ x − u ‖ + ‖ y − v ‖ .

(19.2.2)
Clearly,

ω0(s) ≤ ω(s) for all s ∈ [0,+∞), (19.2.3)

holds in general and
ω(s)

ω0(s)
can be arbitrarily large [1–4]. Notice also that in practice

the computation ofω requires the computation ofω0 as a special case. That is (19.2.2)
is not an additional hypothesis to (19.2.1).

On the other hand, because of the convexity of ω−1, each ω -regularly continuous
dd is also ω-continuous in the sense that

‖ [x, y|F] − [u, v|F] ‖≤ ω(‖ x − u ‖ + ‖ y − v ‖) for all x, y, u, v ∈ D.

(19.2.4)
Similar comments can be made for the dd [x, y|F] in connection with function

ω0.
Assume that A0 is invertible, so that A and F in (19.1.4) can be replaced by

their normalizations AA−1
0 and A0F without affecting method (19.1.4). As in [7] we

suppose that A and F have already been normalized:

A0 = [x0, x−1|F] = I.

Then, the current approximation (x, A) induces the triple of reals, where

t :=‖ x − x0 ‖, γ :=‖ x − x−1 ‖ and δ :=‖ x+ − x ‖ . (19.2.5)
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From now on the superscript+ denotes the non-negative part of real number. That is:

r+ = max{r, 0}.

We can have [7]:
t+ :=‖ x+ − x0 ‖≤ t + δ,

γ + := δ,

and
α+ := ω−1(‖ [x+, x |F] ‖ −h)

≥
(

ω−1(1 − h)− ‖ x+ − x0 ‖ − ‖ x − x−1 ‖
)+

≥
(

ω−1(1 − h) − t+ − t− ‖ x0 − x−1 ‖
)+

.

(19.2.6)

It is also convenient for us to introduce notations:

α := ω−1
0 (1 − h), γ 0 :=‖ x0 − x−1 ‖ and a := α − γ 0. (19.2.7)

We need the following result relating δ++ = ‖x++ − x+‖ = ‖A+F(x+)‖ with
(t, γ , δ).

Lemma 19.2 Suppose that dd[x1, x2|F] of F is ω -regularly continuous on D.Then,
the dd[x1, x2|F] of F is ω0-regularly continuous on D at a given fixed pair (x0, x−1).
If t+ + t < a, then

δ+ ≤ δ

(
ω(a − t+ − t + δ + γ − ω(a − t+ − t)

ω0(a − t+ − t)

)

. (19.2.8)

Proof δ+ ≤ ‖A+‖‖F(x+)‖. Using the Banach lemma on invertible operators [1–4,
8] we get

‖A+‖−1 ≥ ‖A0‖−1−‖A−1
+ − A−1

0 ‖ ≥ 1−h −‖[x+, x |F]−[x0, x−1|F]‖, (19.2.9)

so, by (19.2.2), we have that

‖[x+, x |F] − [x0, x−1|F]‖ ≤

ω0
(
min

{
ω−1
0 (‖[x+, x |F]‖ − h), ω−1

0 (‖[x0, x−1|F]‖ − h)
})

+ ‖x+ − x0‖ + ‖x − x−1‖)
− ω0

(
min{ω−1

0 (‖[x+, x |F]‖ − h), ω−1
0 (‖[x0, x−1|F]‖ − h)}) .
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In view of (19.2.6) (for ω0 = ω)

ω0(‖[x+, x |F]‖ − h) ≥ (ω−1
0 (1 − h) − ‖x+ − x0‖ − ‖x − x−1‖)+

≥ (α − t+ − t − γ 0)
+. (19.2.10)

By the concavity and monotonicity of ω0,

‖[x+, x |F] − [x0, x−1|F]‖ ≤
ω0

(
min{(α − t+ − t − γ 0)

+, α} + t+ + t + γ 0

)

−ω0
(
min{(α − t+ − t − γ 0)

+, α})
= ω0

(
(α − t+ − t − γ 0)

+ + t+ + t + γ 0

)

−ω0
(
(α − t+ − t − γ 0)

+)
. (19.2.11)

If this difference < 1 − h, then it follows from (19.2.9) that

‖A+‖ ≤
1

1 − h − ω0
(
(α − t+ − t − γ 0)

+ + t+ + t + γ 0

) + ω0
(
(α − t+ − t − γ 0)

+) ·

Notice that the difference (19.2.11) < 1 − h = ω0(α) if and only if t+ + t < a.
Hence, this assumptions implies

‖A+‖ ≤ 1

1 − h − ω0(α) + ω0(a − t+ − t)
= 1

ω0(a − t+ − t)
· (19.2.12)

Then, as in [7, pp. 48 and 49], we obtain

‖F(x+)‖ ≤ δ
(
ω(a − t+ − t+δ + γ ) − ω(a − t+ − t)

)
(19.2.13)

which together with (19.2.12) show (19.2.8). �

Lemma (19.2) motivates us to introduce the following majorant generator
g(t, γ, δ) = (t+, γ+, δ+):

t+ := t + δ, γ+ := δ,

δ+ := δ

(
ω(a − t+ − t + δ + γ ) − ω(a − t+ − t)

ω0(a − t+ − t)

)

= δ

(
ω(a − 2t + γ ) − ω(a − 2t − δ)

ω0(a − 2t − δ)

)
(19.2.14)
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We say that the triple q ′ = (t ′, γ ′, δ′) majorizes q = (t, γ, δ) (briefly q ≺ q ′) if

t ≤ t ′ & γ ≤ γ ′ & δ ≤ δ′.

Lemma (19.2) states that q+ ≺ g(q).
If we begin to fed with the initial triple q0, the generator iterates producing a

majorant sequence as long as the denominator (19.2.14) remains defined:

&
n
2tn + δn < a. (19.2.15)

Remark 19.3 If ω0 = ω, then the generator g reduces to the generator g given in [7]
defined by g(u, γ, δ) = (u+, γ+, δ+), u+ = u + θ , δ+ = θ ,

θ+ = θ

(
ω(a − u+ − u + θ + γ )

ω(a − u+ − u)
− 1

)
= θ

(
ω(a − 2θ + γ )

ω(a − 2u − θ)
− 1

)
, (19.2.16)

where a = ω−1(1 − h) − γ 0. However, if strict inequality holds in (19.2.3), then
(19.2.14) generates a more precise majorizing sequence than (19.2.16). That is

t < u, (19.2.17)

δ+ < θ+ (19.2.18)

and
t∞ = lim

n→+∞ tn ≤ lim
n→+∞ un = u∞. (19.2.19)

Here, the error bounds are tighter and the information on the location of the solution
at least as precise, if we use the generator g instead of the old generator g used in [7].

Under condition (19.2.15), we can ensure convergence of the sequence (xn, An)

generated by the method (19.1.4) from the starter (x0, A0) to a solution of the system

F(x) = 0 & A[x, x |F] = I. (19.2.20)

We present the following semilocal convergence result for method (19.1.4).

Theorem 19.4 If q0 is such that q0 ≺ q0 & &
n
2tn + δn < a, then sequence {xn}

generated by method (19.1.4) is well defined and converges to a solution x∞ which
is the only solution of equation F(x) = 0 in U (x0, a − t∞). Moreover the following
estimates hold

‖xn+1 − xn‖ ≤ tn+1 − tn (19.2.21)

and
‖xn − x∞‖ ≤ t∞ − tn. (19.2.22)
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Furthermore, the sequence {An} converges to A∞ so that (x∞, A∞) solve the system
(19.2.20).

Proof Simply replace the old generator g used in [7, see Lemma 3.2] by the new
generator g defined by (19.2.14). �

Remark 19.5 The rest of the results in [7] can be adjusted by switching the generators
so we can obtain the advantages as stated in the abstract of this study. However, we
leave the details to the motivated reader. Instead, we return to Remark 19.3 and
assume that ω0, ω are linear functions defined by ω0(t) = c0t and ω(t) = ct with
c0 
= 0 and c 
= 0. Then, the generators g ans g provide, respectively the scalar
iterations {tn} and {un} defined by

t−1 = γ0, t0 = δ0, t1 = δ0 + ‖A0F(x0)‖, a = c−1
0 − γ0,

tn+2 = tn+1 + (tn+1 − tn)(tn+1 − tn−1)

a − (tn+1 + tn)
(19.2.23)

and
u−1 = γ0, u0 = δ0, u1 = δ0 + ‖A0F(x0)‖, a = c−1 − γ0,

un+2 = un+1 + (un+1 − un)(un+1 − un−1)

a − (un+1 + un)· (19.2.24)

Then, we have by (19.2.23) and (19.2.24) that t−1 = u−1, t0 = u0, t1 = u1 and
if c0 = c, then a = a and tn = un . However, if c0 < c, then a simple inductive
argument shows that

a < a, (19.2.25)

tn < un for each n = 0, 1, 2, . . . , (19.2.26)

tn+1 − tn < un+1 − un for each n = 1, 2, . . . (19.2.27)

and
t∞ ≤ u∞. (19.2.28)

It was shown in [7] that the sufficient convergence condition for sequence {un} is
given by

4c−1δ0 ≤ (c−1 − γ0)
2. (19.2.29)

Therefore, according to (19.2.25)–(19.2.27), conditions (19.2.29) is also the suffi-
cient convergence conditions for sequence {tn}. Notice however that under our new
approach the error (19.2.21) and (19.2.22) are tighter and by (19.2.28) the informa-
tion on the location of the solution x∞ is also more precise, since t∞ − a ≤ u∞ − a.
Moreover, a direct study of sequence {tn} can lead to even weaker sufficient conver-
gence conditions [1–4]. Hence, concluding the error bounds and the information on
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the location of the solution x∞ are improved under weaker convergence conditions (if
strict inequality holds in (19.2.3)) since the convergence condition in [7] is given by

2un + θn < a (19.2.30)

and in this case we have that

(19.2.30) ⇒ (19.2.15) (19.2.31)

but not necesarirly viceversa (unless if ω0 = ω).

Examples, where strict inequality holds in (19.2.3) can be found in [1–4].
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Chapter 20
Left General Fractional Monotone
Approximation

Here are introduced left general fractional derivatives Caputo style with respect to a
base absolutely continuous strictly increasing function g. We give various examples
of such fractional derivatives for different g. Let f be p-times continuously differ-
entiable function on [a, b], and let L be a linear left general fractional differential
operator such that L ( f ) is non-negative over a critical closed subinterval I of [a, b].
We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn)

is non-negative over I , furthermore f is approximated uniformly by Qn over [a, b] .
The degree of this constrained approximation is given by an inequality using the

first modulus of continuity of f (p). We finish with applications of the main fractional
monotone approximation theorem for different g. On the way to prove the main
theorem we establish useful related general results. It follows [2].

20.1 Introduction and Preparation

The topic of monotone approximation started in [11] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥0 by polynomials having
this property.

In [4] the authors replaced the kth derivative with a linear differential operator of
order k.

Furthermore in [1], the author generalized the result of [4] for linear fractional
differential operators.

To describe the motivating result here we need:

Definition 20.1 ([5], p. 50) Let α > 0 and �α� = m, (�·� ceiling of the number).
Consider f ∈ Cm ([−1, 1]). We define the left Caputo fractional derivative of f of
order α as follows:

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_20
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(
Dα

∗−1 f
)
(x) = 1

� (m − α)

∫ x

−1
(x − t)m−α−1 f (m) (t) dt, (20.1.1)

for any x ∈ [−1, 1], where � is the gamma function � (ν) = ∫ ∞
0 e−t tν−1dt , ν > 0.

We set

D0
∗−1 f (x) = f (x) , (20.1.2)

Dm
∗−1 f (x) = f (m) (x) , ∀x ∈ [−1, 1] . (20.1.3)

We proved:

Theorem 20.2 ([1]) Let h, k, p be integers, 0 ≤ h ≤ k ≤ p and let f be a real
function, f (p) continuous in [−1, 1] with modulus of continuity ω1

(
f (p), δ

)
, δ > 0,

there. Let α j (x), j = h, h + 1, . . . , k be real functions, defined and bounded on
[−1, 1] and assume for x ∈ [0, 1] that αh (x) is either ≥ some number α > 0 or ≤
some number β < 0. Let the real numbers α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · <

αp ≤ p. Here D
α j

∗−1 f stands for the left Caputo fractional derivative of f of order
α j anchored at −1. Consider the linear left fractional differential operator

L :=
k∑

j=h

α j (x)
[
D

α j

∗−1

]
(20.1.4)

and suppose, throughout [0, 1] ,
L ( f ) ≥ 0. (20.1.5)

Then, for any n ∈ N, there exists a real polynomials Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout [0, 1] , (20.1.6)

and

max−1≤x≤1
| f (x) − Qn (x)| ≤ Cnk−pω1

(
f (p),

1

n

)
, (20.1.7)

where C is independent of n or f .

Notice above that the monotonicity property is only true on [0, 1], see (20.1.5)
and (20.1.6). However the approximation property (20.1.7) it is true over the whole
interval [−1, 1].

In this chapter we extend Theorem 20.2 tomuchmore general linear left fractional
differential operators.

We use a lot here the following generalised fractional integral.

Definition 20.3 (see also [8, p. 99]) The left generalised fractional integral of a
function f with respect to given function g is defined as follows:
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Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is strictly increasing, f ∈ L∞ ([a, b]). We set

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a, (20.1.8)

clearly
(

I α
a+;g f

)
(a) = 0.

When g is the identity function id, we get that I α
a+;id = I α

a+, the ordinary left
Riemann-Liouville fractional integral, where

(
I α
a+ f

)
(x) = 1

� (α)

∫ x

a
(x − t)α−1 f (t) dt, x ≥ a, (20.1.9)

(
I α
a+ f

)
(a) = 0.

When g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 20.4 ([8, p. 110]) Let 0 < a < b < ∞, α > 0. The left Hadamard
fractional integral of order α is given by

(
Jα

a+ f
)
(x) = 1

� (α)

∫ x

a

(
ln

x

y

)α−1 f (y)

y
dy, x ≥ a, (20.1.10)

where f ∈ L∞ ([a, b]) .

We mention:

Definition 20.5 The left fractional exponential integral is defined as follows: Let
a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
a+;ex f

)
(x) = 1

� (α)

∫ x

a

(
ex − et

)α−1
et f (t) dt, x ≥ a. (20.1.11)

Definition 20.6 Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We introduce
the fractional integral

(
I α
a+;Ax f

)
(x) = ln A

� (α)

∫ x

a

(
Ax − At

)α−1
At f (t) dt, x ≥ a. (20.1.12)

We also give:

Definition 20.7 Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

a+;xσ f
)
(x) = 1

� (α)

∫ x

z
(xσ − tσ)

α−1 f (t)σtσ−1dt, x ≥ a. (20.1.13)

We introduce the following general fractional derivatives.
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Definition 20.8 Let α > 0 and �α� = m, (�·� ceiling of the number). Consider
f ∈ ACm ([a, b]) (space of functions f with f (m−1) ∈ AC ([a, b])). We define the
left general fractional derivative of f of order α as follows

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t) f (m) (t) dt, (20.1.14)

for any x ∈ [a, b], where � is the gamma function.
We set

Dm
∗α;g f (x) = f (m) (x) , (20.1.15)

D0
∗a;g f (x) = f (x) , ∀x ∈ [a, b] . (20.1.16)

When g = id, then Dα∗a f = Dα
∗a;id f is the left Caputo fractional derivative.

So we have the specific general left fractional derivatives.

Definition 20.9

Dα
∗a;ln x f (x) = 1

� (m − α)

∫ x

a

(
ln

x

y

)m−α−1 f (m) (y)

y
dy, x ≥ a > 0,

(20.1.17)

Dα
∗a;ex f (x) = 1

� (m − α)

∫ x

a

(
ex − et

)m−α−1
et f (m) (t) dt, x ≥ a,

(20.1.18)
and

Dα
∗a;Ax f (x) = ln A

� (m − α)

∫ x

a

(
Ax − At

)m−α−1
At f (m) (t) dt, x ≥ a, (20.1.19)

(
Dα

∗a;xσ f
)
(x) = 1

� (m − α)

∫ x

a
(xσ − tσ)

m−α−1 σtσ−1 f (m) (t) dt, x ≥ a ≥ 0.

(20.1.20)

We would need a modification of:

Theorem 20.10 (Trigub, [12, 13]) Let g ∈ C p ([−1, 1]), p ∈ N. Then there exists
real polynomial qn (x) of degree ≤ n, x ∈ [−1, 1], such that

max−1≤x≤1

∣∣g( j) (x) − q( j)
n (x)

∣∣ ≤ Rpn j−pω1

(
g(p),

1

n

)
, (20.1.21)

j = 0, 1, . . . , p, where Rp is independent of n or g.

We make and need:

Remark 20.11 Here t ∈ [−1, 1], x ∈ [a, b] , a < b. Let the map ϕ : [−1, 1] →
[a, b] defined by
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x = ϕ (t) =
(

b − a

2

)
t +

(
b + a

2

)
. (20.1.22)

Clearly here ϕ is 1 − 1 and onto map.
We get

x ′ = ϕ′ (t) = b − a

2
, (20.1.23)

and

t = 2x − b − a

b − a
= 2

(
x

b − a

)
−

(
b + a

b − a

)
. (20.1.24)

In fact it holds

ϕ (−1) = a, and ϕ (1) = b. (20.1.25)

We will prove and use:

Theorem 20.12 Let f ∈ C p ([a, b]), p ∈ N. Then there exist real polynomials
Q∗

n (x) of degree ≤ n ∈ N, x ∈ [a, b], such that

max
a≤x≤b

∣
∣ f ( j) (x) − Q∗( j)

n (x)
∣
∣ ≤ Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (20.1.26)

j = 0, 1, . . . , p, where Rp is independent of n or g.

Proof We use Theorem 20.10 and Remark 20.11.
Given that f ∈ C p ([a, b]), x ∈ [a, b], it is clear that

g (t) = f

((
b − a

2

)
t +

(
b + a

2

))
∈ C p ([−1, 1]) , t ∈ [−1, 1] .

We notice that

dg (t)

dt
= d f

((
b−a
2

)
t + (

b+a
2

))

dt
= f ′ (x)

(
b − a

2

)
, (20.1.27)

thus it holds

g′ (t) = f ′ (x)

(
b − a

2

)
= f ′

((
b − a

2

)
t +

(
b + a

2

)) (
b − a

2

)
. (20.1.28)
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And

g′′ (t) = d f ′ (( b−a
2

)
t + (

b+a
2

))

dt

(
b − a

2

)
. (20.1.29)

Since as before

d f ′ (( b−a
2

)
t + (

b+a
2

))

dt
= f ′′ (x)

(
b − a

2

)
, (20.1.30)

we obtain

g′′ (x) = f ′′ (x)
(b − a)2

22
. (20.1.31)

In general we get

g( j) (t) = f ( j) (x)
(b − a) j

2 j
, (20.1.32)

j = 0, 1, . . . , p. Thus we find in detail that g ∈ C p ([−1, 1]). Hence by Theorem
20.10, for any t ∈ [−1, 1], we have

∣∣g( j) (t) − q( j)
n (t)

∣∣ ≤ Rpn j−pω1

(
g(p),

1

n

)
, (20.1.33)

j = 0, 1, . . . , p, where Rp is independent of n or g.
Notice that

q( j)
n (t)

(20.1.24)= q( j)
n

(
2x − b − a

b − a

)
, j = 0, 1, . . . , p. (20.1.34)

See that, for t ∈ [−1, 1], we have

qn (t) = qn

((
2

b − a

)
x −

(
b + a

b − a

))
=: Q∗

n (x) , x ∈ [a, b] , (20.1.35)

a polynomial of degree n.
Also it holds

Q∗′
n (x) = dqn

((
2

b−a

)
x − (

b+a
b−a

))

dx
= dqn (t)

dt

dt

dx
= q ′

n (t)

(
2

b − a

)
. (20.1.36)

That is

q ′
n (t) = Q∗′

n (x)

(
b − a

2

)
. (20.1.37)
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Similalry we get

Q∗′′
n (x) = d Q∗′

n (x)

dx
(20.1.36)= dq ′

n

((
2

b−a

)
x − (

b+a
b−a

))

dx

(
2

b − a

)
=

dq ′
n (t)

dt

dt

dx

(
2

b − a

)
= q ′′

n (t)
22

(b − a)2
. (20.1.38)

Hence

q ′′
n (t) = Q∗′′

n (x)
(b − a)2

22
. (20.1.39)

In general it holds

q( j)
n (t) = Q∗( j)

n (x)
(b − a) j

2 j
, j = 0, 1, . . . , p. (20.1.40)

Thus we have

L .H.S.(20.1.33) = (b − a) j

2 j

∣∣ f ( j) (x) − Q∗( j)
n (x)

∣∣ , (20.1.41)

j = 0, 1, . . . , p, x ∈ [a, b] .
Next we observe that

ω1

(
g(p),

1

n

)
= sup

t1,t2∈[−1,1]

|t1−t2|≤ 1
n

∣∣g(p) (t1) − g(p) (t2)
∣∣ =

sup
x1,x2∈[a,b]

|x1−x2|≤ b−a
2n

(b − a)p

2p

∣∣ f (p) (x1) − f (p) (x2)
∣∣ = (b − a)p

2p
ω1

(
f (p),

b − a

2n

)
.

(20.1.42)
An explanation of (20.1.42) follows.

By Remark 20.11 we have that ϕ is (1 − 1) and onto map, so that for any t1,
t2 ∈ [−1, 1] there exist unique x1, x2 ∈ [a, b]:

t1 =
(

2

b − a

)
x1 −

(
b + a

b − a

)
,

and (20.1.43)

t2 =
(

2

b − a

)
x2 −

(
b + a

b − a

)
.
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Hence it follows

t1 − t2 =
(

2

b − a

)
(x1 − x2) , (20.1.44)

and

1

n
≥ |t1 − t2| =

(
2

b − a

)
|x1 − x2| , (20.1.45)

which produces

|x1 − x2| ≤ b − a

2n
. (20.1.46)

Finally by (20.1.33) we can find

(b − a) j

2 j

∣
∣ f ( j) (x) − Q∗( j) (x)

∣
∣ ≤ Rpn j−p (b − a)p

2p
ω1

(
f (p),

b − a

2n

)
, (20.1.47)

j = 0, 1, . . . , p.

And it holds

∣
∣ f ( j) (x) − Q∗( j) (x)

∣
∣ ≤ Rp

(b − a)p− j

(2n)p− j ω1

(
f (p),

b − a

2n

)
, (20.1.48)

for any x ∈ [a, b], j = 0, 1, . . . , p, proving the claim. �

We need:

Remark 20.13 Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increas-
ing over [a, b], α > 0.

Let g (a) = c, g (b) = d. We want to calculate

I =
∫ b

a
(g (b) − g (t))α−1 g′ (t) dt. (20.1.49)

Consider the function

f (y) = (g (b) − y)α−1 = (d − y)α−1 , ∀y ∈ [c, d] . (20.1.50)

We have that f (y) ≥ 0, it may be +∞ when y = d and 0 < α < 1, but f is
measurable on [c, d]. By [9], Royden, p. 107, Exercise 13 d, we get that

( f ◦ g) (t) g′ (t) = (g (b) − g (t))α−1 g′ (t) (20.1.51)
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is measurable on [a, b], and

I =
∫ d

c
(d − y)α−1 dy = (d − c)α

α
(20.1.52)

(notice that (d − y)α−1 is Riemann integrable).
That is

I = (g (b) − g (a))α

α
. (20.1.53)

Similarly it holds

∫ x

a
(g (x) − g (t))α−1 g′ (t) dt = (g (x) − g (a))α

α
, ∀x ∈ [a, b] . (20.1.54)

Finally we will use:

Theorem 20.14 Let α > 0,N 
 m = �α�, and f ∈ Cm ([a, b]). Then
(

Dα
∗a;g f

)
(x)

is continuous in x ∈ [a, b] .

Proof By [3], Apostol, p. 78, we get that g−1 exists and it is strictly increasing on
[g (a) , g (b)]. Since g is continuous on [a, b], it implies that g−1 is continuous on
[g (a) , g (b)]. Hence f (m) ◦ g−1 is a continuous function on [g (a) , g (b)] .

If α = m ∈ N, then the claim is trivial.
We treat the case of 0 < α < m.

It holds that

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t) f (m) (t) dt =

1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t)

(
f (m) ◦ g−1

)
(g (t)) dt = (20.1.55)

1

� (m − α)

∫ g(x)

g(a)

(g (x) − z)m−α−1
(

f (m) ◦ g−1
)
(z) dz.

An explanation follows.
The function

G (z) = (g (x) − z)m−α−1 (
f (m) ◦ g−1) (z)

is integrable on [g (a) , g (x)], and by assumption g is absolutely continuous:
[a, b] → [g (a) , g (b)].
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Since g is monotone (strictly increasing here) the function

(g (x) − g (t))m−α−1 g′ (t)
(

f (m) ◦ g−1
)
(g (t))

is integrable on [a, x] (see [7]). Furthermore it holds (see also [7]),

1

� (m − α)

∫ g(x)

g(a)

(g (x) − z)m−α−1 (
f (m) ◦ g−1) (z) dz =

1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t)

(
f (m) ◦ g−1

)
(g (t)) dt (20.1.56)

= (
Dα

∗a;g f
)
(x) , ∀x ∈ [a, b] .

Then, we can write

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ g(x)

g(a)

(g (x) − z)m−α−1
(

f (m) ◦ g−1
)
(z) dz,

(
Dα

∗a;g f
)
(y) = 1

� (m − α)

∫ g(y)

g(a)

(g (y) − z)m−α−1 (
f (m) ◦ g−1) (z) dz.

(20.1.57)
Here a ≤ x ≤ y ≤ b, and g (a) ≤ g (x) ≤ g (y) ≤ g (b), and 0 ≤ g (x) − g (a) ≤
g (y) − g (a) .

Let λ = g (x) − z, then z = g (x) − λ. Thus

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ g(x)−g(a)

0
λm−α−1

(
f (m) ◦ g−1

)
(g (x) − λ) dλ.

(20.1.58)
Clearly, see that g (a) ≤ z ≤ g (x), then−g (a) ≥ −z ≥ −g (x), and g (x)−g (a) ≥
g (x) − z ≥ 0, i.e. 0 ≤ λ ≤ g (x) − g (a) .

Similarly

(
Dα

∗a;g f
)
(y) = 1

� (m − α)

∫ g(y)−g(a)

0
λm−α−1 (

f (m) ◦ g−1) (g (y) − λ) dλ.

(20.1.59)
Hence it holds

(
Dα

∗a;g f
)
(y) − (

Dα
∗a;g f

)
(x) = 1

� (m − α)
·

[∫ g(x)−g(y)

0
λm−α−1

((
f (m) ◦ g−1

)
(g (y) − λ) − (

f (m) ◦ g−1
)
(g (x) − λ)

)
dλ
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+
∫ g(y)−g(a)

g(x)−g(a)

λm−α−1
(

f (m) ◦ g−1
)
(g (y) − λ) dλ

]
. (20.1.60)

Thus we obtain

∣∣(Dα
∗a;g f

)
(y) − (

Dα
∗a;g f

)
(x)

∣∣ ≤ 1

� (m − α)
·

[
(g (x) − g (a))m−α

m − α
ω1

(
f (m) ◦ g−1, |g (y) − g (x)|) + (20.1.61)

∥∥ f (m) ◦ g−1
∥∥∞,[g(a),g(b)]

m − α

(
(g (y) − g (a))m−α − (g (x) − g (a))m−α

)
]

=: (ξ) .

As y → x , then g (y) → g (x) (since g ∈ AC ([a, b])). So that (ξ) → 0. As a result

(
Dα

∗a;g f
)
(y) → (

Dα
∗a;g f

)
(x) , (20.1.62)

proving that
(

Dα
∗a;g f

)
(x) is continuous in x ∈ [a, b] . �

20.2 Main Result

We present:

Theorem 20.15 Here we assume that g ∈ AC ([a, b]) and is strictly increasing with
g (b) − g (a) > 1. Let h, k, p be integers, 0 ≤ h ≤ k ≤ p and let f ∈ C p ([a, b]),
a < b, with modulus of continuity ω1

(
f (p), δ

)
, 0 < δ ≤ b − a. Let α j (x), j =

h, h + 1, . . . , k be real functions, defined and bounded on [a, b] and assume for
x ∈ [

g−1 (1 + g (a)) , b
]

that αh (x) is either ≥ some number α∗ > 0, or ≤ some
number β∗ < 0. Let the real numbers α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · < αp ≤ p.
Consider the linear left general fractional differential operator

L =
k∑

j=h

α j (x)
[

D
α j

∗a;g
]
, (20.2.63)

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
,

L ( f ) ≥ 0. (20.2.64)

Then, for any n ∈ N, there exists a real polynomial Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout
[
g−1 (1 + g (a)) , b

]
, (20.2.65)
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and

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Cnk−pω1

(
f (p),

b − a

2n

)
, (20.2.66)

where C is independent of n or f .

Proof of Theorem 20.15.
Here h, k, p ∈ Z+, 0 ≤ h ≤ k ≤ p. Let α j > 0, j = 1, . . . , p, such that

0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3 · · · < · · · < αp ≤ p. That is
⌈
α j

⌉ = j ,
j = 1, . . . , p.

Let Q∗
n (x) be as in Theorem 20.12.

We have that

(
D

α j

∗a;g f
)

(x) = 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) f ( j) (t) dt, (20.2.67)

and

(
D

α j

∗a;g Q∗
n

)
(x) = 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) Q∗

n
( j) (t) dt,

(20.2.68)
j = 1, . . . , p.

Also it holds
(

D j
∗a;g f

)
(x) = f ( j) (x) ,

(
D j

∗a;g Q∗
n

)
(x) = Q∗( j)

n (x) , j = 1, . . . , p.

(20.2.69)
By [10], we get that there exists g′ a.e., and g′ is measurable and non-negative.

We notice that ∣∣∣
(

D
α j

∗a;g f
)

(x) − D
α j

∗a;g Q∗
n (x)

∣∣∣ =

1

�
(

j − α j
)

∣∣
∣∣

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

(
f ( j) (t) − Q∗( j)

n (t)
)

dt

∣∣
∣∣ ≤

1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

∣
∣ f ( j) (t) − Q∗( j)

n (t)
∣
∣ dt

(20.1.26)≤

1

�
(

j − α j
)

(∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) dt

)
Rp

(
b − a

2n

)p− j
ω1

(
f (p),

b − a

2n

)

(20.2.70)
(20.1.54)= (g (x) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
. (20.2.71)
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Hence ∀ x ∈ [a, b], it holds

∣∣
∣
(

D
α j

∗a;g f
)

(x) − D
α j

∗a;g Q∗
n (x)

∣∣
∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (20.2.72)

and

max
x∈[a,b]

∣
∣∣D

α j

∗a;g f (x) − D
α j

∗a;g Q∗
n (x)

∣
∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (20.2.73)

j = 0, 1, . . . , p.

Above we set D0
∗a;g f (x) = f (x), D0

∗a;g Q∗
n (x) = Q∗

n (x), ∀ x ∈ [a, b], and
α0 = 0, i.e. �α0� = 0.

Put
s j = sup

a≤x≤b

∣∣α−1
h (x) α j (x)

∣∣ , j = h, . . . , k, (20.2.74)

and

ηn = Rpω1

(
f (p),

b − a

2n

)
⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ .

(20.2.75)
I. Suppose, throughout

[
g−1 (1 + g (a)) , b

]
, αh (x) ≥ α∗ > 0. Let Qn (x) be the

real polynomial of degree≤ n, that corresponds to ( f (x)+ηn (h!)−1 xh), x ∈ [a, b] ,
so by Theorem 20.12 and (20.2.73) we get that

max
x∈[a,b]

∣∣∣D
α j

∗a;g
(

f (x) + ηn (h!)−1 xh
) −

(
D

α j

∗a;g Qn

)
(x)

∣∣∣ ≤ (20.2.76)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
,

j = 0, 1, . . . , p.

In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) + ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
,

(20.2.77)
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and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
= (20.2.78)

Rpω1

(
f (p),

b − a

2n

)
·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ (h!)−1 max
(|a|h , |b|h)

+Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
≤

Rpω1

(
f (p),

b − a

2n

)
nk−p×

⎡

⎣

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠ (h!)−1 max
(
|a|h , |b|h

)
+

(
b − a

2

)p
⎤

⎦ .

(20.2.79)

We have found that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Rp

[(
b − a

2

)p

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠

⎤

⎦ nk−pω1

(
f (p),

b − a

2n

)
,

(20.2.80)
proving (20.2.66).

Notice for j = h + 1, . . . , k, that

(
D

α j

∗a;gxh
)

= 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

(
th

)( j)
dt = 0.

(20.2.81)
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Here

L =
k∑

j=h

α j (x)
[

D
α j

∗a;g
]
,

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
, L f ≥ 0. So over g−1 (1 + g (a)) ≤

x ≤ b, we get

α−1
h (x) L (Qn (x))

(20.2.81)= α−1
h (x) L ( f (x)) + ηn

h!
(

Dαh
∗a;g

(
xh

)) +

k∑

j=h

α−1
h (x) α j (x)

[
D

α j

∗a;g Qn (x) − D
α j

∗a;g f (x) − ηn

h! D
α j

∗a;gxh
] (20.2.76)≥ (20.2.82)

ηn

h!
(

Dαh∗a;g
(

xh
))

−
⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ Rpω1

(
f (p),

b − a

2n

)

(20.2.83)

(20.2.75)= ηn

h!
(

Dαh
∗a;g

(
xh

)) − ηn = ηn

(
Dαh

∗a;g
(
xh

)

h! − 1

)

= (20.2.84)

ηn

(
1

� (h − αh) h!
∫ x

a
(g (x) − g (t))h−αh−1 g′ (t)

(
th

)(h)
dt − 1

)
=

ηn

(
h!

h!� (h − αh)

∫ x

a
(g (x) − g (t))h−αh−1 g′ (t) dt − 1

)
(20.1.54)=

ηn

(
(g (x) − g (a))h−αh

� (h − αh + 1)
− 1

)
= (20.2.85)

ηn

(
(g (x) − g (a))h−αh − � (h − αh + 1)

� (h − αh + 1)

)
≥

ηn

(
1 − � (h − αh + 1)

� (h − αh + 1)

)
≥ 0. (20.2.86)

Clearly here g (x) − g (a) ≥ 1.
Hence

L (Qn (x)) ≥ 0, for x ∈ [
g−1 (1 + g (a)) , b

]
. (20.2.87)
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A further explanation follows: We know � (1) = 1, � (2) = 1, and � is convex and
positive on (0,∞). Here 0 ≤ h − αh < 1 and 1 ≤ h − αh + 1 < 2. Thus

� (h − αh + 1) ≤ 1 and 1 − � (h − αh + 1) ≥ 0. (20.2.88)

II. Suppose, throughout
[
g−1 (1 + g (a)) , b

]
, αh (x) ≤ β∗ < 0.

Let Qn (x), x ∈ [a, b] be a real polynomial of degree ≤ n, according to Theorem
20.12 and (20.2.73), so that

max
x∈[a,b]

∣∣∣D
α j

∗a;g
(

f (x) − ηn (h!)−1 xh
) −

(
D

α j

∗a;g Qn

)
(x)

∣∣∣ ≤ (20.2.89)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
,

j = 0, 1, . . . , p.

In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) − ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
,

(20.2.90)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
, (20.2.91)

etc.
We find again that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Rp

[(
b − a

2

)p

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠

⎤

⎦ nk−pω1

(
f (p),

b − a

2n

)
, (20.2.92)

reproving (20.2.66).
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Here again

L =
k∑

j=h

α j (x)
[

D
α j

∗a;g
]
,

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
, L f ≥ 0. So over g−1 (1 + g (a)) ≤

x ≤ b, we get

α−1
h (x) L (Qn (x))

(20.2.81)= α−1
h (x) L ( f (x)) − ηn

h!
(

Dαh
∗a;g

(
xh

)) +

k∑

j=h

α−1
h (x) α j (x)

[
D

α j

∗a;g Qn (x) − D
α j

∗a;g f (x) + ηn

h! D
α j

∗a;gxh
] (20.2.89)≤ (20.2.93)

−ηn

h!
(

Dαh
∗a;g

(
xh

))+
⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ Rpω1

(
f (p),

b − a

2n

)
(20.2.94)

(20.2.75)= −ηn

h!
(

Dαh
∗a;g

(
xh

)) + ηn = ηn

(

1 − Dαh
∗a;g

(
xh

)

h!

)

= (20.2.95)

ηn

(
1 − 1

� (h − αh) h!
∫ x

a
(g (x) − g (t))h−αh−1 g′ (t)

(
th

)(h)
dt

)
=

ηn

(
1 − h!

h!� (h − αh)

∫ x

a
(g (x) − g (t))h−αh−1 g′ (t) dt

)
(20.1.54)=

ηn

(
1 − (g (x) − g (a))h−αh

� (h − αh + 1)

)
= (20.2.96)

ηn

(
� (h − αh + 1) − (g (x) − g (a))h−αh

� (h − αh + 1)

)
(20.2.88)≤

ηn

(
1 − (g (x) − g (a))h−αh

� (h − αh + 1)

)
≤ 0. (20.2.97)

Hence again
L (Qn (x)) ≥ 0, ∀x ∈ [

g−1 (1 + g (a)) , b
]
.
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The case of αh = h is trivially concluded from the above. The proof of the theorem
is now over. �

We make:

Remark 20.16 By Theorem 20.14 we have that D
α j

∗a;g f are continuous functions,
j = 0, 1, . . . , p. Suppose that αh (x) , . . . ,αk (x) are continuous functions on
[a, b], and L ( f ) ≥ 0 on

[
g−1 (1 + g (a)) , b

]
is replaced by L ( f ) > 0 on[

g−1 (1 + g (a)) , b
]
. Disregard the assumption made in the main theorem on αh (x).

For n ∈ N, let Qn (x) be the Q∗
n (x) of Theorem 20.12, and f as in Theorem 20.12

(same as in Theorem 20.15). Then Qn (x) converges to f (x) at the Jackson rate 1
n p+1

([6], p. 18, Theorem VIII) and at the same time, since L (Qn) converges uniformly
to L ( f ) on [a, b], L (Qn) > 0 on

[
g−1 (1 + g (a)) , b

]
for all n sufficiently large.

20.3 Applications (to Theorem 20.15)

(1) When g (x) = ln x on [a, b], 0 < a < b < ∞.
Here we would assume that b > ae, αh (x) restriction true on [ae, b], and

L f =
k∑

j=h

α j (x)
[
D

α j

∗a;ln x f
] ≥ 0, (20.3.99)

throughout [ae, b].
Then L (Qn) ≥ 0 on [ae, b] .
(2) When g (x) = ex on [a, b], a < b < ∞.

Here we assume that b > ln (1 + ea), αh (x) restriction true on [ln (1 + ea) , b], and

L f =
k∑

j=h

α j (x)
[
D

α j

∗a;ex f
] ≥ 0, (20.3.100)

throughout [ln (1 + ea) , b].
Then L (Qn) ≥ 0 on [ln (1 + ea) , b].
(3) When, A > 1, g (x) = Ax on [a, b], a < b < ∞.
Here we assume that b > logA (1 + Aa), αh (x) restriction true on[

logA (1 + Aa) , b
]
, and

L f =
k∑

j=h

α j (x)
[
D

α j

∗a;Ax f
] ≥ 0, (20.3.101)

throughout
[
logA (1 + Aa) , b

]
.

Then L (Qn) ≥ 0 on
[
logA (1 + Aa) , b

]
.
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(4) When σ > 0, g (x) = xσ, 0 ≤ a < b < ∞.
Here we assume that b > (1 + aσ)

1
σ , αh (x) restriction true on[

(1 + aσ)
1
σ , b

]
, and

L f =
k∑

j=h

α j (x)
[
D

α j

∗a;xσ f
] ≥ 0 (20.3.102)

throughout
[
(1 + aσ)

1
σ , b

]
.

Then L (Qn) ≥ 0 on
[
(1 + aσ)

1
σ , b

]
.
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Chapter 21
Right General Fractional Monotone
Approximation Theory

Here is introduced a right general fractional derivative Caputo style with respect to a
base absolutely continuous strictly increasing function g. We give various examples
of such right fractional derivatives for different g. Let f be p-times continuously
differentiable function on [a, b], and let L be a linear right general fractional dif-
ferential operator such that L ( f ) is non-negative over a critical closed subinterval
J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal n such
that L (Qn) is non-negative over J , furthermore f is approximated uniformly by Qn

over [a, b] .
The degree of this constrained approximation is given by an inequality using

the first modulus of continuity of f (p). We finish we applications of the main right
fractional monotone approximation theorem for different g. It follows [3].

21.1 Introduction and Preparation

The topic of monotone approximation started in [12] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥0 by polynomials having
this property.

In [4] the authors replaced the kth derivative with a linear ordinary differential
operator of order k.

Furthermore in [1], the author generalized the result of [4] for linear right fractional
differential operators.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_21
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To describe the motivating result here we need:

Definition 21.1 ([6]) Letα > 0 and �α� = m, (�·� ceiling of the number). Consider
f ∈ Cm ([−1, 1]). We define the right Caputo fractional derivative of f of order α
as follows:

(
Dα

1− f
)
(x) = (−1)m

� (m − α)

∫ 1

x
(t − x)m−α−1 f (m) (t) dt, (21.1.1)

for any x ∈ [−1, 1], where � is the gamma function � (ν) = ∫ ∞
0 e−t tν−1dt , ν > 0.

We set
D0

1− f (x) = f (x) , (21.1.2)

Dm
1− f (x) = (−1)m f (m) (x) , ∀ x ∈ [−1, 1] . (21.1.3)

In [1] we proved:

Theorem 21.2 Let h, k, p be integers, h is even, 0 ≤ h ≤ k ≤ p and let f be a real
function, f (p) continuous in [−1, 1] with modulus of continuity ω1

(
f (p), δ

)
, δ > 0,

there. Let α j (x), j = h, h + 1, . . . , k be real functions, defined and bounded on
[−1, 1] and assume for x ∈ [−1, 0] that αh (x) is either ≥ some number α > 0 or
≤ some number β < 0. Let the real numbers α0 = 0 < α1 < 1 < α2 < 2 < · · · <

αp < p. Here D
α j

1− f stands for the right Caputo fractional derivative of f of order
α j anchored at 1. Consider the linear right fractional differential operator

L :=
k∑

j=h

α j (x)
[
D

α j

1−
]

(21.1.4)

and suppose, throughout [−1, 0] ,

L ( f ) ≥ 0. (21.1.5)

Then, for any n ∈ N, there exists a real polynomial Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout [−1, 0] , (21.1.6)

and

max−1≤x≤1
| f (x) − Qn (x)| ≤ Cnk−pω1

(
f (p),

1

n

)
, (21.1.7)

where C is independent of n or f .

Notice above that the monotonicity property is only true on [−1, 0], see (21.1.5)
and (21.1.6). However the approximation property (21.1.7) it is true over the whole
interval [−1, 1] .
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In this chapter we extend Theorem 21.2 to much more general linear right frac-
tional differential operators.

We use here the following right generalised fractional integral.

Definition 21.3 (see also [9, p. 99]) The right generalised fractional integral of a
function f with respect to given function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is strictly increasing, f ∈ L∞ ([a, b]). We set

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b, (21.1.8)

clearly
(

I α
b−;g f

)
(b) = 0.

When g is the identity function id, we get that I α
b−;id = I α

b−, the ordinary right
Riemann-Liouville fractional integral, where

(
I α
b− f

)
(x) = 1

� (α)

∫ b

x
(t − x)α−1 f (t) dt , x ≤ b, (21.1.9)

(
I α
b− f

)
(b) = 0.

When g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 21.4 ([9, p. 110]) Let 0 < a < b < ∞, α > 0. The right Hadamard
fractional integral of order α is given by

(
Jα

b− f
)
(x) = 1

� (α)

∫ b

x

(
ln

y

x

)α−1 f (y)

y
dy, x ≤ b, (21.1.10)

where f ∈ L∞ ([a, b]) .

We mention:

Definition 21.5 The right fractional exponential integral is defined as follows: Let
a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
b−;ex f

)
(x) = 1

� (α)

∫ b

x

(
et − ex

)α−1
et f (t) dt, x ≤ b. (21.1.11)

Definition 21.6 Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We introduce
the right fractional integral

(
I α
b−;Ax f

)
(x) = ln A

� (α)

∫ b

x

(
At − Ax

)α−1
At f (t) dt, x ≤ b. (21.1.12)
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We also give:

Definition 21.7 Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

b−;xσ f
)
(x) = 1

� (α)

∫ b

x
(tσ − xσ)

α−1 f (t)σtσ−1dt , x ≤ b. (21.1.13)

We introduce the following general right fractional derivative.

Definition 21.8 Let α > 0 and �α� = m, (�·� ceiling of the number). Consider
f ∈ ACm ([a, b]) (space of functions f with f (m−1) ∈ AC ([a, b])). We define the
right general fractional derivative of f of order α as follows

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t) f (m) (t) dt, (21.1.14)

for any x ∈ [a, b], where � is the gamma function.
We set

Dm
b−;g f (x) = (−1)m f (m) (x) , (21.1.15)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] . (21.1.16)

When g = id, then Dα
b− f = Dα

b−;id f is the right Caputo fractional derivative.

So we have the specific general right fractional derivatives.

Definition 21.9

Dα
b−;ln x f (x) = (−1)m

� (m − α)

∫ b

x

(
ln

y

x

)m−α−1 f (m) (y)

y
dy, 0 < a ≤ x ≤ b,

(21.1.17)

Dα
b−;ex f (x) = (−1)m

� (m − α)

∫ b

x

(
et − ex

)m−α−1
et f (m) (t) dt, a ≤ x ≤ b,

(21.1.18)
and

Dα
b−;Ax f (x) = (−1)m ln A

� (m − α)

∫ b

x

(
At − Ax

)m−α−1
At f (m) (t) dt, a ≤ x ≤ b,

(21.1.19)

(
Dα

b−;xσ f
)
(x) = (−1)m

� (m − α)

∫ b

x

(
tσ − xσ

)m−α−1
σtσ−1 f (m) (t) dt, 0 ≤ a ≤ x ≤ b.

(21.1.20)
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We mention:

Theorem 21.10 (Trigub, [13, 15]) Let g ∈ C p ([−1, 1]), p ∈ N. Then there exists
real polynomial qn (x) of degree ≤ n, x ∈ [−1, 1], such that

max−1≤x≤1

∣∣g( j) (x) − q( j)
n (x)

∣∣ ≤ Rpn j−pω1

(
g(p),

1

n

)
, (21.1.21)

j = 0, 1, . . . , p, where Rp is independent of n or g.

In [2], based on Theorem 21.10 we proved the following useful here result

Theorem 21.11 Let f ∈ C p ([a, b]), p ∈ N. Then there exist real polynomials
Q∗

n (x) of degree ≤ n ∈ N, x ∈ [a, b], such that

max
a≤x≤b

∣∣ f ( j) (x) − Q∗( j)
n (x)

∣∣ ≤ Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (21.1.22)

j = 0, 1, . . . , p, where Rp is independent of n or g.

Remark 21.12 Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increas-
ing over [a, b], α > 0.

Let g (a) = c, g (b) = d. We want to calculate

I =
∫ b

a
(g (t) − g (a))α−1 g′ (t) dt. (21.1.23)

Consider the function

f (y) = (y − g (a))α−1 = (y − c)α−1 , ∀ y ∈ [c, d] . (21.1.24)

We have that f (y) ≥ 0, it may be +∞ when y = c and 0 < α < 1, but f is
measurable on [c, d]. By [10], Royden, p. 107, Exercise 13d, we get that

( f ◦ g) (t) g′ (t) = (g (t) − g (a))α−1 g′ (t) (21.1.25)

is measurable on [a, b], and

I =
∫ d

c
(y − c)α−1 dy = (d − c)α

α
(21.1.26)

(notice that (y − c)α−1 is Riemann integrable).
That is

I = (g (b) − g (a))α

α
. (21.1.27)
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Similarly it holds

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt = (g (b) − g (x))α

α
, ∀ x ∈ [a, b] . (21.1.28)

Finally we will use:

Theorem 21.13 Let α > 0, N � m = �α�, and f ∈ Cm ([a, b]). Then(
Dα

b−;g f
)

(x) is continuous in x ∈ [a, b], −∞ < a < b < ∞.

Proof By [5], Apostol, p. 78, we get that g−1 exists and it is strictly increasing on
[g (a) , g (b)]. Since g is continuous on [a, b], it implies that g−1 is continuous on
[g (a) , g (b)]. Hence f (m) ◦ g−1 is a continuous function on [g (a) , g (b)] .

If α = m ∈ N, then the claim is trivial.
We treat the case of 0 < α < m.

It holds that

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t) f (m) (t) dt =

(−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t)

(
f (m) ◦ g−1

)
(g (t)) dt = (21.1.29)

(−1)m

� (m − α)

∫ g(b)

g(x)

(z − g (x))m−α−1
(

f (m) ◦ g−1
)
(z) dz.

An explanation follows.
The function

G (z) = (z − g (x))m−α−1
(

f (m) ◦ g−1
)
(z)

is integrable on [g (x) , g (b)], andby assumptiong is absolutely continuous: [a, b] →
[g (a) , g (b)].

Since g is monotone (strictly increasing here) the function

(g (t) − g (x))m−α−1 g′ (t)
(

f (m) ◦ g−1) (g (t))

is integrable on [x, b] (see [8]). Furthermore it holds (see also [8]),

(−1)m

� (m − α)

∫ g(b)

g(x)

(z − g (x))m−α−1
(

f (m) ◦ g−1
)
(z) dz =

(−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t)

(
f (m) ◦ g−1) (g (t)) dt (21.1.30)

= (
Dα

b−;g f
)
(x) , ∀ x ∈ [a, b] .
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And we can write

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ g(b)

g(x)

(z − g (x))m−α−1
(

f (m) ◦ g−1
)
(z) dz,

(
Dα

b−;g f
)
(y) = (−1)m

� (m − α)

∫ g(b)

g(y)

(z − g (y))m−α−1
(

f (m) ◦ g−1
)
(z) dz.

(21.1.31)
Here a ≤ y ≤ x ≤ b, and g (a) ≤ g (y) ≤ g (x) ≤ g (b), and 0 ≤ g (b) − g (x) ≤
g (b) − g (y) .

Let λ = z − g (x), then z = g (x) + λ. Thus

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ g(b)−g(x)

0
λm−α−1

(
f (m) ◦ g−1

)
(g (x) + λ) dλ.

(21.1.32)
Clearly, see that g (x) ≤ z ≤ g (b), and 0 ≤ λ ≤ g (b) − g (x) .

Similarly

(
Dα

b−;g f
)
(y) = (−1)m

� (m − α)

∫ g(b)−g(y)

0
λm−α−1

(
f (m) ◦ g−1

)
(g (y) + λ) dλ.

(21.1.33)
Hence it holds

(
Dα

b−;g f
)
(y) − (

Dα
b−;g f

)
(x) = (−1)m

� (m − α)
·

[∫ g(b)−g(x)

0
λm−α−1

((
f (m) ◦ g−1

)
(g (y) + λ) − (

f (m) ◦ g−1
)
(g (x) + λ)

)
dλ

+
∫ g(b)−g(y)

g(b)−g(x)

λm−α−1
(

f (m) ◦ g−1
)
(g (y) + λ) dλ

]
. (21.1.34)

Thus we obtain

∣∣(Dα
b−;g f

)
(y) − (

Dα
b−;g f

)
(x)

∣∣ ≤ 1

� (m − α)
·

[
(g (b) − g (x))m−α

m − α
ω1

(
f (m) ◦ g−1, |g (y) − g (x)|) + (21.1.35)

∥∥ f (m) ◦ g−1
∥∥∞,[g(a),g(b)]

m − α

(
(g (b) − g (y))m−α − (g (b) − g (x))m−α

)
]

=: (ξ) .
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As y → x , then g (y) → g (x) (since g ∈ AC ([a, b])). So that (ξ) → 0. As a result

(
Dα

b−;g f
)
(y) → (

Dα
b−;g f

)
(x) , (21.1.36)

proving that
(

Dα
b−;g f

)
(x) is continuous in x ∈ [a, b] . �

21.2 Main Result

We present:

Theorem 21.14 Here we assume that g (b) − g (a) > 1. Let h, k, p be integers, h
is even, 0 ≤ h ≤ k ≤ p and let f ∈ C p ([a, b]), a < b, with modulus of continuity
ω1

(
f (p), δ

)
, 0 < δ ≤ b − a. Let α j (x), j = h, h + 1, . . . , k be real functions,

defined and bounded on [a, b] and assume for x ∈ [
a, g−1 (g (b) − 1)

]
that αh (x)

is either ≥ some number α∗ > 0, or ≤ some number β∗ < 0. Let the real numbers
α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · < αp ≤ p. Consider the linear right general
fractional differential operator

L =
k∑

j=h

α j (x)
[

D
α j

b−;g
]
, (21.2.1)

and suppose, throughout
[
a, g−1 (g (b) − 1)

]
,

L ( f ) ≥ 0. (21.2.2)

Then, for any n ∈ N, there exists a real polynomial Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout
[
a, g−1 (g (b) − 1)

]
, (21.2.3)

and

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Cnk−pω1

(
f (p),

b − a

2n

)
, (21.2.4)

where C is independent of n or f .

Proof of Theorem 21.14.
Here h, k, p ∈ Z+, 0 ≤ h ≤ k ≤ p. Let α j > 0, j = 1, . . . , p, such that

0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3 · · · < · · · < αp ≤ p. That is
⌈
α j

⌉ = j ,
j = 1, . . . , p.

Let Q∗
n (x) be as in Theorem 21.11.
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We have that

(
D

α j

b−;g f
)

(x) = (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) f ( j) (t) dt, (21.2.5)

and

(
D

α j

b−;g Q∗
n

)
(x) = (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) Q∗

n
( j) (t) dt,

(21.2.6)
j = 1, . . . , p.

Also it holds
(

D j
b−;g f

)
(x) = (−1) j f ( j) (x) ,

(
D j

b−;g Q∗
n

)
(x) = (−1) j Q∗( j)

n (x) , (21.2.7)

j = 1, . . . , p.

By [11], we get that there exists g′ a.e., and g′ is measurable and non-negative.
We notice that ∣∣∣

(
D

α j

b−;g f
)

(x) − D
α j

b−;g Q∗
n (x)

∣∣∣ =

1

�
(

j − α j
)

∣∣∣∣

∫ b

x
(g (x) − g (t)) j−α j −1 g′ (t)

(
f ( j) (t) − Q∗( j)

n (t)
)

dt

∣∣∣∣ ≤

1

�
(

j − α j
)

∫ b

x
(g (x) − g (t)) j−α j −1 g′ (t)

∣
∣ f ( j) (t) − Q∗( j)

n (t)
∣
∣ dt

(21.1.22)≤

1

�
(

j − α j
)

(∫ b

x
(g (x) − g (t)) j−α j −1 g′ (t) dt

)
Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)

(21.1.28)= (g (b) − g (x)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
. (21.2.8)

Hence ∀ x ∈ [a, b], it holds

∣∣∣
(

D
α j

b−;g f
)

(x) − D
α j

b−;g Q∗
n (x)

∣∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (21.2.9)
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and
max

x∈[a,b]

∣∣∣D
α j

b−;g f (x) − D
α j

b−;g Q∗
n (x)

∣∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
, (21.2.10)

j = 0, 1, . . . , p.

Above we set D0
b−;g f (x) = f (x), D0

b−;g Q∗
n (x) = Q∗

n (x), ∀ x ∈ [a, b], and
α0 = 0, i.e. �α0� = 0.

Put
s j = sup

a≤x≤b

∣∣α−1
h (x) α j (x)

∣∣ , j = h, . . . , k, (21.2.11)

and

ηn = Rpω1

(
f (p),

b − a

2n

)⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ .

(21.2.12)
I. Suppose, throughout

[
a, g−1 (g (b) − 1)

]
, αh (x) ≥ α∗ > 0. Let Qn (x), x ∈

[a, b], be a real polynomial of degree≤ n, according to Theorem21.11 and (21.2.10),
so that

max
x∈[a,b]

∣∣∣D
α j

b−;g
(

f (x) + ηn (h!)−1 xh
) −

(
D

α j

b−;g Qn

)
(x)

∣∣∣ ≤ (21.2.13)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
,

j = 0, 1, . . . , p.

In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) + ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
,

(21.2.14)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
= (21.2.15)
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Rpω1

(
f (p),

b − a

2n

)
·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ (h!)−1 max
(|a|h , |b|h)

+Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
≤

Rpω1

(
f (p),

b − a

2n

)
nk−p·

⎡

⎣

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠ (h!)−1 max
(
|a|h , |b|h

)
+

(
b − a

2

)p
⎤

⎦ .

(21.2.16)
We have found that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Rp

[(
b − a

2

)p

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠

⎤

⎦ nk−pω1

(
f (p),

b − a

2n

)
, (21.2.17)

proving (21.2.4).
Notice for j = h + 1, . . . , k, that

(
D

α j

b−;gxh
)

= (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t)

(
th

)( j)
dt = 0.

(21.2.18)
Here

L =
k∑

j=h

α j (x)
[

D
α j

b−;g
]
,

and suppose, throughout
[
a, g−1 (g (b) − 1)

]
, L f ≥ 0. So over a ≤ x ≤ g−1

(g (b) − 1), we get

α−1
h (x) L (Qn (x))

(21.2.18)= α−1
h (x) L ( f (x)) + ηn

h!
(

Dαh
b−;g

(
xh

))+

k∑

j=h

α−1
h (x) α j (x)

[
D

α j

b−;g Qn (x) − D
α j

b−;g f (x) − ηn

h! D
α j

b−;gxh
] (21.2.13)≥ (21.2.19)
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ηn

h!
(

Dαh
b−;g

(
xh

))−
⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ Rpω1

(
f (p),

b − a

2n

)
(21.2.12)=

(21.2.20)
ηn

h!
(

Dαh
b−;g

(
xh

)) − ηn = ηn

(
Dαh

b−;g
(
xh

)

h! − 1

)

= (21.2.21)

ηn

(
1

� (h − αh) h!
∫ b

x
(g (t) − g (x))h−αh−1 g′ (t)

(
th

)(h)
dt − 1

)
=

ηn

(
h!

h!� (h − αh)

∫ b

x
(g (t) − g (x))h−αh−1 g′ (t) dt − 1

)
(21.1.28)=

ηn

(
(g (b) − g (x))h−αh

� (h − αh + 1)
− 1

)
= (21.2.22)

ηn

(
(g (b) − g (x))h−αh − � (h − αh + 1)

� (h − αh + 1)

)
≥

ηn

(
1 − � (h − αh + 1)

� (h − αh + 1)

)
≥ 0. (21.2.23)

Clearly here g (b) − g (x) ≥ 1.
Hence

L (Qn (x)) ≥ 0, for x ∈ [
a, g−1 (g (b) − 1)

]
. (21.2.24)

A further explanation follows: We know � (1) = 1, � (2) = 1, and � is convex and
positive on (0,∞). Here 0 ≤ h − αh < 1 and 1 ≤ h − αh + 1 < 2. Thus

� (h − αh + 1) ≤ 1 and 1 − � (h − αh + 1) ≥ 0. (21.2.25)

II. Suppose, throughout
[
a, g−1 (g (b) − 1)

]
, αh (x) ≤ β∗ < 0.

Let Qn (x), x ∈ [a, b] be a real polynomial of degree ≤ n, according to Theorem
21.11 and (21.2.10), so that

max
x∈[a,b]

∣∣
∣D

α j

b−;g
(

f (x) − ηn (h!)−1 xh
) −

(
D

α j

b−;g Qn

)
(x)

∣∣
∣ ≤ (21.2.26)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Rp

(
b − a

2n

)p− j

ω1

(
f (p),

b − a

2n

)
,

j = 0, 1, . . . , p.
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In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) − ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
,

(21.2.27)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Rp

(
b − a

2n

)p

ω1

(
f (p),

b − a

2n

)
, (21.2.28)

etc.
We find again that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Rp

[(
b − a

2

)p

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)p− j
⎞

⎠

⎤

⎦ nk−pω1

(
f (p),

b − a

2n

)
, (21.2.29)

reproving (21.2.4).
Here again

L =
k∑

j=h

α j (x)
[

D
α j

b−;g
]
,

and suppose, throughout
[
a, g−1 (g (b) − 1)

]
, L f ≥ 0. So over a ≤ x ≤ g−1

(g (b) − 1), we get

α−1
h (x) L (Qn (x))

(21.2.54)= α−1
h (x) L ( f (x)) − ηn

h!
(

Dαh
b−;g

(
xh

)) +

k∑

j=h

α−1
h (x) α j (x)

[
D

α j

b−;g Qn (x) − D
α j

b−;g f (x) + ηn

h! D
α j

b−;gxh
] (21.2.26)≤ (21.2.30)

−ηn

h!
(

Dαh
b−;g

(
xh

)) +
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⎛

⎝
k∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)p− j
⎞

⎠ Rpω1

(
f (p),

b − a

2n

)
(21.2.12)=

(21.2.31)

− ηn

h!
(

Dαh
b−;g

(
xh

)) + ηn = ηn

(

1 − Dαh
b−;g

(
xh

)

h!

)

= (21.2.32)

ηn

(
1 − 1

� (h − αh) h!
∫ b

x
(g (t) − g (x))h−αh−1 g′ (t)

(
th

)(h)
dt

)
=

ηn

(
1 − h!

h!� (h − αh)

∫ b

x
(g (t) − g (x))h−αh−1 g′ (t) dt

)
(21.1.28)=

ηn

(
1 − (g (b) − g (x))h−αh

� (h − αh + 1)

)
= (21.2.33)

ηn

(
� (h − αh + 1) − (g (b) − g (x))h−αh

� (h − αh + 1)

)
(21.2.25)≤

ηn

(
1 − (g (b) − g (x))h−αh

� (h − αh + 1)

)
≤ 0. (21.2.34)

Hence again
L (Qn (x)) ≥ 0, ∀ x ∈ [

a, g−1 (g (b) − 1)
]
.

The case of αh = h is trivially concluded from the above. The proof of the theorem
is now over. �

We make

Remark 21.15 By Theorem 21.13 we have that D
α j

b−;g f are continuous functions,
j = 0, 1, . . . , p. Suppose that αh (x) , . . . ,αk (x) are continuous functions on
[a, b], and L ( f ) ≥ 0 on

[
a, g−1 (g (b) − 1)

]
is replaced by L ( f ) > 0 on[

a, g−1 (g (b) − 1)
]
. Disregard the assumption made in the main theorem on αh (x).

For n ∈ N, let Qn (x) be the Q∗
n (x) of Theorem 21.11, and f as in Theorem 21.11

(same as in Theorem 21.14). Then Qn (x) converges to f (x) at the Jackson rate 1
n p+1

([7], p. 18, Theorem VIII) and at the same time, since L (Qn) converges uniformly
to L ( f ) on [a, b], L (Qn) > 0 on

[
a, g−1 (g (b) − 1)

]
for all n sufficiently large.
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21.3 Applications (to Theorem 21.14)

(1) When g (x) = ln x on [a, b], 0 < a < b < ∞.
Here we would assume that b > ae, αh (x) restriction true on

[
a, b

e

]
, and

L f =
k∑

j=h

α j (x)
[
D

α j

b−;ln x f
] ≥ 0, (21.3.1)

throughout
[
a, b

e

]
.

Then L (Qn) ≥ 0 on
[
a, b

e

]
.

(2) When g (x) = ex on [a, b], a < b < ∞.
Here we assume that b > ln (1 + ea), αh (x) restriction true on

[
a, ln

(
eb − 1

)]
,

and

L f =
k∑

j=h

α j (x)
[
D

α j

b−;ex f
] ≥ 0, (21.3.2)

throughout
[
a, ln

(
eb − 1

)]
.

Then L (Qn) ≥ 0 on
[
a, ln

(
eb − 1

)]
.

(3) When, A > 1, g (x) = Ax on [a, b], a < b < ∞.
Here we assume that b > logA (1 + Aa), αh (x) restriction true on

[
a, logA(

Ab − 1
)]
, and

L f =
k∑

j=h

α j (x)
[
D

α j

b−;Ax f
] ≥ 0, (21.3.3)

throughout
[
a, logA

(
Ab − 1

)]
.

Then L (Qn) ≥ 0 on
[
a, logA

(
Ab − 1

)]
.

(4) When σ > 0, g (x) = xσ, 0 ≤ a < b < ∞.

Here we assume that b > (1 + aσ)
1
σ , αh (x) restriction true on

[
a, (bσ − 1)

1
σ

]
,

and

L f =
k∑

j=h

α j (x)
[
D

α j

b−;xσ f
] ≥ 0 (21.3.4)

throughout
[
a, (bσ − 1)

1
σ

]
.

Then L (Qn) ≥ 0 on
[
a, (bσ − 1)

1
σ

]
.
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Chapter 22
Left Generalized High Order Fractional
Monotone Approximation

Here are used the left general fractional derivatives Caputo stylewith respect to a base
absolutely continuous strictly increasing function g. We mention various examples
of such fractional derivatives for different g. Let f be r -times continuously differ-
entiable function on [a, b], and let L be a linear left general fractional differential
operator such that L ( f ) is non-negative over a critical closed subinterval I of [a, b].
We can find a sequence of polynomials Qn of degree less-equal n such that L (Qn) is
non-negative over I , furthermore f is fractionally and simultaneously approximated
uniformly by Qn over [a, b] .

The degree of this constrained approximation is given by inequalities using the
high order modulus of smoothness of f (r). We finish with applications of the main
fractional monotone approximation theorem for different g. It follows [6].

22.1 Introduction

The topic of monotone approximation started in [14] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥0 by polynomials having
this property.

In [5] the authors replaced the kth derivative with a linear differential operator of
order k.

Furthermore in [4], the author generalized the result of [5] for linear fractional
differential operators.

To describe the motivating result here we need:

Definition 22.1 ([8], p. 50) Let α > 0 and �α� = m, (�·� ceiling of the number).
Consider f ∈ Cm ([a, b]), a < b. We define the left Caputo fractional derivative of
f of order α as follows:

© Springer International Publishing Switzerland 2016
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Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_22
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(
Dα

∗a f
)
(x) = 1

� (m − α)

∫ x

a
(x − t)m−α−1 f (m) (t) dt, (22.1.1)

for any x ∈ [a, b], where � is the gamma function � (ν) = ∫ ∞
0 e−t tν−1dt , ν > 0.

We set
D0

∗a f (x) = f (x) , (22.1.2)

Dm
∗a f (x) = f (m) (x) , ∀ x ∈ [a, b] . (22.1.3)

We proved:

Theorem 22.2 ([4])Let h, v, r be integers,1 ≤ h ≤ v ≤ r and let f ∈ Cr ([−1, 1]),
with f (r) having modulus of smoothness ωs

(
f (r), δ

)
there, s ≥ 1. Let α j (x), j =

h, h+1, . . . , v be real functions, defined and bounded on [−1, 1] and suppose αh (x)

is either ≥ α > 0 or ≤ β < 0 on [0, 1]. Let the real numbers α0 = 0 < α1 ≤ 1 <

α2 ≤ 2 < · · · < αr ≤ r . Here D
α j

∗−1 f stands for the left Caputo fractional derivative
of f of order α j anchored at −1. Consider the linear left fractional differential
operator

L∗ :=
v∑

j=h

α j (x)
[
D

α j

∗−1

]
(22.1.4)

and suppose, throughout [0, 1],
L∗ ( f ) ≥ 0. (22.1.5)

Then, for any n ∈ N such that n ≥ max (4 (r + 1) , r + s), there exists a real
polynomial Qn (x) of degree ≤ n such that

L∗ (Qn) ≥ 0 throughout [0, 1] , (22.1.6)

and
sup

−1≤x≤1

∣∣(D
α j

∗−1 f
)
(x) − (

D
α j

∗−1Qn
)
(x)

∣∣ ≤

2 j−α j

�
(

j − α j + 1
)

Cr,s

nr− j
ωs

(
f (r),

1

n

)
, (22.1.7)

j = h + 1, . . . , r; Cr,s is a constant independent of f and n.
Set

l j :≡ sup
x∈[−1,1]

∣∣α−1
h (x) α j (x)

∣∣ , h ≤ j ≤ v. (22.1.8)

When j = 1, . . . , h we derive
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sup
−1≤x≤1

∣
∣(D

α j

∗−1 f
)
(x) − (

D
α j

∗−1Qn
)
(x)

∣
∣ ≤ Cr,s

nr−v
ωs

(
f (r),

1

n

)
·

[(
v∑

τ=h

lτ
2τ−ατ

� (τ − ατ + 1)

) (
h− j∑

λ=0

2h−α j −λ

λ!� (
h − α j − λ + 1

)

)

+ 2 j−α j

�
(

j − α j + 1
)

]

.

(22.1.9)
Finally it holds

sup
−1≤x≤1

| f (x) − Qn (x)| ≤

Cr,s

nr−v
ωs

(
f (r),

1

n

)[
1

h!
v∑

τ=h

lτ
2τ−ατ

� (τ − ατ + 1)
+ 1

]

. (22.1.10)

In this chapter we extend Theorem 22.2 tomuchmore general linear left fractional
differential operators.

We use a lot here the following generalised fractional integral.

Definition 22.3 (see also [11, p. 99]) The left generalised fractional integral of a
function f with respect to given function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is striclty increasing, f ∈ L∞ ([a, b]). We set

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a, (22.1.11)

clearly
(

I α
a+;g f

)
(a) = 0.

When g is the identity function id, we get that I α
a+;id = I α

a+, the ordinary left
Riemann-Liouville fractional integral, where

(
I α
a+ f

)
(x) = 1

� (α)

∫ x

a
(x − t)α−1 f (t) dt, x ≥ a, (22.1.12)

(
I α
a+ f

)
(a) = 0.

When g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 22.4 ([11, p. 110]) Let 0 < a < b < ∞, α > 0. The left Hadamard
fractional integral of order α is given by

(
Jα

a+ f
)
(x) = 1

� (α)

∫ x

a

(
ln

x

y

)α−1 f (y)

y
dy, x ≥ a, (22.1.13)

where f ∈ L∞ ([a, b]) .

We mention:
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Definition 22.5 The left fractional exponential integral is defined as follows: Let
a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
a+;ex f

)
(x) = 1

� (α)

∫ x

a

(
ex − et

)α−1
et f (t) dt, x ≥ a. (22.1.14)

Definition 22.6 Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We introduce
the fractional integral

(
I α
a+;Ax f

)
(x) = ln A

� (α)

∫ x

a

(
Ax − At

)α−1
At f (t) dt, x ≥ a. (22.1.15)

We also give:

Definition 22.7 Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

a+;xσ f
)
(x) = 1

� (α)

∫ x

a
(xσ − tσ)

α−1 f (t)σtσ−1dt, x ≥ a. (22.1.16)

We introduce the following general fractional derivatives:

Definition 22.8 Let α > 0 and �α� = m. Consider f ∈ ACm ([a, b]) (space
of functions f with f (m−1) ∈ AC ([a, b])). We define the left general fractional
derivative of f of order α as follows

(
Dα

∗a;g f
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t) f (m) (t) dt, (22.1.17)

for any x ∈ [a, b].
We set

Dm
∗α;g f (x) = f (m) (x) , (22.1.18)

D0
∗a;g f (x) = f (x) ∀ x ∈ [a, b] . (22.1.19)

When g = id, then Dα∗a f = Dα
∗a;id f is the left Caputo fractional derivative.

So we have the specific general left fractional derivatives.

Definition 22.9

Dα
∗a;ln x f (x) = 1

� (m − α)

∫ x

a

(
ln

x

y

)m−α−1 f (m) (y)

y
dy, x ≥ a > 0,

(22.1.20)

Dα
∗a;ex f (x) = 1

� (m − α)

∫ x

a

(
ex − et

)m−α−1
et f (m) (t) dt, x ≥ a, (22.1.21)

and
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Dα
∗a;Ax f (x) = ln A

� (m − α)

∫ x

a

(
Ax − At

)m−α−1
At f (m) (t) dt, x ≥ a, (22.1.22)

(
Dα

∗a;xσ f
)
(x) = 1

� (m − α)

∫ x

a
(xσ − tσ)

m−α−1 σtσ−1 f (m) (t) dt, x ≥ a ≥ 0.

(22.1.23)

We need:

Definition 22.10 For g ∈ C ([−1, 1]) we define

�s
h (g, t) :=

s∑

k=0

(
s
k

)
(−1)s−k g (t + kh) , (22.1.24)

Ash := [−1, 1 − sh] � t. (22.1.25)

The s-th modulus of smoothness of g (see [7], p. 44) is defined as

ωs (g, z) := sup
0<h≤z

∥∥�s
h (g, ·)∥∥∞,Ash

, z ≥ 0. (22.1.26)

A similar definition is valid for the arbitrary f ∈ C ([a, b]) .

In [4] we proved that (see also [9]):

Corollary 22.11 Let r ≥ 0 and s ≥ 1. Then there exists a sequence Qn = Q(r,s)
n of

linear polynomial operators mapping Cr ([−1, 1]) into Pn (space of polynomials of
degree ≤ n), such that for all g ∈ Cr ([−1, 1]) and all n ≥ max (4 (r + 1) , r + s)
we have ∣∣g(k) (t) − (Qn (g))(k) (t)

∣∣ ≤
∥∥g(k) − (Qng)(k)

∥∥∞,[−1,1] ≤ Cr,s

nr−k
ωs

(
g(r),

1

n

)
, k = 0, 1, . . . , r, (22.1.27)

where Cr,s is a constant independent of g and n, for every t ∈ [−1, 1] .

We extend the last Corollary from [−1, 1] to the arbitrary [a, b].Wewill establish:

Theorem 22.12 Let r ≥ 0 and s ≥ 1. Then there exists a sequence Q∗
n = Q∗(r,s)

n
of linear polynomial operators mapping Cr ([a, b]) into Pn, such that for all f ∈
Cr ([a, b]) and all n ≥ max (4 (r + 1) , r + s) we have

∥∥∥ f (k) − (
Q∗

n ( f )
)(k)

∥∥∥∞,[a,b]
≤ Cr,s

(
b − a

2n

)r−k

ωs

(
f (r),

b − a

2n

)
, (22.1.28)

k = 0, 1, . . . , r, where the constant Cr,s is independent of n or f .
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Proof Let here t ∈ [−1, 1], x ∈ [a, b], a < b. Let the map ϕ : [−1, 1] → [a, b]
defined by

x = ϕ (t) =
(

b − a

2

)
t +

(
b + a

2

)
. (22.1.29)

Clearly here ϕ is an 1 − 1 and onto map.
We get

x ′ = ϕ′ (t) = b − a

2
, (22.1.30)

and

t = 2x − b − a

b − a
= 2

(
x

b − a

)
−

(
b + a

b − a

)
.

In fact it holds
ϕ (−1) = a, and ϕ (1) = b. (22.1.31)

Clearly here it holds

g (t) := f

((
b − a

2

)
t +

(
b + a

2

))
∈ Cr ([−1, 1]) , all t ∈ [−1, 1] .

(22.1.32)
We easily get that

g(k) (t) = f (k) (x)
(b − a)k

2k
, k = 0, 1, . . . , r. (22.1.33)

Next we apply (22.1.27) to above g: so far we have

∣∣g(k) (t) − (Qn (g))(k) (t)
∣∣ =

∣∣∣∣ f (k) (x)
(b − a)k

2k
− (Qn (g))(k) (t)

∣∣∣∣ =: (∗) .

(22.1.34)
But for t ∈ [−1, 1], we have that

(Qn (g)) (t) = (Qn (g))

((
2x

b − a

)
−

(
b + a

b − a

))
=: Q∗

n (x) , x ∈ [a, b] ,

(22.1.35)
where Q∗

n ∈ Pn .

One can prove easily that

(Qn (g))(k) (t) = (
Q∗

n

)(k)
(x)

(
b − a

2

)k

, k = 0, 1, . . . , r. (22.1.36)

Hence it holds

(∗) = (b − a)k

2k

∣
∣∣ f (k) (x) − (

Q∗
n

)(k)
(x)

∣
∣∣ . (22.1.37)
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That is

∣∣g(k) (t) − (Qn (g))(k) (t)
∣∣ = (b − a)k

2k

∣∣∣ f (k) (x) − (
Q∗

n

)(k)
(x)

∣∣∣ , k = 0, 1, . . . , r,

(22.1.38)
for any t ∈ [−1, 1] and the corresponding x ∈ [a, b] .

Furthermore we see that

ωs

(
g(r),

1

n

)
= sup

0<h≤ 1
n

∥∥∥∥∥

s∑

k=0

(
s
k

)
(−1)s−k g(r) (· + kh)

∥∥∥∥∥
∞,[−1,1−sh]

= (22.1.39)

(
b − a

2

)r

·

sup
0<h≤ 1

n

∥∥∥∥∥

s∑

k=0

(
s
k

)
(−1)s−k f (r)

((
b − a

2

)
(t + kh) +

(
b + a

2

))∥∥∥∥∥
t,∞,[−1,1−sh]

=
(

b − a

2

)r

sup
0<h∗≤ b−a

2n

∥∥∥
∥∥

s∑

k=0

(
s
k

)
(−1)s−k f (r)

(
x + kh∗)

∥∥∥
∥∥

x,∞,[a,b−sh∗]

(we denoted h∗ := (
b−a
2

)
h)

=
(

b − a

2

)r

ωs

(
f (r),

(b − a)

2n

)
. (22.1.40)

That is we have proved

ωs

(
g(r),

1

n

)
=

(
b − a

2

)r

ωs

(
f (r),

(b − a)

2n

)
. (22.1.41)

Using (22.1.27), (22.1.38) and (22.1.41), x ∈ [a, b], we obtain

(
b − a

2

)k ∣∣∣ f (k) (x) − (
Q∗

n

)(k)
(x)

∣∣∣ ≤ Cr,s

nr−k

(
b − a

2

)r

ωs

(
f (r),

(b − a)

2n

)
,

(22.1.42)
equivalently it holds

∣∣∣ f (k) (x) − (
Q∗

n

)(k)
(x)

∣∣∣ ≤ Cr,s

nr−k

(
b − a

2

)r−k

ωs

(
f (r),

(b − a)

2n

)
. (22.1.43)
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Thus we have proved that

∣∣∣ f (k) (x) − (
Q∗

n

)(k)
(x)

∣∣∣ ≤ Cr,s

(
b − a

2n

)r−k

ωs

(
f (r),

(b − a)

2n

)
, (22.1.44)

for all x ∈ [a, b], k = 0, 1, . . . , r.
That is proving (22.1.28). �

Remark 22.13 Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increas-
ing over [a, b], α > 0.

Let g (a) = c, g (b) = d. We want to calculate

I =
∫ b

a
(g (b) − g (t))α−1 g′ (t) dt. (22.1.45)

Consider the function

f (y) = (g (b) − y)α−1 = (d − y)α−1 , ∀ y ∈ [c, d] . (22.1.46)

We have that f (y) ≥ 0, it may be +∞ when y = d and 0 < α < 1, but f is
measurable on [c, d]. By [12], Royden, p. 107, Exercise 13d, we get that

( f ◦ g) (t) g′ (t) = (g (b) − g (t))α−1 g′ (t) (22.1.47)

is measurable on [a, b], and

I =
∫ d

c
(d − y)α−1 dy = (d − c)α

α
(22.1.48)

(notice that (d − y)α−1 is Riemann integrable).
That is

I = (g (b) − g (a))α

α
. (22.1.49)

Similarly it holds

∫ x

a
(g (x) − g (t))α−1 g′ (t) dt = (g (x) − g (a))α

α
, ∀ x ∈ [a, b] . (22.1.50)

We use:

Theorem 22.14 Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g is
strictly increasing.
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Consider

G (s) :=
∫ s

a
(g (s) − g (t))r−1 g′ (t) F (t) dt, for all s ∈ [a, b] . (22.1.51)

Then G ∈ C ([a, b]) .

Proof There exists a Borel measurable function F∗ : [a, b] → R such that F = F∗,
a.e., and it holds

G (s) =
∫ s

a
(g (s) − g (t))r−1 g′ (t) F∗ (t) dt, for all s ∈ [a, b] . (22.1.52)

Notice that ∥∥F∗∥∥∞ = ‖F‖∞ < ∞. (22.1.53)

We can write

G (s) =
∫ s

a
(g (s) − g (t))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) dt, for all s ∈ [a, b] .

(22.1.54)
By [3], we get that ∥

∥F∗ ◦ g−1
∥
∥∞,[g(a),g(b)] ≤ ‖F‖∞ . (22.1.55)

Nextweconsider the function (g (s) − z)r−1
(
F∗ ◦ g−1

)
(z),where z ∈ [g (a) , g (s)],

the last is integrable over [g (a) , g (s)].
Since g is monotone, by [10], (g (s) − g (t))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) is inte-

grable on [a, s] .
Furthermore, again by [10], it holds

λ (g (s)) :=
∫ g(s)

g(a)

(g (s) − z)r−1
(
F∗ ◦ g−1

)
(z) dz = (22.1.56)

∫ s

a
(g (s) − g (t))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) dt =

∫ s

a
(g (s) − g (t))r−1 g′ (t) F∗ (t) dt = (22.1.57)

∫ s

a
(g (s) − g (t))r−1 g′ (t) F (t) dt = G (s) .
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That is

G (s) =
∫ g(s)

g(a)

(g (s) − z)r−1
(
F∗ ◦ g−1

)
(z) dz = λ (g (s)) , all s ∈ [a, b] .

(22.1.58)
By [2], p. 388, we have the function

λ (y) =
∫ y

g(a)

(y − z)r−1
(
F∗ ◦ g−1

)
(z) dz, (22.1.59)

is continuous in y over [g (a) , g (b)] .
Let now sn, s ∈ [a, b] : sn → s, then g (sn) → g (s), and λ (g (sn)) → λ (g (s)),

that is G (sn) → G (s), as n → ∞, proving the continuity of G. �

We need:

Corollary 22.15 Let g ∈ AC ([a, b]) and g is strictly increasing. Let α > 0, α /∈ N,

and �α� = m, f ∈ ACm ([a, b]) with f (m) ∈ L∞ ([a, b]). Then
(

Dα
∗a;g f

)
∈

C ([a, b]) .

Proof By Theorem 22.14. �

22.2 Main Result

We present:

Theorem 22.16 Here we assume that g (b)− g (a) > 1. Let h, v, r be integers, 1 ≤
h ≤ v ≤ r and let f ∈ Cr ([a, b]), a < b, with f (r) having modulus of smoothness
ωs

(
f (r), δ

)
there, s ≥ 1. Let α j (x), j = h, h + 1, . . . , v be real functions, defined

and bounded on [a, b] and suppose for x ∈ [
g−1 (1 + g (a)) , b

]
that αh (x) is either

≥ α∗ > 0 or ≤ β∗ < 0. Let the real numbers α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · <

αr ≤ r . Here D
α j

∗a;g f stands for the left general fractional derivative of f of order
α j anchored at a. Consider the linear left general fractional differential operator

L :=
v∑

j=h

α j (x)
[

D
α j

∗a;g
]

(22.2.1)

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
,

L ( f ) ≥ 0. (22.2.2)
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Then, for any n ∈ N such that n ≥ max (4 (r + 1) , r + s), there exists a real
polynomial Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout
[
g−1 (1 + g (a)) , b

]
, (22.2.3)

and
sup

a≤x≤b

∣∣
∣
(

D
α j

∗a;g f
)

(x) −
(

D
α j

∗a;g Qn

)
(x)

∣∣
∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (22.2.4)

j = h + 1, . . . , r; Cr,s is a constant independent of f and n.
Set

l j :≡ sup
x∈[a,b]

∣∣α−1
h (x) α j (x)

∣∣ , h ≤ j ≤ v. (22.2.5)

When j = 1, . . . , h we derive

max
a≤x≤b

∣∣∣D
α j

∗a;g f − D
α j

∗a;g Qn

∣∣∣ ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
(g (b) − g (a)) j−α j

�
(

j − α j + 1
) ·

⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠ (max (|a| , |b|))h− j

(h − j)! +
(

b − a

2

)r− j
⎤

⎦ .

(22.2.6)
Finally it holds

sup
a≤x≤b

| f (x) − Qn (x)| ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
· (22.2.7)

⎡

⎣
(

b − a

2

)r
+ (h!)−1 max

(
|a|h , |b|h

)
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠

⎤

⎦ .

Proof of Theorem 22.16.
Here h, v, r ∈ Z+, 0 ≤ h ≤ v ≤ r. Let α j > 0, j = 1, . . . , r, such that

0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3 · · · < · · · < αr ≤ r . That is
⌈
α j

⌉ = j ,
j = 1, . . . , r.

Let Q∗
n (x) be as in Theorem 22.12.

We have that

(
D

α j

∗a;g f
)

(x) = 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) f ( j) (t) dt, (22.2.8)

and
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(
D

α j

∗a;g Q∗
n

)
(x) = 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) Q∗

n
( j) (t) dt,

(22.2.9)
j = 1, . . . , r.

Also it holds
(

D j
∗a;g f

)
(x) = f ( j) (x) ,

(
D j

∗a;g Q∗
n

)
(x) = Q∗( j)

n (x) , j = 1, . . . , r.

(22.2.10)
By [13], we get that there exists g′ a.e., and g′ is measurable and non-negative.

We notice that ∣∣
∣
(

D
α j

∗a;g f
)

(x) − D
α j

∗a;g Q∗
n (x)

∣∣
∣ =

1

�
(

j − α j
)

∣∣∣
∣

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

(
f ( j) (t) − Q∗( j)

n (t)
)

dt

∣∣∣
∣ ≤

1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

∣
∣ f ( j) (t) − Q∗( j)

n (t)
∣
∣ dt

(22.1.28)≤

1

�
(

j − α j
)

(∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) dt

)
Cr,s

(
b − a

2n

)r− j
ωs

(
f (r),

b − a

2n

)

(22.2.11)
(22.1.50)= (g (x) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
. (22.2.12)

Hence ∀ x ∈ [a, b], it holds

∣
∣∣
(

D
α j

∗a;g f
)

(x) − D
α j

∗a;g Q∗
n (x)

∣
∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (22.2.13)

and
max

x∈[a,b]

∣∣
∣D

α j

∗a;g f (x) − D
α j

∗a;g Q∗
n (x)

∣∣
∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (22.2.14)

j = 0, 1, . . . , r.
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Above we set D0
∗a;g f (x) = f (x), D0

∗a;g Q∗
n (x) = Q∗

n (x), ∀ x ∈ [a, b], and
α0 = 0, i.e. �α0� = 0.

Put
s j = sup

a≤x≤b

∣∣α−1
h (x) α j (x)

∣∣ , j = h, . . . , v, (22.2.15)

and

ηn = Cr,sωs

(
f (r),

b − a

2n

)⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ .

(22.2.16)
I. Suppose, throughout

[
g−1 (1 + g (a)) , b

]
, αh (x) ≥ α∗ > 0. Let Qn (x), x ∈

[a, b], be a real polynomial of degree≤ n, according to Theorem22.12 and (22.2.14),
so that

max
x∈[a,b]

∣
∣∣D

α j

∗a;g
(

f (x) + ηn (h!)−1 xh
) −

(
D

α j

∗a;g Qn

)
(x)

∣
∣∣ ≤ (22.2.17)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
,

j = 0, 1, . . . , r.
In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) + ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
,

(22.2.18)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
= (22.2.19)

Cr,sωs

(
f (r),

b − a

2n

)
·

⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ (h!)−1 max
(|a|h , |b|h)
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+Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
≤

Cr,sωs

(
f (r),

b − a

2n

)
nv−r ·

⎡

⎣

⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠ (h!)−1 max
(
|a|h , |b|h

)
+

(
b − a

2

)r
⎤

⎦ .

(22.2.20)
We have found that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Cr,s

[(
b − a

2

)r

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠

⎤

⎦ nv−rωs

(
f (r),

b − a

2n

)
, (22.2.21)

proving (22.2.7).
Notice for j = h + 1, . . . , v, that

(
D

α j

∗a;gxh
)

= 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

(
th

)( j)
dt = 0.

(22.2.22)
Hence inequality (22.2.4) is obvious.

When j = 1, . . . , h, from (22.2.17) we get

∥∥∥D
α j

∗a;g f − D
α j

∗a;g Qn

∥∥∥∞,[a,b]
≤ ηn

∥∥
∥D

α j

∗a;g
(
xh

)∥∥
∥∞,[a,b]

h! + (22.2.23)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
=

Cr,sωs

(
f (r),

b − a

2n

)⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
1

nr− j∗

⎞

⎠

·

∥
∥∥D

α j

∗a;g
(
xh

)∥∥∥∞,[a,b]

h!
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+ (g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2

)r− j

ωs

(
f (r),

b − a

2n

)
1

nr− j
≤ (22.2.24)

Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠

·

∥
∥∥D

α j

∗a;g
(
xh

)∥∥∥∞,[a,b]

h!

+ (g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
]

=: (ψ) . (22.2.25)

But we have ( j = 1, . . . , h)

D
α j

∗a;g
(
xh

)

h! = 1

�
(

j − α j
)

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t)

th− j

(h − j)!dt. (22.2.26)

Hence
∣∣∣D

α j

∗a;g
(
xh

)∣∣∣

h! ≤ 1

�
(

j − α j
)
(h − j)!

∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) |t |h− j dt ≤

1

�
(

j − α j
)
(h − j)!

(∫ x

a
(g (x) − g (t)) j−α j −1 g′ (t) dt

)
(max (|a| , |b|))h− j =

(22.2.27)
(max (|a| , |b|))h− j

�
(

j − α j
)
(h − j)!

(g (x) − g (a)) j−α j

j − α j
=

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (x) − g (a)) j−α j ≤

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j . (22.2.28)

That is
∥∥∥D

α j

∗a;g
(
xh

)∥∥∥∞,[a,b]

h! ≤ (max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j . (22.2.29)
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Therefore we have

(ψ) ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j + (g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
]

(22.2.30)

= Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
(g (b) − g (a)) j−α j

�
(

j − α j + 1
) ·

⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠ (max (|a| , |b|))h− j

(h − j)! (22.2.31)

+
(

b − a

2

)r− j
]

,

proving (22.2.6).
Here

L =
v∑

j=h

α j (x)
[

D
α j

∗a;g
]
,

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
, L f ≥ 0. So over g−1 (1 + g (a)) ≤

x ≤ b, we get

α−1
h (x) L (Qn (x))

(22.2.22)= α−1
h (x) L ( f (x)) + ηn

h!
(

Dαh
∗a;g

(
xh

)) +

v∑

j=h

α−1
h (x) α j (x)

[
D

α j

∗a;g Qn (x) − D
α j

∗a;g f (x) − ηn

h! D
α j

∗a;gxh
] (22.2.17)≥ (22.2.32)

ηn

h!
(

Dαh
∗a;g

(
xh

)) −
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ Cr,sωs

(
f (r),

b − a

2n

)
(22.2.16)=

(22.2.33)
ηn

h!
(

Dαh
∗a;g

(
xh

)) − ηn = ηn

(
Dαh

∗a;g
(
xh

)

h! − 1

)

= (22.2.34)
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ηn

(
1

� (h − αh) h!
∫ x

a
(g (x) − g (t))h−αh−1 g′ (t)

(
th

)(h)
dt − 1

)
=

ηn

(
h!

� (h − αh)

∫ x

a
(g (x) − g (t))h−αh−1 g′ (t) dt − 1

)
(22.2.50)=

ηn

(
(g (x) − g (a))h−αh

� (h − αh + 1)
− 1

)
= (22.2.35)

ηn

(
(g (x) − g (a))h−αh − � (h − αh + 1)

� (h − αh + 1)

)
≥

ηn

(
1 − � (h − αh + 1)

� (h − αh + 1)

)
≥ 0. (22.2.36)

Clearly here g (x) − g (a) ≥ 1.
Hence

L (Qn (x)) ≥ 0, for x ∈ [
g−1 (1 + g (a)) , b

]
. (22.2.37)

A further explanation follows: We know � (1) = 1, � (2) = 1, and � is convex and
positive on (0,∞). Here 0 ≤ h − αh < 1 and 1 ≤ h − αh + 1 < 2. Thus

� (h − αh + 1) ≤ 1 and 1 − � (h − αh + 1) ≥ 0. (22.2.38)

II. Suppose, throughout
[
g−1 (1 + g (a)) , b

]
, αh (x) ≤ β∗ < 0.

Let Qn (x), x ∈ [a, b] be a real polynomial of degree ≤ n, according to Theorem
22.12 and (22.2.14), so that

max
x∈[a,b]

∣∣∣D
α j

∗a;g
(

f (x) − ηn (h!)−1 xh
) −

(
D

α j

∗a;g Qn

)
(x)

∣∣∣ ≤ (22.2.39)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
,

j = 0, 1, . . . , r.
In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) − ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
,

(22.2.40)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤
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ηn (h!)−1 (max (|a| , |b|))h + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
, (22.2.41)

etc.
So using triangle’s inequality on (22.2.39) and similar reasoning as in the first

part of the proof we establish again (22.2.4), (22.2.6) and (22.2.7).
Here again

L =
v∑

j=h

α j (x)
[

D
α j

∗a;g
]
,

and suppose, throughout
[
g−1 (1 + g (a)) , b

]
, L f ≥ 0. So over g−1 (1 + g (a)) ≤

x ≤ b, we get

α−1
h (x) L (Qn (x))

(22.2.22)= α−1
h (x) L ( f (x)) − ηn

h!
(

Dαh
∗a;g

(
xh

)) +

v∑

j=h

α−1
h (x) α j (x)

[
D

α j

∗a;g Qn (x) − D
α j

∗a;g f (x) + ηn

h! D
α j

∗a;gxh
] (22.2.39)≤ (22.2.42)

−ηn

h!
(

Dαh
∗a;g

(
xh

))+
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ Cr,sωs

(
f (r),

b − a

2n

)
(22.2.16)=

(22.2.43)

− ηn

h!
(

Dαh
∗a;g

(
xh

)) + ηn = ηn

(

1 − Dαh
∗a;g

(
xh

)

h!

)

= (22.2.44)

ηn

(
1 − 1

� (h − αh) h!
∫ x

a
(g (x) − g (t))h−αh−1 g′ (t)

(
th

)(h)
dt

)
=

ηn

(
1 − h!

� (h − αh)

∫ x

a
(g (x) − g (t))h−αh−1 g′ (t) dt

)
(22.1.50)=

ηn

(
1 − (g (x) − g (a))h−αh

� (h − αh + 1)

)
= (22.2.45)

ηn

(
� (h − αh + 1) − (g (x) − g (a))h−αh

� (h − αh + 1)

)
(22.2.38)≤
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ηn

(
1 − (g (x) − g (a))h−αh

� (h − αh + 1)

)
≤ 0. (22.2.46)

Hence again
L (Qn (x)) ≥ 0, ∀ x ∈ [

g−1 (1 + g (a)) , b
]
.

The case of αh = h is trivially concluded from the above. The proof of the theorem
is now over. �

We make:

Remark 22.17 By Corollary 22.15 we have that D
α j

∗a;g f are continuous functions,
j = 0, 1, . . . , r . Suppose that αh (x) , . . . ,αu (x) are continuous functions on
[a, b], and L ( f ) ≥ 0 on

[
g−1 (1 + g (a)) , b

]
is replaced by L ( f ) > 0 on[

g−1 (1 + g (a)) , b
]
. Disregard the assumption made in the main theorem on αh (x).

For n ∈ N, let Qn (x) be the Q∗
n (x) of Theorem 22.12, and f as in Theorem 22.12

(same as inTheorem22.16). Then D
α j

∗a;g Q∗
n converges uniformly to D

α j

∗a;g f at a higher
rate given by inequality (22.2.14), in particular for h ≤ j ≤ v. Moreover, because
L

(
Q∗

n

)
converges uniformly to L ( f ) on [a, b], L

(
Q∗

n

)
> 0 on

[
g−1 (1 + g (a)) , b

]

for sufficiently large n.

22.3 Applications (to Theorem 22.16)

(1) When g (x) = ln x on [a, b], 0 < a < b < ∞.
Here we need b > ae, and the restriction are on [ae, b].
(2) When g (x) = ex on [a, b], a < b < ∞.
Here we need b > ln (1 + ea), and the restriction are on [ln (1 + ea) , b].
(3) When, A > 1, g (x) = Ax on [a, b], a < b < ∞.
Here we need b > logA (1 + Aa), and the restriction are on

[
logA (1 + Aa) , b

]
.

(4) When σ > 0, g (x) = xσ, 0 ≤ a < b < ∞.

Here we need b > (1 + aσ)
1
σ , and the restriction are on

[
(1 + aσ)

1
σ , b

]
.
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Chapter 23
Right Generalized High Order Fractional
Monotone Approximation

Here are applied the right general fractional derivatives Caputo type with respect
to a base absolutely continuous strictly increasing function g. We mention various
examples of such right fractional derivatives for different g. Let f be r -times contin-
uously differentiable function on [a, b], and let L be a linear right general fractional
differential operator such that L ( f ) is non-negative over a critical closed subin-
terval J of [a, b]. We can find a sequence of polynomials Qn of degree less-equal
n such that L (Qn) is non-negative over J , furthermore f is right fractionally and
simultaneously approximated uniformly by Qn over [a, b] .

The degree of this constrained approximation is given by inequalities employing
the high order modulus of smoothness of f (r). We end chapter with applications
of the main right fractional monotone approximation theorem for different g. It
follows [4].

23.1 Introduction

The topic of monotone approximation started in [13] has become a major trend in
approximation theory. A typical problem in this subject is: given a positive integer
k, approximate a given function whose kth derivative is ≥ 0 by polynomials having
this property.

In [7] the authors replaced the kth derivative with a linear differential operator of
order k.

Furthermore in [3], the author generalized the result of [7] for linear right fractional
differential operators.

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
Applications to Fractional Calculus, Studies in Computational Intelligence 624,
DOI 10.1007/978-3-319-26721-0_23
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To describe the motivating result here we need:

Definition 23.1 ([3]) Letα > 0 and �α� = m, (�·� ceiling of the number). Consider
f ∈ Cm ([−1, 1]). The right Caputo fractional derivative of f of order α anchored
at 1 is given by

(
Dα

1− f
)
(x) = (−1)m

� (m − α)

∫ 1

x
(t − x)m−α−1 f (m) (t) dt, (23.1.1)

for any x ∈ [−1, 1], where � is the gamma function.
In particular

D0
1− f (x) = f (x) , (23.1.2)

Dm
1− f (x) = (−1)m f (m) (x) , ∀ x ∈ [−1, 1] . (23.1.3)

Here ωs stands for the modulus of smoothness, see [8], p. 44.
We have proved:

Theorem 23.2 ([3]) Let h, v, r be integers, h is even, 1 ≤ h ≤ v ≤ r and let
f ∈ Cr ([−1, 1]), with f (r) having modulus of smoothness ωs

(
f (r), δ

)
there, s ≥ 1.

Let α j (x), j = h, h + 1, . . . , v be real functions, defined and bounded on [−1, 1]
and suppose αh (x) is either ≥ α > 0 or ≤ β < 0 on [−1, 0]. Let the real numbers
α0 = 0 < α1 ≤ 1 < α2 ≤ 2 < · · · < αr ≤ r . Consider the linear right fractional
differential operator

L∗ :=
v∑

j=h

α j (x)
[
D

α j

1−
]

(23.1.4)

and suppose, throughout [−1, 0],

L∗ ( f ) ≥ 0. (23.1.5)

Then, for any n ∈ N such that n ≥ max (4 (r + 1) , r + s), there exists a real
polynomial Qn of degree ≤ n such that

L∗ (Qn) ≥ 0 throughout [−1, 0] , (23.1.6)

and
sup

−1≤x≤1

∣∣(D
α j

1− f
)
(x) − (

D
α j

1− Qn
)
(x)

∣∣ ≤

2 j−α j

�
(

j − α j + 1
)

Cr,s

nr− j
ωs

(
f (r),

1

n

)
, (23.1.7)

j = h + 1, . . . , r; Cr,s is a constant independent of f and n.
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Set
l j :≡ sup

x∈[−1,1]

∣∣α−1
h (x) α j (x)

∣∣ , h ≤ j ≤ v. (23.1.8)

When j = 1, . . . , h we derive

sup
−1≤x≤1

∣∣(D
α j

1− f
)
(x) − (

D
α j

1−Qn
)
(x)

∣∣ ≤ Cr,s

nr−v
ωs

(
f (r),

1

n

)
·

[(
v∑

τ=h

lτ
2τ−ατ

� (τ − ατ + 1)

) (
h− j∑

λ=0

2h−α j −λ

λ!� (
h − α j − λ + 1

)

)

+ 2 j−α j

�
(

j − α j + 1
)

]

.

(23.1.9)
Finally it holds

sup
−1≤x≤1

| f (x) − Qn (x)| ≤

Cr,s

nr−v
ωs

(
f (r),

1

n

)[
1

h!
v∑

τ=h

lτ
2τ−ατ

� (τ − ατ + 1)
+ 1

]

. (23.1.10)

Notice above that the monotonicity property is only true on [−1, 0], see (23.1.5)
and (23.1.6). However the approximation properties (23.1.7), (23.1.9) and (23.1.10),
are true over the whole interval [−1, 1] .

In this chapter we extend Theorem 23.2 to much more general linear right frac-
tional differential operators.

We use here the following right generalised fractional integral:

Definition 23.3 (see also [10, p. 99]) The right generalised fractional integral of a
function f with respect to given function g is defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) (absolutely continuous
functions) and is striclty increasing, f ∈ L∞ ([a, b]). We set

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b, (23.1.11)

clearly
(

I α
b−;g f

)
(b) = 0.

When g is the identity function id, we get that I α
b−;id = I α

b−, the ordinary right
Riemann-Liouville fractional integral, where

(
I α
b− f

)
(x) = 1

� (α)

∫ b

x
(t − x)α−1 f (t) dt, x ≤ b, (23.1.12)

(
I α
b− f

)
(b) = 0.



376 23 Right Generalized High Order Fractional Monotone Approximation

When g (x) = ln x on [a, b], 0 < a < b < ∞, we get:

Definition 23.4 ([10, p. 110]) Let 0 < a < b < ∞, α > 0. The right Hadamard
fractional integral of order α is given by

(
Jα

b− f
)
(x) = 1

� (α)

∫ b

x

(
ln

y

x

)α−1 f (y)

y
dy, x ≤ b, (23.1.13)

where f ∈ L∞ ([a, b]) .

We mention:

Definition 23.5 ([6]) The right fractional exponential integral is defined as follows:
Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]). We set

(
I α
b−;ex f

)
(x) = 1

� (α)

∫ b

x

(
et − ex

)α−1
et f (t) dt, x ≤ b. (23.1.14)

Definition 23.6 ([6]) Let a, b ∈ R, a < b, α > 0, f ∈ L∞ ([a, b]), A > 1. We
introduce the right fractional integral

(
I α
b−;Ax f

)
(x) = ln A

� (α)

∫ b

x

(
At − Ax

)α−1
At f (t) dt, x ≤ b. (23.1.15)

We also give:

Definition 23.7 ([6]) Let α,σ > 0, 0 ≤ a < b < ∞, f ∈ L∞ ([a, b]). We set

(
K α

b−;xσ f
)
(x) = 1

� (α)

∫ b

x
(tσ − xσ)

α−1 f (t)σtσ−1dt, x ≤ b. (23.1.16)

We use the following general right fractional derivatives:

Definition 23.8 ([6]) Let α > 0 and �α� = m. Consider f ∈ ACm ([a, b]) (space
of functions f with f (m−1) ∈ AC ([a, b])). We define the right general fractional
derivative of f of order α as follows

(
Dα

b−;g f
)
(x) = (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t) f (m) (t) dt, (23.1.17)

for any x ∈ [a, b], where � is the gamma function.
We set

Dm
b−;g f (x) = (−1)m f (m) (x) , (23.1.18)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] . (23.1.19)

When g = id, then Dα
b− f = Dα

b−;id f is the right Caputo fractional derivative.
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So we have the specific general right fractional derivatives:

Definition 23.9 ([6])

Dα
b−;ln x f (x) = (−1)m

� (m − α)

∫ b

x

(
ln

y

x

)m−α−1 f (m) (y)

y
dy, 0 < a ≤ x ≤ b,

(23.1.20)

Dα
b−;ex f (x) = (−1)m

� (m − α)

∫ b

x

(
et − ex

)m−α−1
et f (m) (t) dt, a ≤ x ≤ b,

(23.1.21)
and

Dα
b−;Ax f (x) = (−1)m ln A

� (m − α)

∫ b

x

(
At − Ax

)m−α−1
At f (m) (t) dt, a ≤ x ≤ b,

(23.1.22)

(
Dα

b−;xσ f
)
(x) = (−1)m

� (m − α)

∫ b

x

(
tσ − xσ

)m−α−1
σtσ−1 f (m) (t) dt, 0 ≤ a ≤ x ≤ b.

(23.1.23)

We mention:

Theorem 23.10 ([5]) Let r ≥ 0 and s ≥ 1. Then there exists a sequence Q∗
n =

Q∗(r,s)
n of linear polynomial operators mapping Cr ([a, b]) into Pn, such that for all

f ∈ Cr ([a, b]) and all n ≥ max (4 (r + 1) , r + s) we have

∥
∥∥ f (k) − (

Q∗
n ( f )

)(k)
∥
∥∥∞,[a,b]

≤ Cr,s

(
b − a

2n

)r−k

ωs

(
f (r),

b − a

2n

)
, (23.1.24)

k = 0, 1, . . . , r, where the constant Cr,s is independent of n or f .

Remark 23.11 Here g ∈ AC ([a, b]) (absolutely continuous functions), g is increas-
ing over [a, b], α > 0.

Let g (a) = c, g (b) = d. We want to calculate

I =
∫ b

a
(g (t) − g (a))α−1 g′ (t) dt. (23.1.25)

Consider the function

f (y) = (y − g (a))α−1 = (y − c)α−1 , ∀ y ∈ [c, d] . (23.1.26)

We have that f (y) ≥ 0, it may be +∞ when y = c and 0 < α < 1, but f is
measurable on [c, d]. By [11], Royden, p. 107, Exercise 13 d, we get that

( f ◦ g) (t) g′ (t) = (g (t) − g (a))α−1 g′ (t) (23.1.27)
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is measurable on [a, b], and

I =
∫ d

c
(y − c)α−1 dy = (d − c)α

α
(23.1.28)

(notice that (y − c)α−1 is Riemann integrable).
That is

I = (g (b) − g (a))α

α
. (23.1.29)

Similarly it holds

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt = (g (b) − g (x))α

α
, ∀ x ∈ [a, b] . (23.1.30)

We need:

Theorem 23.12 ([1]) Let r > 0, F ∈ L∞ ([a, b]) and

G (s) :=
∫ b

s
(t − s)r−1 F (t) dt, all s ∈ [a, b] . (23.1.31)

Then G ∈ C ([a, b]) (absolutely continuous functions) for r ≥ 1 and G ∈ C ([a, b]),
when r ∈ (0, 1) .

We use:

Theorem 23.13 Let r > 0, a < b, F ∈ L∞ ([a, b]), g ∈ AC ([a, b]) and g is
strictly increasing.

Consider

B (s) :=
∫ b

s
(g (t) − g (s))r−1 g′ (t) F (t) dt, for all s ∈ [a, b] . (23.1.32)

Then B ∈ C ([a, b]) .

Proof There exists a Borel measurable function F∗ : [a, b] → R such that F = F∗,
a.e., and it holds

B (s) =
∫ b

s
(g (t) − g (s))r−1 g′ (t) F∗ (t) dt, for all s ∈ [a, b] . (23.1.33)

Notice that ∥∥F∗∥∥∞ = ‖F‖∞ < ∞. (23.1.34)
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We can write

B (s) =
∫ b

s
(g (t) − g (s))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) dt, for all s ∈ [a, b] .

(23.1.35)
By [2], we get that ∥∥F∗ ◦ g−1

∥∥∞,[g(a),g(b)] ≤ ‖F‖∞ . (23.1.36)

Nextwe consider the function (z − g (s))r−1
(
F∗ ◦ g−1

)
(z),where z ∈ [g (s) , g (b)],

the last is integrable over [g (s) , g (b)].
Since g is monotone, by [9], (g (t) − g (s))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) is inte-

grable on [s, b].
Furthermore, again by [9], it holds

ρ (g (s)) :=
∫ g(b)

g(s)
(z − g (s))r−1

(
F∗ ◦ g−1

)
(z) dz = (23.1.37)

∫ b

s
(g (t) − g (s))r−1 g′ (t)

(
F∗ ◦ g−1

)
(g (t)) dt =

∫ b

s
(g (t) − g (s))r−1 g′ (t) F∗ (t) dt = (23.1.38)

∫ b

s
(g (t) − g (s))r−1 g′ (t) F (t) dt = B (s) , all s ∈ [a, b] .

That is

B (s) =
∫ g(b)

g(s)
(z − g (s))r−1

(
F∗ ◦ g−1

)
(z) dz = ρ (g (s)) , all s ∈ [a, b] .

(23.1.39)
By Theorem 23.12 we have the function

ρ (y) =
∫ g(b)

y
(z − y)r−1

(
F∗ ◦ g−1

)
(z) dz, (23.1.40)

is continuous in y over [g (a) , g (b)] .
Let now sn, s ∈ [a, b] : sn → s, then g (sn) → g (s), and ρ (g (sn)) → ρ (g (s)),

that is B (sn) → B (s), as n → ∞, proving the continuity of B. �
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We need:

Corollary 23.14 Let g ∈ AC ([a, b]) and g is strictly increasing. Let α > 0, α /∈ N,

and �α� = m, f ∈ ACm ([a, b]) with f (m) ∈ L∞ ([a, b]). Then
(

Dα
b−;g f

)
∈

C ([a, b]).

Proof By Theorem 23.13. �

23.2 Main Result

We present:

Theorem 23.15 Here we assume that g (b) − g (a) > 1. Let h, v, r be integers, h
is even, 1 ≤ h ≤ v ≤ r and let f ∈ Cr ([a, b]), a < b, with f (r) having modulus
of smoothness ωs

(
f (r), δ

)
there, s ≥ 1. Let α j (x), j = h, h + 1, . . . , v be real

functions, defined and bounded on [a, b] and suppose for x ∈ [
a, g−1 (g (b) − 1)

]

that αh (x) is either ≥ α∗ > 0 or ≤ β∗ < 0. Let the real numbers α0 = 0 < α1 ≤
1 < α2 ≤ 2 < · · · < αr ≤ r . Here D

α j

b−;g f stands for the right general fractional
derivative of f of order α j anchored at b. Consider the linear right general fractional
differential operator

L :=
v∑

j=h

α j (x)
[

D
α j

b−;g
]

(23.2.1)

and suppose, throughout
[
a, g−1 (g (b) − 1)

]
,

L ( f ) ≥ 0. (23.2.2)

Then, for any n ∈ N such that n ≥ max (4 (r + 1) , r + s), there exists a real
polynomial Qn (x) of degree ≤ n such that

L (Qn) ≥ 0 throughout
[
a, g−1 (g (b) − 1)

]
, (23.2.3)

and
sup

a≤x≤b

∣∣∣
(

D
α j

b−;g f
)

(x) −
(

D
α j

b−;g Qn

)
(x)

∣∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (23.2.4)

j = h + 1, . . . , r; Cr,s is a constant independent of f and n.
Set

l j :≡ sup
x∈[a,b]

∣
∣α−1

h (x) α j (x)
∣
∣ , h ≤ j ≤ v. (23.2.5)
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When j = 1, . . . , h we derive

max
a≤x≤b

∣∣∣D
α j

b−;g f − D
α j

b−;g Qn

∣∣∣ ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
(g (b) − g (a)) j−α j

�
(

j − α j + 1
) ·

⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠ (max (|a| , |b|))h− j

(h − j)! +
(

b − a

2

)r− j
⎤

⎦ .

(23.2.6)
Finally it holds

sup
a≤x≤b

| f (x) − Qn (x)| ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
· (23.2.7)

⎡

⎣
(

b − a

2

)r
+ (h!)−1 max

(
|a|h , |b|h

)
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠

⎤

⎦ .

Proof of Theorem 23.15.
Here h, u, r ∈ Z+, 0 ≤ h ≤ u ≤ r. Let α j > 0, j = 1, . . . , r, such that

0 < α1 ≤ 1 < α2 ≤ 2 < α3 ≤ 3 · · · < · · · < αr ≤ r . That is
⌈
α j

⌉ = j ,
j = 1, . . . , r.

Let Q∗
n (x) be as in Theorem 23.10.

We have that

(
D

α j

b−;g f
)

(x) = (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) f ( j) (t) dt, (23.2.8)

and

(
D

α j

b−;g Q∗
n

)
(x) = (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) Q∗

n
( j) (t) dt,

(23.2.9)
j = 1, . . . , r.

Also it holds
(

D j
b−;g f

)
(x) = (−1) j f ( j) (x) ,

(
D j

b−;g Q∗
n

)
(x) = (−1) j Q∗( j)

n (x) , (23.2.10)

j = 1, . . . , r.
By [12], we get that there exists g′ a.e., and g′ is measurable and non-negative.
We notice that ∣∣∣

(
D

α j

b−;g f
)

(x) − D
α j

b−;g Q∗
n (x)

∣∣∣ =
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1

�
(

j − α j
)

∣∣∣∣

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t)

(
f ( j) (t) − Q∗( j)

n (t)
)

dt

∣∣∣∣ ≤

1

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t)

∣
∣ f ( j) (t) − Q∗( j)

n (t)
∣
∣ dt

(23.1.24)≤

1

�
(

j − α j
) ·

(∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) dt

)
Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
(23.1.30)=
(23.2.11)

(g (b) − g (x)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
. (23.2.12)

Hence ∀ x ∈ [a, b], it holds

∣∣∣
(

D
α j

b−;g f
)

(x) − D
α j

b−;g Q∗
n (x)

∣∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (23.2.13)

and
max

x∈[a,b]

∣
∣∣D

α j

b−;g f (x) − D
α j

b−;g Q∗
n (x)

∣
∣∣ ≤

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
, (23.2.14)

j = 0, 1, . . . , r.
Above we set D0

b−;g f (x) = f (x), D0
b−;g Q∗

n (x) = Q∗
n (x), ∀ x ∈ [a, b], and

α0 = 0, i.e. �α0� = 0.
Put

s j = sup
a≤x≤b

∣∣α−1
h (x) α j (x)

∣∣ , j = h, . . . , v, (23.2.15)
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and

ηn = Cr,sωs

(
f (r),

b − a

2n

)
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ .

(23.2.16)
I. Suppose, throughout

[
a, g−1 (g (b) − 1)

]
, αh (x) ≥ α∗ > 0. Let Qn (x), x ∈

[a, b], be a real polynomial of degree≤ n, according to Theorem23.10 and (23.2.14),
so that

max
x∈[a,b]

∣∣∣D
α j

b−;g
(

f (x) + ηn (h!)−1 xh
) −

(
D

α j

b−;g Qn

)
(x)

∣∣∣ ≤ (23.2.17)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
,

j = 0, 1, . . . , r.
In particular ( j = 0) holds

max
x∈[a,b]

∣∣( f (x) + ηn (h!)−1 xh
) − Qn (x)

∣∣ ≤ Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
,

(23.2.18)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
= (23.2.19)

Cr,sωs

(
f (r),

b − a

2n

) ⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ ·

(h!)−1 max
(|a|h , |b|h) + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
≤

Cr,sωs

(
f (r),

b − a

2n

)
nv−r ·

⎡

⎣

⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠ (h!)−1 max
(
|a|h , |b|h

)
+

(
b − a

2

)r
⎤

⎦ .

(23.2.20)
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We have found that

max
x∈[a,b]

| f (x) − Qn (x)| ≤ Cr,s

[(
b − a

2

)r

+ (h!)−1 max
(|a|h , |b|h) ·

⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
⎞

⎠

⎤

⎦ nv−rωs

(
f (r),

b − a

2n

)
, (23.2.21)

proving (23.2.7).
Notice for j = h + 1, . . . , v, that

(
D

α j

b−;gxh
)

= (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t)

(
th

)( j)
dt = 0.

(23.2.22)
Hence inequality (23.2.4) is obvious.

When j = 1, . . . , h, from (23.2.17) we get

∥∥∥D
α j

b−;g f − D
α j

b−;g Qn

∥∥∥∞,[a,b]
≤ ηn

∥
∥∥D

α j

b−;g
(
xh

)∥∥∥∞,[a,b]

h! + (23.2.23)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
(23.2.16)=

Cr,sωs

(
f (r),

b − a

2n

)
·

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
1

nr− j∗

⎞

⎠

∥∥∥D
α j

b−;g
(
xh

)∥∥∥∞,[a,b]

h!

+ (g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2

)r− j

ωs

(
f (r),

b − a

2n

)
1

nr− j
≤ (23.2.24)

Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
·

⎡

⎢
⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠

∥∥∥D
α j

b−;g
(
xh

)∥∥∥∞,[a,b]

h!

+ (g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
]

=: (φ) . (23.2.25)
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But we have ( j = 1, . . . , h)

D
α j

b−;g
(
xh

)

h! = (−1) j

�
(

j − α j
)

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t)

th− j

(h − j)!dt. (23.2.26)

Hence
∣∣∣D

α j

b−;g
(
xh

)∣∣∣

h! ≤ 1

�
(

j − α j
)
(h − j)!

∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) |t |h− j dt ≤

1

�
(

j − α j
)
(h − j)!

(∫ b

x
(g (t) − g (x)) j−α j −1 g′ (t) dt

)
(max (|a| , |b|))h− j

(23.2.27)
(23.1.30)= (max (|a| , |b|))h− j

�
(

j − α j
)
(h − j)!

(g (b) − g (x)) j−α j

j − α j
=

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (x)) j−α j ≤

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j . (23.2.28)

That is
∥∥∥D

α j

b−;g
(
xh

)∥∥∥∞,[a,b]

h! ≤ (max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j . (23.2.29)

Therefore we have

(φ) ≤ Cr,s

nr−v
ωs

(
f (r),

b − a

2n

) ⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠

(max (|a| , |b|))h− j

�
(

j − α j + 1
)
(h − j)! (g (b) − g (a)) j−α j + (g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2

)r− j
]

(23.2.30)

= Cr,s

nr−v
ωs

(
f (r),

b − a

2n

)
(g (b) − g (a)) j−α j

�
(

j − α j + 1
) ·
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⎡

⎣

⎛

⎝
v∑

j∗=h

s j∗
(g (b) − g (a)) j∗−α j∗

�
(

j∗ − α j∗ + 1
)

(
b − a

2

)r− j∗
⎞

⎠ (max (|a| , |b|))h− j

(h − j)! (23.2.31)

+
(

b − a

2

)r− j
]

,

proving (23.2.6).
Here

L =
v∑

j=h

α j (x)
[

D
α j

b−;g
]
,

and suppose, throughout
[
a, g−1 (g (b) − 1)

]
, L f ≥ 0. So over a ≤ x ≤ g−1

(g (b) − 1), we get

α−1
h (x) L (Qn (x))

(23.2.27)= α−1
h (x) L ( f (x)) + ηn

h!
(

Dαh
b−;g

(
xh

))+

v∑

j=h

α−1
h (x) α j (x)

[
D

α j

b−;g Qn (x) − D
α j

b−;g f (x) − ηn

h! D
α j

b−;gxh
] (23.2.17)≥ (23.2.32)

ηn

h!
(

Dαh
b−;g

(
xh

))−
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ Cr,sωs

(
f (r),

b − a

2n

)
(23.2.33)

(23.2.16)= ηn

h!
(

Dαh
b−;g

(
xh

)) − ηn = ηn

(
Dαh

b−;g
(
xh

)

h! − 1

)

= (23.2.34)

ηn

(
1

� (h − αh) h!
∫ b

x
(g (t) − g (x))h−αh−1 g′ (t)

(
th

)(h)
dt − 1

)
=

ηn

(
1

� (h − αh)

∫ b

x
(g (t) − g (x))h−αh−1 g′ (t) dt − 1

)
(23.1.30)=

ηn

(
(g (b) − g (x))h−αh

� (h − αh + 1)
− 1

)
= (23.2.35)

ηn

(
(g (b) − g (x))h−αh − � (h − αh + 1)

� (h − αh + 1)

)
≥
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ηn

(
1 − � (h − αh + 1)

� (h − αh + 1)

)
≥ 0. (23.2.36)

Clearly here g (b) − g (x) ≥ 1.
Hence

L (Qn (x)) ≥ 0, for x ∈ [
a, g−1 (g (b) − 1)

]
. (23.2.37)

A further explanation follows: We know � (1) = 1, � (2) = 1, and � is convex and
positive on (0,∞). Here 0 ≤ h − αh < 1 and 1 ≤ h − αh + 1 < 2. Thus

� (h − αh + 1) ≤ 1 and 1 − � (h − αh + 1) ≥ 0. (23.2.38)

II. Suppose, throughout
[
a, g−1 (g (b) − 1)

]
, αh (x) ≤ β∗ < 0.

Let Qn (x), x ∈ [a, b] be a real polynomial of degree ≤ n, according to Theorem
23.10 and (23.2.14), so that

max
x∈[a,b]

∣∣
∣D

α j

b−;g
(

f (x) − ηn (h!)−1 xh
) −

(
D

α j

b−;g Qn

)
(x)

∣∣
∣ ≤ (23.2.39)

(g (b) − g (a)) j−α j

�
(

j − α j + 1
) Cr,s

(
b − a

2n

)r− j

ωs

(
f (r),

b − a

2n

)
,

j = 0, 1, . . . , r.
In particular ( j = 0) holds

max
x∈[a,b]

∣
∣( f (x) − ηn (h!)−1 xh

) − Qn (x)
∣
∣ ≤ Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
,

(23.2.40)
and

max
x∈[a,b]

| f (x) − Qn (x)| ≤

ηn (h!)−1 (max (|a| , |b|))h + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
=

ηn (h!)−1 max
(|a|h , |b|h) + Cr,s

(
b − a

2n

)r

ωs

(
f (r),

b − a

2n

)
, (23.2.41)

etc.
So using triangle’s inequality on (23.2.39) and similar reasoning as in the first

part of the proof we establish again (23.2.4), (23.2.6) and (23.2.7).
Here again

L =
v∑

j=h

α j (x)
[

D
α j

b−;g
]
,
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and suppose, throughout
[
a, g−1 (g (b) − 1)

]
, L f ≥ 0. So over a ≤ x ≤ g−1

(g (b) − 1), we get

α−1
h (x) L (Qn (x))

(23.2.22)= α−1
h (x) L ( f (x)) − ηn

h!
(

Dαh
b−;g

(
xh

))+

v∑

j=h

α−1
h (x) α j (x)

[
D

α j

b−;g Qn (x) − D
α j

b−;g f (x) + ηn

h! D
α j

b−;gxh
] (23.2.39)≤ (23.2.42)

−ηn

h!
(

Dαh
b−;g

(
xh

)) +
⎛

⎝
v∑

j=h

s j
(g (b) − g (a)) j−α j

�
(

j − α j + 1
)

(
b − a

2n

)r− j
⎞

⎠ Cr,sωs

(
f (r),

b − a

2n

)
(23.2.16)=

(23.2.43)

− ηn

h!
(

Dαh
b−;g

(
xh

)) + ηn = ηn

(

1 − Dαh
b−;g

(
xh

)

h!

)

= (23.2.44)

ηn

(
1 − 1

� (h − αh) h!
∫ b

x
(g (t) − g (x))h−αh−1 g′ (t)

(
th

)(h)
dt

)
=

ηn

(
1 − 1

� (h − αh)

∫ b

x
(g (t) − g (x))h−αh−1 g′ (t) dt

)
(23.1.30)=

ηn

(
1 − (g (b) − g (x))h−αh

� (h − αh + 1)

)
= (23.2.45)

ηn

(
� (h − αh + 1) − (g (b) − g (x))h−αh

� (h − αh + 1)

)
(23.2.38)≤

ηn

(
1 − (g (b) − g (x))h−αh

� (h − αh + 1)

)
≤ 0. (23.2.46)

Hence again
L (Qn (x)) ≥ 0, ∀ x ∈ [

a, g−1 (g (b) − 1)
]
.

The case of αh = h is trivially concluded from the above. The proof of the theorem
is now over. �

We make:

Remark 23.16 By Corollary 23.14 we have that D
α j

b−;g f are continuous func-
tions, j = 0, 1, . . . , r . Suppose that αh (x) , . . . ,αv (x) are continuous functions
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on [a, b], and L ( f ) ≥ 0 on
[
a, g−1 (g (b) − 1)

]
is replaced by L ( f ) > 0 on[

a, g−1 (g (b) − 1)
]
. Disregard the assumption made in the main theorem on αh (x).

For n ∈ N, let Qn (x) be the Q∗
n (x) of Theorem 23.10, and f as in Theorem

23.10 (same as in Theorem 23.15). Then D
α j

b−;g Q∗
n converges uniformly to D

α j

b−;g f
at a higher rate given by inequality (23.2.14), in particular for h ≤ j ≤ v. More-
over, because L

(
Q∗

n

)
converges uniformly to L ( f ) on [a, b] , L

(
Q∗

n

)
> 0 on[

a, g−1 (g (b) − 1)
]
for sufficiently large n.

23.3 Applications (to Theorem 23.15)

(1) When g (x) = ln x on [a, b], 0 < a < b < ∞:
Here we need ae < b, and the restriction are on

[
a, b

e

]
.

(2) When g (x) = ex on [a, b], a < b < ∞:
Here we need b > ln (1 + ea), and the restriction are on

[
a, ln

(
eb − 1

)]
.

(3) When, A > 1, g (x) = Ax on [a, b], a < b < ∞:
Here we need b > logA (1 + Aa), and the restriction are

[
a, logA

(
Ab − 1

)]
.

(4) When σ > 0, g (x) = xσ, 0 ≤ a < b < ∞:

Here we need b > (1 + aσ)
1
σ , and the restriction are on

[
a, (bσ − 1)

1
σ

]
.
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Chapter 24
Advanced Fractional Taylor’s Formulae

Here are presented five new advanced fractional Taylor’s formulae under as weak as
possible assumptions. It follows [6].

24.1 Introduction

In [3] we proved:

Theorem 24.1 Let f, f ′, . . . , f (n); g, g′ be continuous functions from [a, b] (or
[b, a]) into R, n ∈ N. Assume that

(
g−1

)(k)
, k = 0, 1, . . . , n, are continuous func-

tions. Then it holds

f (b) = f (a) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (b) − g (a))k + Rn (a, b) , (24.1.1)

where

Rn (a, b) := 1

(n − 1)!
∫ b

a
(g (b) − g (s))n−1

(
f ◦ g−1

)(n)
(g (s)) g′ (s) ds (24.1.2)

= 1

(n − 1)!
∫ g(b)

g(a)

(g (b) − t)n−1
(

f ◦ g−1
)(n)

(t) dt.

Remark 24.2 Let g be strictly increasing and g ∈ AC ([a, b]) (absolutely continuous
functions). Set g ([a, b]) = [c, d], where c, d ∈ R, i.e. g (a) = c, g (b) = d, and call
l := f ◦ g−1.

Assume that l ∈ ACn ([c, d]) (i.e. l(n−1) ∈ AC ([c, d])).
[Obviously here it is implied that f ∈ C ([a, b]).]

© Springer International Publishing Switzerland 2016
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DOI 10.1007/978-3-319-26721-0_24
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Furthermore assume that
(

f ◦ g−1
)(n) ∈ L∞ ([c, d]). [By this very last assump-

tion, the function (g (b) − t)n−1
(

f ◦ g−1
)(n)

(t) is integrable over [c, d]. Since g ∈
AC ([a, b]) and it is increasing, by [10] the function (g (b) − g (s))n−1

(
f ◦ g−1

)(n)

(g (s)) g′ (s) is integrable on [a, b], and again by [10], (24.1.2) is valid in this general
setting.] Clearly (24.1.1) is now valid under these general assumptions.

24.2 Results

We need:

Lemma 24.3 Let g be strictly increasing and g ∈ AC ([a, b]). Assume that(
f ◦ g−1

)(m)
is Lebesgue measurable function over [c, d]. Then

∥
∥∥
(

f ◦ g−1
)(m)

∥
∥∥∞,[c,d]

≤
∥
∥∥
(

f ◦ g−1
)(m) ◦ g

∥
∥∥∞,[a,b]

, (24.2.1)

where
(

f ◦ g−1
)(m) ◦ g ∈ L∞ ([a, b]) .

Proof We observe by definition of ‖·‖∞ that:

∥∥∥
(

f ◦ g−1
)(m) ◦ g

∥∥∥∞,[a,b]
= (24.2.2)

inf
{

M : m
{

t ∈ [a, b] :
∣
∣∣
((

f ◦ g−1)(m) ◦ g
)

(t)
∣
∣∣ > M

}
= 0

}
,

where m is the Lebesgue measure.
Because g is absolutely continuous and strictly increasing function on [a, b], by

[12], p. 108, Exercise 14, we get that

m
{

z ∈ [c, d] :
∣∣∣
(

f ◦ g−1
)(m)

(z)
∣∣∣ > M

}
=

m
{
g (t) ∈ [c, d] :

∣
∣∣
(

f ◦ g−1
)(m)

(g (t))
∣
∣∣ > M

}
=

m
(
g

({
t ∈ [a, b] :

∣∣∣
(

f ◦ g−1
)(m)

(g (t))
∣∣∣ > M

}))
= 0,

given that

m
{

t ∈ [a, b] :
∣∣
∣
((

f ◦ g−1
)(m) ◦ g

)
(t)

∣∣
∣ > M

}
= 0.
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Therefore each M of (24.2.2) fulfills

M ∈
{

L : m
{

z ∈ [c, d] :
∣∣
∣
(

f ◦ g−1
)(m)

(z)
∣∣
∣ > L

}
= 0

}
. (24.2.3)

The last implies (24.2.1). �

We give:

Definition 24.4 (see also [11, p. 99]) The left and right fractional integrals, respec-
tively, of a function f with respect to given function g are defined as follows:

Let a, b ∈ R, a < b, α > 0. Here g ∈ AC ([a, b]) and is strictly increasing,
f ∈ L∞ ([a, b]). We set

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a, (24.2.4)

where � is the gamma function, clearly
(

I α
a+;g f

)
(a) = 0, I 0a+;g f := f and

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b, (24.2.5)

clearly
(

I α
b−;g f

)
(b) = 0, I 0b−;g f := f.

When g is the identity function id, we get that I α
a+;id = I α

a+, and I α
b−;id = I α

b−,
the ordinary left and right Riemann-Liouville fractional integrals, where

(
I α
a+ f

)
(x) = 1

� (α)

∫ x

a
(x − t)α−1 f (t) dt, x ≥ a, (24.2.6)

(
I α
a+ f

)
(a) = 0 andsss

(
I α
b− f

)
(x) = 1

� (α)

∫ b

x
(t − x)α−1 f (t) dt, x ≤ b, (24.2.7)

(
I α
b− f

)
(b) = 0.

In [5], we proved:

Lemma 24.5 Let g ∈ AC ([a, b]) which is strictly increasing and f Borel measur-
able in L∞ ([a, b]). Then f ◦ g−1 is Lebesgue measurable, and

‖ f ‖∞,[a,b] ≥ ∥∥ f ◦ g−1
∥∥∞,[g(a),g(b)] , (24.2.8)

i.e.
(

f ◦ g−1
) ∈ L∞ ([g (a) , g (b)]).
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If additionally g−1 ∈ AC ([g (a) , g (b)]), then

‖ f ‖∞,[a,b] = ∥∥ f ◦ g−1
∥∥∞,[g(a),g(b)] . (24.2.9)

Remark 24.6 We proved ([5]) that

(
I α
a+;g f

)
(x) = (

I α
g(a)+

(
f ◦ g−1)) (g (x)) , x ≥ a (24.2.10)

and (
I α
b−;g f

)
(x) = (

I α
g(b)−

(
f ◦ g−1)) (g (x)) , x ≤ b. (24.2.11)

It is well known that, if f is a Lebesgue measurable function, then there exists f ∗
a Borel measurable function, such that f = f ∗, a.e. Also it holds ‖ f ‖∞ = ‖ f ∗‖∞,
and

∫
. . . f . . . dx = ∫

. . . f ∗ . . . dx .

Of course a Borel measurable function is a Lebesgue measurable function.
Thus, by Lemma 24.5, we get

‖ f ‖∞,[a,b] = ∥
∥ f ∗∥∥∞,[a,b] ≥ ∥

∥ f ∗ ◦ g−1
∥
∥∞,[g(a),g(b)] . (24.2.12)

We observe the following:
Let α,β > 0, then

(
I β
a+;g

(
I α
a+;g f

))
(x) =

(
I β
a+;g

(
I α
a+;g f ∗)

)
(x) =

I β
g(a)+

((
I α
a+;g f ∗) ◦ g−1

)
(g (x)) = I β

g(a)+
(
I α
g(a)+

(
f ∗ ◦ g−1

) ◦ g ◦ g−1
)
(g (x))

(24.2.13)

=
(

I β
g(a)+ I α

g(a)+
(

f ∗ ◦ g−1
))

(g (x))
(by [8],p.14)=

(
I β+α
g(a)+ f ∗ ◦ g−1

)
(g (x)) =

(
I β+α
a+;g f ∗

)
(x) =

(
I β+α
a+;g f

)
(x) a.e.

The last is true for all x , if α + β ≥ 1 or f ∈ C ([a, b]).
We have proved the semigroup composition property

(
I α
a+;g I β

a+;g f
)

(x) =
(

I α+β
a+;g f

)
(x) =

(
I β
a+;g I α

a+;g f
)

(x) , x ≥ a, (24.2.14)

a.e., which is true for all x , if α + β ≥ 1 or f ∈ C ([a, b]).
Similarly we get

(
I β
b−;g

(
I α
b−;g f

))
(x) =

(
I β
b−;g

(
I α
b−;g f ∗)

)
(x) =

I β
g(b)−

((
I α
b−;g f ∗) ◦ g−1

)
(g (x)) = I β

g(b)−
(
I α
g(b)−

(
f ∗ ◦ g−1

) ◦ g ◦ g−1
)
(g (x))

(24.2.15)
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= I β
g(b)−

(
I α
g(b)−

(
f ∗ ◦ g−1

))
(g (x))

(by [1])=
(

I β+α
g(b)−

(
f ∗ ◦ g−1)

)
(g (x)) =

(
I β+α
b−;g f ∗

)
(x) =

(
I β+α
b−;g f

)
(x) a.e.,

true for all x ∈ [a, b], if α + β ≥ 1 or f ∈ C ([a, b]).
We have proved the semigroup property that

(
I α
b−;g I β

b−;g f
)

(x) =
(

I α+β
b−;g f

)
(x) =

(
I β
b−;g I α

b−;g f
)

(x) , a.e., x ≤ b, (24.2.16)

which is true for all x ∈ [a, b], if α + β ≥ 1 or f ∈ C ([a, b]) .

From now on without loss of generality, within integrals we may assume that
f = f ∗, and we mean that f = f ∗, a.e.
We make:

Definition 24.7 Let α > 0, 
α� = n, 
·� the ceiling of the number. Again here g ∈
AC ([a, b]) and strictly increasing. We assume that

(
f ◦ g−1

)(n) ◦ g ∈ L∞ ([a, b]).
We define the left generalized g-fractional derivative of f of order α as follows:

(
Dα

a+;g f
)
(x) := 1

� (n − α)

∫ x

a
(g (x) − g (t))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt ,

(24.2.17)
x ≥ a.

If α /∈ N, by [7], we have that Dα
a+;g f ∈ C ([a, b]).

We see that
(

I n−α
a+;g

((
f ◦ g−1

)(n) ◦ g
))

(x) = (
Dα

a+;g f
)
(x) , x ≥ a. (24.2.18)

We set
Dn

a+;g f (x) :=
((

f ◦ g−1
)(n) ◦ g

)
(x) , (24.2.19)

D0
a+;g f (x) = f (x) , ∀x ∈ [a, b] . (24.2.20)

When g = id, then
Dα

a+;g f = Dα
a+;id f = Dα

∗a f, (24.2.21)

the usual left Caputo fractional derivative.

We make:

Remark 24.8 Under the assumption that
(

f ◦ g−1
)(n)◦g ∈ L∞ ([a, b]), which could

be considered as Borel measurable within integrals, we obtain



396 24 Advanced Fractional Taylor’s Formulae

(
I α
a+;g Dα

a+;g f
)
(x) =

(
I α
a+;g

(
I n−α
a+;g

((
f ◦ g−1

)(n) ◦ g
)))

(x) =
(

I α+n−α
a+;g

((
f ◦ g−1

)(n) ◦ g
))

(x) = I n
a+;g

((
f ◦ g−1

)(n) ◦ g
)

(x) = (24.2.22)

1

(n − 1)!
∫ x

a
(g (x) − g (t))n−1 g′ (t)

((
f ◦ g−1

)(n) ◦ g
)

(t) dt.

We have proved that

(
I α
a+;g Dα

a+;g f
)
(x) = 1

(n − 1)!
∫ x

a
(g (x) − g (t))n−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt

(24.2.23)
= Rn (a, x) , ∀x ≥ a,

see (24.1.2).
But also it holds

Rn (a, x) = (
I α
a+;g Dα

a+;g f
)
(x) = (24.2.24)

1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt, x ≥ a.

We have proved the following g-left fractional generalized Taylor’s formula:

Theorem 24.9 Let g be strictly increasing function and g ∈ AC ([a, b]). We assume
that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), where N 
 n = 
α�, α > 0. Also we assume

that
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) = f (a) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (x) − g (a))k +

1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt, ∀x ∈ [a, b] . (24.2.25)

Calling Rn (a, x) the remainder of (24.2.25), we get that

Rn (a, x) = 1

� (α)

∫ g(x)

g(a)

(g (x) − z)α−1
((

Dα
a+;g f

) ◦ g−1
)
(z) dz, ∀x ∈ [a, b] .

(24.2.26)

Remark 24.10 By [7], Rn (a, x) is a continuous function in x ∈ [a, b]. Also, by
[10], change of variable in Lebesgue integrals, (24.2.26) is valid.
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By [3] we have:

Theorem 24.11 Let f, f ′, . . . , f (n); g, g′ be continuous from [a, b] into R, n ∈ N.
Assume that

(
g−1

)(k)
, k = 0, 1, . . . , n, are continuous. Then

f (x) = f (b) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (b))

k! (g (x) − g (b))k + Rn (b, x) , (24.2.27)

where

Rn (b, x) := 1

(n − 1)!
∫ x

b
(g (x) − g (s))n−1 (

f ◦ g−1)(n)
(g (s)) g′ (s) ds

(24.2.28)

= 1

(n − 1)!
∫ g(x)

g(b)

(g (x) − t)n−1
(

f ◦ g−1
)(n)

(t) dt, ∀x ∈ [a, b] . (24.2.29)

Notice that (24.2.27)–(24.2.29) are valid under more general weaker assump-
tions, as follows: g is strictly increasing and g ∈ AC ([a, b]),

(
f ◦ g−1

) ∈
ACn ([g (a) , g (b)]), and

(
f ◦ g−1

)(n) ∈ L∞ ([g (a) , g (b)]) .

We make:

Definition 24.12 Here we assume that
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]), where N 


n = 
α�, α > 0.We define the right generalized g-fractional derivative of f of order
α as follows:

(
Dα

b−;g f
)
(x) := (−1)n

� (n − α)

∫ b

x
(g (t) − g (x))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt ,

(24.2.30)
all x ∈ [a, b] .

If α /∈ N, by [8], we get that
(

Dα
b−;g f

)
∈ C ([a, b]).

We see that

I n−α
b−;g

(
(−1)n

(
f ◦ g−1)(n) ◦ g

)
(x) = (

Dα
b−;g f

)
(x) , a ≤ x ≤ b. (24.2.31)

We set
Dn

b−;g f (x) = (−1)n
((

f ◦ g−1
)(n) ◦ g

)
(x) , (24.2.32)

D0
b−;g f (x) = f (x) , ∀x ∈ [a, b] .

When g = id, then
Dα

b−;g f (x) = Dα
b−;id f (x) = Dα

b− f, (24.2.33)

the usual right Caputo fractional derivative.
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We make:

Remark 24.13 Furthermore it holds

(
I α
b−;g Dα

b−;g f
)
(x) =

(
I α
b−;g I n−α

b−;g
(
(−1)n

(
f ◦ g−1)(n) ◦ g

))
(x) =

(
I n
b−;g

(
(−1)n

(
f ◦ g−1

)(n) ◦ g
))

(x) = (−1)n
(

I n
b−;g

((
f ◦ g−1

)(n) ◦ g
))

(x)

(24.2.34)

= (−1)n

(n − 1)!
∫ b

x
(g (t) − g (x))n−1 g′ (t)

((
f ◦ g−1)(n) ◦ g

)
(t) dt =

(−1)2n

(n − 1)!
∫ x

b
(g (x) − g (t))n−1 g′ (t)

((
f ◦ g−1

)(n) ◦ g
)

(t) dt =

1

(n − 1)!
∫ x

b
(g (x) − g (t))n−1 g′ (t)

((
f ◦ g−1

)(n) ◦ g
)

(t) dt = Rn (b, x) ,

(24.2.35)
as in (24.2.28).

That is
Rn (b, x) = (

I α
b−;g Dα

b−;g f
)
(x) =

1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt, all a ≤ x ≤ b. (24.2.36)

We have proved the g-right generalized fractional Taylor’s formula:

Theorem 24.14 Let g be strictly increasing function and g ∈ AC ([a, b]). We
assume that

(
f ◦ g−1

) ∈ ACn ([g (a) , g (b)]), where N 
 n = 
α�, α > 0. Also we

assume that
(

f ◦ g−1
)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) = f (b) +
n−1∑

k=1

(
f ◦ g−1

)(k)
(g (b))

k! (g (x) − g (b))k +

1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt, all a ≤ x ≤ b. (24.2.37)

Calling Rn (b, x) the remainder in (24.2.37), we get that

Rn (b, x) = 1

� (α)

∫ g(b)

g(x)

(z − g (x))α−1 ((
Dα

b−;g f
) ◦ g−1) (z) dz, ∀x ∈ [a, b] .

(24.2.38)

Remark 24.15 By [8], Rn (b, x) is a continuous function in x ∈ [a, b]. Also, by [10],
change of variable in Lebesgue integrals, (24.2.38) is valid.
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Basics 24.16 The right Riemann-Liouville fractional integral of order α > 0, f ∈
L1 ([a, b]), a < b, is defined as follows:

I α
b− f (x) := 1

� (α)

∫ b

x
(z − x)α−1 f (z) dz, ∀x ∈ [a, b] . (24.2.39)

I 0b− := I (the identity operator).

Let α,β ≥ 0, f ∈ L1 ([a, b]). Then, by [1], we have

I α
b− I β

b− f = I α+β
b− f = I β

b− I α
b− f, (24.2.40)

valid a.e. on [a, b]. If f ∈ C ([a, b]) or α + β ≥ 1, then the last identity is true on
all of [a, b] .

The right Caputo fractional derivative of order α > 0, m = 
α�, f ∈
ACm ([a, b]) is defined as follows:

Dα
b− f (x) := (−1)m I m−α

b− f (m) (x) , (24.2.41)

that is

Dα
b− f (x) = (−1)m

� (m − α)

∫ b

x
(z − x)m−α−1 f (m) (z) dz, ∀x ∈ [a, b] , (24.2.42)

with Dm
b− f (x) := (−1)m f (m) (x) .

By [1], we have the following right fractional Taylor’s formula:
Let f ∈ ACm ([a, b]) , x ∈ [a, b] ,α > 0, m = 
α�, then

f (x) −
m−1∑

k=0

f (k) (b)

k! (x − b)k = 1

� (α)

∫ b

x
(z − x)α−1 Dα

b− f (z) dz = (24.2.43)

(
I α
b− Dα

b− f
)
(x) = (−1)m

(
I α
b− I m−α

b− f (m)
)
(x) = (−1)m

(
I m
b− f (m)

)
(x) =

(−1)m 1

(m − 1)!
∫ b

x
(z − x)m−1 f (m) (z) dz =

(−1)m (−1)m

(m − 1)!
∫ x

b
(x − z)m−1 f (m) (z) dz = (24.2.44)

1

(m − 1)!
∫ x

b
(x − z)m−1 f (m) (z) dz.
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That is (
I α
b− Dα

b− f
)
(x) = (−1)m

(
I m
b− f (m)

)
(x) =

f (x) −
m−1∑

k=0

f (k) (b)

k! (x − b)k = 1

(m − 1)!
∫ x

b
(x − z)m−1 f (m) (z) dz. (24.2.45)

We make:

Remark 24.17 If 0 < α ≤ 1, then m = 1, hence

(
I α
b− Dα

b− f
)
(x) = f (x) − f (b) (24.2.46)

= 1

� (α)

∫ b

x
(z − x)α−1 Dα

b− f (z) dz =: (ψ1) .

[Let f ′ ∈ L∞ ([a, b]), then by [4], we get that Dα
b− f ∈ C ([a, b]), 0 < α < 1,

where
(
Dα

b− f
)
(x) = (−1)

� (1 − α)

∫ b

x
(z − x)−α f ′ (z) dz, (24.2.47)

with
(
D1

b− f
)
(x) = − f ′ (x) .

Also (z − x)α−1 > 0, over (x, b), and

∫ b

x
(z − x)α−1 dz = (b − x)α

α
< ∞, for any 0 < α ≤ 1, (24.2.48)

thus (z − x)α−1 is integrable over [x, b] .]

By the first mean value theorem for integration, when 0 < α < 1, we get that

(ψ1) =
(
Dα

b− f
)
(ξx )

� (α)

∫ b

x
(z − x)α−1 dz =

(
Dα

b− f
)
(ξx )

� (α)

(b − x)α

α
(24.2.49)

=
(
Dα

b− f
)
(ξx )

� (α + 1)
(b − x)α , ξx ∈ [x, b] .

Thus, we obtain

f (x) − f (b) =
(
Dα

b− f
)
(ξx )

� (α + 1)
(b − x)α , ξx ∈ [x, b] , (24.2.50)

where f ∈ AC ([a, b]) .
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We have proved:

Theorem 24.18 (Right generalized mean value theorem) Let f ∈ AC ([a, b]), f ′ ∈
L∞ ([a, b]), 0 < α < 1. Then

f (x) − f (b) =
(
Dα

b− f
)
(ξx )

� (α + 1)
(b − x)α , (24.2.51)

with x ≤ ξx ≤ b, where x ∈ [a, b] .

If f ∈ C ([a, b]) and there exists f ′ (x), for any x ∈ (a, b), then

f (x) − f (b) = (−1) f ′ (ξx ) (b − x) , (24.2.52)

equivalently,
f (b) − f (x) = f ′ (ξx ) (b − x) , (24.2.53)

the usual mean value theorem.
We make:

Remark 24.19 In general: we notice the following

∣∣Dα
b− f (x)

∣∣ ≤ 1

� (m − α)

∫ b

x
(z − x)m−α−1

∣∣ f (m) (z)
∣∣ dz

(assuming f (m) ∈ L∞ ([a, b]))

≤
∥∥ f (m)

∥∥∞
� (m − α)

∫ b

x
(z − x)m−α−1 dz =

∥∥ f (m)
∥∥∞

� (m − α)

(b − x)m−α

m − α
(24.2.54)

=
∥∥ f (m)

∥∥∞
� (m − α + 1)

(b − x)m−α ≤
∥∥ f (m)

∥∥∞
� (m − α + 1)

(b − a)m−α .

So when f (m) ∈ L∞ ([a, b]) we get that

Dα
b− f (b) = 0, where α /∈ N, (24.2.55)

and
∥
∥Dα

b− f
∥
∥∞ ≤

∥∥ f (m)
∥∥∞

� (m − α + 1)
(b − a)m−α . (24.2.56)

In particular when f ′ ∈ L∞ ([a, b]), 0 < α < 1, we have that

Dα
b− f (b) = 0. (24.2.57)
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Notation 24.20 Denote by

Dnα
b− := Dα

b− Dα
b− . . . Dα

b− (n times), n ∈ N. (24.2.58)

Also denote by
I nα
b− := I α

b− I α
b− . . . I α

b− (n times), n ∈ N. (24.2.59)

We have:

Theorem 24.21 Suppose that Dnα
b− f , D(n+1)α

b− f ∈ C ([a, b]), 0 < α ≤ 1. Then

(
I nα
b− Dnα

b− f
)
(x) −

(
I (n+1)α
b− D(n+1)α

b− f
)

(x) = (b − x)nα

� (nα + 1)

(
Dnα

b− f
)
(b) . (24.2.60)

Proof By (24.2.40) we get that

(
I nα
b− Dnα

b− f
)
(x) −

(
I (n+1)α
b− D(n+1)α

b− f
)

(x) =

I nα
b−

((
Dnα

b− f
)
(x) −

(
I α
b− D(n+1)α

b− f
)

(x)
)

=

I nα
b−

((
Dnα

b− f
)
(x) − ((

I α
b− Dα

b−
) (

Dnα
b− f

))
(x)

) (24.1.48)=

I nα
b−

((
Dnα

b− f
)
(x) − (

Dnα
b− f

)
(x) + (

Dnα
b− f

)
(b)

) = (24.2.61)

I nα
b−

((
Dnα

b− f
)
(b)

) = (b − x)nα

� (nα + 1)

(
Dnα

b− f
)
(b) .

�

Remark 24.22 Suppose that Dkα
b− f ∈ C ([a, b]), for k = 0, 1, . . . , n+1; 0 < α ≤ 1.

By (24.2.60) we get that

n∑

i=0

((
I iα
b− Diα

b− f
)
(x) −

(
I (i+1)α
b− D(i+1)α

b− f
)

(x)
)

=
n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) . (24.2.62)

That is

f (x) −
(

I (n+1)α
b− D(n+1)α

b− f
)

(x) =
n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) . (24.2.63)
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Hence it holds

f (x) =
n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) +

(
I (n+1)α
b− D(n+1)α

b− f
)

(x) = (24.2.64)

n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) + R∗ (x, b) ,

where

R∗ (x, b) := 1

� ((n + 1) α)

∫ b

x
(z − x)(n+1)α−1

(
D(n+1)α

b− f
)

(z) dz. (24.2.65)

We see that (there exists ξx ∈ [x, b]:)

R∗ (x, b) =
(

D(n+1)α
b− f

)
(ξx )

� ((n + 1)α)

∫ b

x
(z − x)(n+1)α−1 dz =

(
D(n+1)α

b− f
)

(ξx )

� ((n + 1) α)

(b − x)(n+1)α

(n + 1) α
=

(
D(n+1)α

b− f
)

(ξx )

� ((n + 1)α + 1)
(b − x)(n+1)α . (24.2.66)

We have proved the following right generalized fractional Taylor’s formula:

Theorem 24.23 Suppose that Dkα
b− f ∈ C ([a, b]), for k = 0, 1, . . . , n + 1, where

0 < α ≤ 1. Then

f (x) =
n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) + (24.2.67)

1

� ((n + 1) α)

∫ b

x
(z − x)(n+1)α−1

(
D(n+1)α

b− f
)

(z) dz =

n∑

i=0

(b − x)iα

� (iα + 1)

(
Diα

b− f
)
(b) +

(
D(n+1)α

b− f
)

(ξx )

� ((n + 1)α + 1)
(b − x)(n+1)α , (24.2.68)

where ξx ∈ [x, b], with x ∈ [a, b] .

We make:

Remark 24.24 Letα > 0,m = 
α�, g is strictly increasing and g ∈ AC ([a, b]). Call
l = f ◦g−1, f : [a, b] → R.Assume that l ∈ ACm ([c, d]) (i.e. l(m−1) ∈ AC ([c, d]))
(where g ([a, b]) = [c, d], c, d ∈ R : g (a) = c, g (b) = d; hence here f is
continuous on [a, b]).

Assume also that
(

f ◦ g−1
)(m) ◦ g ∈ L∞ ([a, b]) .
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The right generalized g-fractional derivative of f of orderα is defined as follows:

(
Dα

b−;g f
)

(x) := (−1)m

� (m − α)

∫ b

x
(g (t) − g (x))m−α−1 g′ (t)

(
f ◦ g−1)(m)

(g (t)) dt ,

(24.2.69)
a ≤ x ≤ b.

We saw that

I m−α
b−;g

(
(−1)m

(
f ◦ g−1

)(m) ◦ g
)

(x) = (
Dα

b−;g f
)
(x) , a ≤ x ≤ b. (24.2.70)

We proved earlier (24.2.35)–(24.15) that (a ≤ x ≤ b)

(
I α
b−;g Dα

b−;g f
)
(x) =

1

(m − 1)!
∫ x

b
(g (x) − g (t))m−1 g′ (t)

((
f ◦ g−1

)(m) ◦ g
)

(t) dt = (24.2.71)

1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt =

f (x) − f (b) −
m−1∑

k=1

(
f ◦ g−1

)(k)
(g (b))

k! (g (x) − g (b))k .

If 0 < α ≤ 1, then m = 1, hence

(
I α
b−;g Dα

b−;g f
)
(x) = f (x) − f (b) (24.2.72)

= 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt

(when α ∈ (0, 1), Dα
b−;g f is continuous on [a, b] and)

=
(

Dα
b−;g f

)
(ξx )

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt =

(
Dα

b−;g f
)

(ξx )

� (α + 1)
(g (b) − g (x))α ,

(24.2.73)
where ξx ∈ [x, b] .

We have proved:

Theorem 24.25 (right generalized g-mean value theorem) Let 0 < α < 1, and
f ◦ g−1 ∈ AC ([c, d]),

(
f ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]), where g strictly increasing,
g ∈ AC ([a, b]), f : [a, b] → R. Then
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f (x) − f (b) =
(

Dα
b−;g f

)
(ξx )

� (α + 1)
(g (b) − g (x))α , (24.2.74)

where ξx ∈ [x, b], for x ∈ [a, b].

Denote by

Dnα
b−;g := Dα

b−;g Dα
b−;g . . . Dα

b−;g (n times), n ∈ N. (24.2.75)

Also denote by
I nα
b−;g := I α

b−;g I α
b−;g . . . I α

b−;g (n times). (24.2.76)

Here to remind

(
I α
b−;g f

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) f (t) dt, x ≤ b. (24.2.77)

We need:

Theorem 24.26 Suppose that Fk := Dkα
b−;g f , k = n, n + 1, fulfill Fk ◦ g−1 ∈

AC ([c, d]), and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]), 0 < α ≤ 1, n ∈ N. Then

(
I nα
b−;g Dnα

b−;g f
)
(x) −

(
I (n+1)α
b−;g D(n+1)α

b−;g f
)

(x) = (g (b) − g (x))nα

� (nα + 1)

(
Dnα

b−;g f
)
(b) .

(24.2.78)

Proof By semigroup property of I α
b−;g , we get

(
I nα
b−;g Dnα

b−;g f
)
(x) −

(
I (n+1)α
b−;g D(n+1)α

b−;g f
)

(x) =
(

I nα
b−;g

(
Dnα

b−;g f − I α
b−;g D(n+1)α

b−;g f
))

(x) = (24.2.79)

(
I nα
b−;g

(
Dnα

b−;g f − (
I α
b−;g Dα

b−;g
) (

Dnα
b−;g f

)))
(x)

(24.1.74)=
(
I nα
b−;g

(
Dnα

b−;g f − Dnα
b−;g f + Dnα

b−;g f (b)
))

(x) =
(
I nα
b−;g

(
Dnα

b−;g f (b)
))

(x) = (
Dnα

b−;g f (b)
) (

I nα
b−;g (1)

)
(x) = (24.2.80)

[Notice that

(
I α
b−;g1

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t) dt = (24.2.81)
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1

� (α)

(g (b) − g (x))α

α
= 1

� (α + 1)
(g (b) − g (x))α .

Thus we have
(
I α
b−;g1

)
(x) = (g (b) − g (x))α

� (α + 1)
. (24.2.82)

Hence it holds

(
I 2αb−;g1

)
(x) = 1

� (α)

∫ b

x
(g (t) − g (x))α−1 g′ (t)

(g (b) − g (t))α

� (α + 1)
dt =

1

� (α) � (α + 1)

∫ b

x
(g (b) − g (t))α (g (t) − g (x))α−1 g′ (t) dt =

1

� (α) � (α + 1)

∫ g(b)

g(x)

(g (b) − z)(α+1)−1 (z − g (x))α−1 dz =

1

� (α) � (α + 1)

� (α + 1) � (α)

� (2α + 1)
(g (b) − g (x))2α = 1

� (2α + 1)
(g (b) − g (x))2α ,

(24.2.83)
etc.]

= (
Dnα

b−;g f
)
(b)

(g (b) − g (x))nα

� (nα + 1)
, (24.2.84)

proving the claim. �

We make:

Remark 24.27 Suppose that Fk = Dkα
b−;g f , for k = 0, 1, . . . , n + 1; are as in last

Theorem 24.26, 0 < α ≤ 1. By (24.2.78) we get

n∑

i=0

((
I iα
b−;g Diα

b−;g f
)
(x) − I (i+1)α

b−;g D(i+1)α
b−;g f (x)

)
= (24.2.85)

n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) .

That is
(notice that I 0b−;g f = D0

b−;g f = f )

f (x) −
(

I (n+1)α
b−;g D(n+1)α

b−;g f
)

(x) =
n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) . (24.2.86)
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Hence

f (x) =
n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) +

(
I (n+1)α
b−;g D(n+1)α

b−;g f
)

(x) =
(24.2.87)

n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) + Rg (x, b) , (24.2.88)

where

Rg (x, b) := 1

� ((n + 1) α)

∫ b

x
(g (t) − g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

b−;g f
)

(t) dt.

(24.2.89)
(here D(n+1)α

b−;g f is continuous over [a, b]).
Hence it holds

Rg (x, b) =
(

D(n+1)α
b−;g f

)
(ψx )

� ((n + 1) α)

∫ b

x
(g (t) − g (x))(n+1)α−1 g′ (t) dt =

(
D(n+1)α

b−;g f
)

(ψx )

� ((n + 1) α)

(g (b) − g (x))(n+1)α

(n + 1) α
=

(
D(n+1)α

b−;g f
)

(ψx )

� ((n + 1) α + 1)
(g (b) − g (x))(n+1)α ,

(24.2.90)
where ψx ∈ [x, b] .

We have proved the following g-right generalized modified Taylor’s formula:

Theorem 24.28 Suppose that Fk := Dkα
b−;g f , for k = 0, 1, . . . , n + 1, fulfill: Fk ◦

g−1 ∈ AC ([c, d]) and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]) , where 0 < α ≤ 1. Then

f (x) =
n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) +

1

� ((n + 1) α)

∫ b

x
(g (t) − g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

b−;g f
)

(t) dt = (24.2.91)

n∑

i=0

(g (b) − g (x))iα

� (iα + 1)

(
Diα

b−;g f
)
(b) +

(
D(n+1)α

b−;g f
)

(ψx )

� ((n + 1) α + 1)
(g (b) − g (x))(n+1)α ,

(24.2.92)
where ψx ∈ [x, b], any x ∈ [a, b] .
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We make:

Remark 24.29 Letα > 0,m = 
α�, g is strictly increasing and g ∈ AC ([a, b]). Call
l = f ◦ g−1, f : [a, b] → R. Assume l ∈ ACm ([c, d]) (i.e. l(m−1) ∈ AC ([c, d]))
(where g ([a, b]) = [c, d], c, d ∈ R : g (a) = c, g (b) = d, hence here f is
continuous on [a, b]).

Assume also that
(

f ◦ g−1
)(m) ◦ g ∈ L∞ ([a, b]) .

The left generalized g-fractional derivative of f of order α is defined as follows:

(
Dα

a+;g f
)
(x) = 1

� (m − α)

∫ x

a
(g (x) − g (t))m−α−1 g′ (t)

(
f ◦ g−1)(m)

(g (t)) dt ,

(24.2.93)
x ≥ a.

If α /∈ N, then
(

Dα
a+;g f

)
∈ C ([a, b]) .

We see that
(

I m−α
a+;g

((
f ◦ g−1

)(m) ◦ g
))

(x) = (
Dα

a+;g f
)
(x) , x ≥ a. (24.2.94)

We proved earlier (24.2.22)–(24.2.25), that (a ≤ x ≤ b)

(
I α
a+;g Dα

a+;g f
)
(x) =

1

(m − 1)!
∫ x

a
(g (x) − g (t))m−1 g′ (t)

((
f ◦ g−1)(m) ◦ g

)
(t) dt = (24.2.95)

1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt =

f (x) − f (a) −
m−1∑

k=1

(
f ◦ g−1

)(k)
(g (a))

k! (g (x) − g (a))k . (24.2.96)

If 0 < α ≤ 1, then m = 1, and then

(
I α
a+;g Dα

a+;g f
)
(x) = f (x) − f (a) (24.2.97)

= 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt

(α∈(0,1) case)=
(

Dα
a+;g f

)
(ξx )

� (α + 1)
(g (x) − g (a))α , (24.2.98)

where ξx ∈ [a, x] , any x ∈ [a, b] .
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We have proved:

Theorem 24.30 (left generalized g-mean value theorem) Let 0 < α < 1 and f ◦
g−1 ∈ AC ([c, d]) and

(
f ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]), where g strictly increasing,
g ∈ AC ([a, b]), f : [a, b] → R. Then

f (x) − f (a) =
(

Dα
a+;g f

)
(ξx )

� (α + 1)
(g (x) − g (a))α , (24.2.99)

where ξx ∈ [a, x], any x ∈ [a, b] .

Denote by

Dnα
a+;g := Dα

a+;g Dα
a+;g . . . Dα

a+;g (n times), n ∈ N. (24.2.100)

Also denote by
I nα
a+;g := I α

a+;g I α
a+;g . . . I α

a+;g (n times). (24.2.101)

Here to remind

(
I α
a+;g f

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) f (t) dt, x ≥ a. (24.2.102)

By convention I 0a+;g = D0
a+;g = I (identity operator).

We give:

Theorem 24.31 Suppose that Fk := Dkα
a+;g f , k = n, n + 1, fulfill Fk ◦ g−1 ∈

AC ([c, d]), and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]), 0 < α ≤ 1, n ∈ N. Then

(
I nα
a+;g Dnα

a+;g f
)
(x) −

(
I (n+1)α
a+;g D(n+1)α

a+;g f
)

(x) = (g (x) − g (a))nα

� (nα + 1)

(
Dnα

a+;g f
)
(a) .

(24.2.103)

Proof By semigroup property of I α
a+;g , we get

(
I nα
a+;g Dnα

a+;g f
)
(x) −

(
I (n+1)α
a+;g D(n+1)α

a+;g f
)

(x) =
(

I nα
a+;g

(
Dnα

a+;g f − I α
a+;g D(n+1)α

a+;g f
))

(x) = (24.2.104)

(
I nα
a+;g

(
Dnα

a+;g f − (
I α
a+;g Dα

a+;g
) (

Dnα
a+;g f

)))
(x)

(24.1.99)=
(
I nα
a+;g

(
Dnα

a+;g f − Dnα
a+;g f + Dnα

a+;g f (a)
))

(x) =
(
I nα
a+;g

(
Dnα

a+;g f (a)
))

(x) = (
Dnα

a+;g f (a)
) (

I nα
a+;g (1)

)
(x) = (24.2.105)
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[notice that
(
I α
a+;g1

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t) dt

= (g (x) − g (a))α

� (α + 1)
. (24.2.106)

Hence

(
I 2αa+;g1

)
(x) = 1

� (α)

∫ x

a
(g (x) − g (t))α−1 g′ (t)

(g (t) − g (a))α

� (α + 1)
dt =
(24.2.107)

1

� (α) � (α + 1)

∫ x

a
(g (x) − g (t))α−1 g′ (t) (g (t) − g (a))α dt =

1

� (α) � (α + 1)

∫ g(x)

g(a)

(g (x) − z)α−1 (z − g (a))(α+1)−1 dt =

1

� (α) � (α + 1)

� (α) � (α + 1)

� (2α + 1)
(g (x) − g (a))2α .

That is
(
I 2αa+;g1

)
(x) = (g (x) − g (a))2α

� (2α + 1)
, (24.2.108)

etc.]

= (
Dnα

a+;g f (a)
) (g (x) − g (a))nα

� (nα + 1)
, (24.2.109)

proving the claim. �

Remark 24.32 Suppose that Fk = Dkα
a+;g f , for k = 0, 1, . . . , n + 1; are as in

Theorem 24.31, 0 < α ≤ 1. By (24.2.103) we get

n∑

i=0

((
I iα
a+;g Diα

a+;g f
)
(x) − I (i+1)α

a+;g D(i+1)α
a+;g f (x)

)
= (24.2.110)

n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) .

That is

f (x) −
(

I (n+1)α
a+;g D(n+1)α

a+;g f
)

(x) =
n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) .
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Hence

f (x) =
n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) +

(
I (n+1)α
a+;g D(n+1)α

a+;g f
)

(x) =
(24.2.111)

n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) + Rg (a, x) , (24.2.112)

where

Rg (a, x) := 1

� ((n + 1) α)

∫ x

a
(g (x) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

a+;g f
)

(t) dt.

(24.2.113)
(there D(n+1)α

a+;g f is continuous over [a, b] .)
Hence it holds

Rg (a, x) =
(

D(n+1)α
a+;g f

)
(ψx )

� ((n + 1)α)

(∫ x

a
(g (x) − g (t))(n+1)α−1 g′ (t) dt

)
=

(
D(n+1)α

a+;g f
)

(ψx )

� ((n + 1)α + 1)
(g (x) − g (a))(n+1)α , (24.2.114)

where ψx ∈ [a, x] .

We have proved the following g-left generalized modified Taylor’s formula:

Theorem 24.33 Suppose that Fk := Dkα
a+;g f , for k = 0, 1, . . . , n + 1, fulfill: Fk ◦

g−1 ∈ AC ([c, d]) and
(
Fk ◦ g−1

)′ ◦ g ∈ L∞ ([a, b]) , where 0 < α ≤ 1. Then

f (x) =
n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a)+ (24.2.115)

1

� ((n + 1) α)

∫ x

a
(g (x) − g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

a+;g f
)

(t) dt =

n∑

i=0

(g (x) − g (a))iα

� (iα + 1)

(
Diα

a+;g f
)
(a) +

(
D(n+1)α

a+;g f
)

(ψx )

� ((n + 1) α + 1)
(g (x) − g (a))(n+1)α ,

(24.2.116)
where ψx ∈ [a, x], any x ∈ [a, b] .
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Chapter 25
Generalized Canavati Type Fractional
Taylor’s Formulae

We present here four new generalized Canavati type fractional Taylor’s formulae. It
follows [3].

25.1 Results

Let g : [a, b] → R be a strictly increasing function. Let f ∈ Cn ([a, b]),
n ∈ N. Assume that g ∈ C1 ([a, b]), and g−1 ∈ Cn ([a, b]). Call l := f ◦ g−1 :
[g (a) , g (b)] → R. It is clear that l, l ′, . . . , l(n) are continuous functions from
[g (a) , g (b)] into f ([a, b]) ⊆ R.

Let ν ≥ 1 such that [ν] = n, n ∈ N as above, where [·] is the integral part of the
number.

Clearly when 0 < ν < 1, [ν] = 0. Next we follow [1], pp. 7–9.
(I) Let h ∈ C ([g (a) , g (b)]), we define the left Riemann-Liouville fractional

integral as
(
J z0
ν h

)
(z) := 1

� (ν)

∫ z

z0

(z − t)ν−1 h (t) dt, (25.1.1)

for g (a) ≤ z0 ≤ z ≤ g (b), where � is the gamma function; � (ν) = ∫ ∞
0 e−t tν−1dt.

We set J z0
0 h = h.

Let α := ν − [ν] (0 < α < 1). We define the subspace Cν
g(x0)

([g (a) , g (b)]) of
C [ν] ([g (a) , g (b)]), where x0 ∈ [a, b]:

Cν
g(x0) ([g (a) , g (b)]) :=

{
h ∈ C [ν] ([g (a) , g (b)]) : J g(x0)

1−α h([ν]) ∈ C1 ([g (x0) , g (b)])
}

. (25.1.2)

© Springer International Publishing Switzerland 2016
G.A. Anastassiou and I.K. Argyros, Intelligent Numerical Methods:
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So let h ∈ Cν
g(x0)

([g (a) , g (b)]); we define the left g-generalized fractional derivative
of h of order ν, of Canavati type, over [g (x0) , g (b)] as

Dν
g(x0)h :=

(
J g(x0)
1−α h([ν])

)′
. (25.1.3)

Clearly, for h ∈ Cν
g(x0)

([g (a) , g (b)]), there exists

(
Dν

g(x0)h
)
(z) = 1

� (1 − α)

d

dz

∫ z

g(x0)
(z − t)−α h([ν]) (t) dt, (25.1.4)

for all g (x0) ≤ z ≤ g (b) .

In particular, when f ◦ g−1 ∈ Cν
g(x0)

([g (a) , g (b)]) we have that

(
Dν

g(x0)

(
f ◦ g−1

))
(z) = 1

� (1 − α)

d

dz

∫ z

g(x0)
(z − t)−α

(
f ◦ g−1

)([ν])
(t) dt,

(25.1.5)
for all g (x0) ≤ z ≤ g (b) . We have Dn

g(x0)

(
f ◦ g−1

) = (
f ◦ g−1

)(n)
and

D0
g(x0)

(
f ◦ g−1

) = f ◦ g−1.

By Theorem 2.1, p. 8 of [1], we have for f ◦ g−1 ∈ Cν
g(x0)

([g (a) , g (b)]), where
x0 ∈ [a, b] is fixed, that

(i) if ν ≥ 1, then

(
f ◦ g−1

)
(z) =

[ν]−1∑

k=0

(
f ◦ g−1

)(k)
(g (x0))

k! (z − g (x0))
k +

1

� (ν)

∫ z

g(x0)
(z − t)ν−1

(
Dν

g(x0)

(
f ◦ g−1

))
(t) dt, (25.1.6)

all z ∈ [g (a) , g (b)] : z ≥ g (x0) ,

(ii) if 0 < ν < 1, we get

(
f ◦ g−1

)
(z) = 1

� (ν)

∫ z

g(x0)
(z − t)ν−1

(
Dν

g(x0)

(
f ◦ g−1

))
(t) dt, (25.1.7)

all z ∈ [g (a) , g (b)] : z ≥ g (x0) .

We have proved the following left generalized g-fractional, of Canavati type,
Taylor’s formula:

Theorem 25.1 Let f ◦ g−1 ∈ Cν
g(x0)

([g (a) , g (b)]), where x0 ∈ [a, b] is fixed.
(i) if ν ≥ 1, then

f (x) − f (x0) =
[ν]−1∑

k=1

(
f ◦ g−1

)(k)
(g (x0))

k! (g (x) − g (x0))
k +
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1

� (ν)

∫ g(x)

g(x0)
(g (x) − t)ν−1

(
Dν

g(x0)

(
f ◦ g−1

))
(t) dt, all x ∈ [a, b] : x ≥ x0,

(25.1.8)
(ii) if 0 < ν < 1, we get

f (x) = 1

� (ν)

∫ g(x)

g(x0)
(g (x) − t)ν−1

(
Dν

g(x0)

(
f ◦ g−1

))
(t) dt, (25.1.9)

all x ∈ [a, b] : x ≥ x0.

By the change of variable method, see [4], we may rewrite the remainder of
(25.1.8) and (25.1.9), as

1

� (ν)

∫ g(x)

g(x0)
(g (x) − t)ν−1 (

Dν
g(x0)

(
f ◦ g−1)) (t) dt = (25.1.10)

1

� (ν)

∫ x

x0

(g (x) − g (s))ν−1
(
Dν

g(x0)

(
f ◦ g−1

))
(g (s)) g′ (s) ds,

all x ∈ [a, b] : x ≥ x0.
We may rewrite (25.1.9) as follows:

if 0 < ν < 1, we have

f (x) = (
J g(x0)
ν

(
Dν

g(x0)

(
f ◦ g−1

)))
(g (x)) , (25.1.11)

all x ∈ [a, b] : x ≥ x0.
(II) Next we follow [2], pp. 345–348.
Let h ∈ C ([g (a) , g (b)]), we define the right Riemann-Liouville fractional inte-

gral as
(
J ν

z0−h
)
(z) := 1

� (ν)

∫ z0

z
(t − z)ν−1 h (t) dt, (25.1.12)

for g (a) ≤ z ≤ z0 ≤ g (b). We set J 0
z0−h = h.

Let α := ν − [ν] (0 < α < 1). We define the subspace Cν
g(x0)− ([g (a) , g (b)]) of

C [ν] ([g (a) , g (b)]), where x0 ∈ [a, b] :

Cν
g(x0)− ([g (a) , g (b)]) :=

{
h ∈ C [ν] ([g (a) , g (b)]) : J 1−α

g(x0)−h([ν]) ∈ C1 ([g (x0) , g (b)])
}

. (25.1.13)

So let h ∈ Cν
g(x0)− ([g (a) , g (b)]); we define the right g-generalized fractional deriv-

ative of h of order ν, of Canavati type, over [g (a) , g (x0)] as

Dν
g(x0)−h := (−1)n−1

(
J 1−α
g(x0)−h([ν])

)′
. (25.1.14)



416 25 Generalized Canavati Type Fractional Taylor’s Formulae

Clearly, for h ∈ Cν
g(x0)− ([g (a) , g (b)]), there exists

(
Dν

g(x0)−h
)
(z) = (−1)n−1

� (1 − α)

d

dz

∫ g(x0)

z
(t − z)−α h([ν]) (t) dt, (25.1.15)

for all g (a) ≤ z ≤ g (x0) ≤ g (b) .

In particular, when f ◦ g−1 ∈ Cν
g(x0)− ([g (a) , g (b)]) we have that

(
Dν

g(x0)−
(

f ◦ g−1
))

(z) = (−1)n−1

� (1 − α)

d

dz

∫ g(x0)

z
(t − z)−α

(
f ◦ g−1

)([ν])
(t) dt,

(25.1.16)
for all g (a) ≤ z ≤ g (x0) ≤ g (b) .

We get that

(
Dn

g(x0)−
(

f ◦ g−1
))

(z) = (−1)n
(

f ◦ g−1
)(n)

(z) (25.1.17)

and
(

D0
g(x0)−

(
f ◦ g−1

))
(z) = (

f ◦ g−1
)
(z) , all z ∈ [g (a) , g (x0)] .

By Theorem 23.19, p. 348 of [2], we have for f ◦ g−1 ∈ Cν
g(x0)− ([g (a) , g (b)]),

where x0 ∈ [a, b] is fixed, that
(i) if ν ≥ 1, then

(
f ◦ g−1

)
(z) =

[ν]−1∑

k=0

(
f ◦ g−1

)(k)
(g (x0))

k! (z − g (x0))
k + (25.1.18)

1

� (α)

∫ g(x0)

z
(t − z)ν−1

(
Dν

g(x0)−
(

f ◦ g−1
))

(t) dt,

all z ∈ [g (a) , g (b)] : z ≤ g (x0) ,

(ii) if 0 < ν < 1, we get

(
f ◦ g−1

)
(z) = 1

� (ν)

∫ g(x0)

z
(t − z)ν−1

(
Dν

g(x0)−
(

f ◦ g−1
))

(t) dt, (25.1.19)

all z ∈ [g (a) , g (b)] : z ≤ g (x0) .

We have proved the following right generalized g-fractional, of Canavati type,
Taylor’s formula:

Theorem 25.2 Let f ◦ g−1 ∈ Cν
g(x0)− ([g (a) , g (b)]), where x0 ∈ [a, b] is fixed.

(i) if ν ≥ 1, then

f (x) − f (x0) =
[ν]−1∑

k=1

(
f ◦ g−1

)(k)
(g (x0))

k! (g (x) − g (x0))
k +
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1

� (ν)

∫ g(x0)

g(x)

(t − g (x))ν−1
(
Dν

g(x0)−
(

f ◦ g−1
))

(t) dt, all a ≤ x ≤ x0,

(25.1.20)
(ii) if 0 < ν < 1, we get

f (x) = 1

� (ν)

∫ g(x0)

g(x)

(t − g (x))ν−1
(
Dν

g(x0)−
(

f ◦ g−1
))

(t) dt, all a ≤ x ≤ x0.

(25.1.21)

By change of variable, see [4], we may rewrite the remainder of (25.1.20) and
(25.1.21), as

1

� (ν)

∫ g(x0)

g(x)

(t − g (x))ν−1
(
Dν

g(x0)−
(

f ◦ g−1
))

(t) dt = (25.1.22)

1

� (ν)

∫ x0

x
(g (s) − g (x))ν−1

(
Dν

g(x0)−
(

f ◦ g−1
))

(g (s)) g′ (s) ds,

all a ≤ x ≤ x0.
We may rewrite (25.1.21) as follows:
if 0 < ν < 1, we have

f (x) = (
J ν
g(x0)−

(
Dν

g(x0)−
(

f ◦ g−1
)))

(g (x)) , (25.1.23)

all a ≤ x ≤ x0 ≤ b.

(III) Denote by

Dmν
g(x0) = Dν

g(x0) Dν
g(x0) . . . Dν

g(x0) (m-times), m ∈ N. (25.1.24)

Also denote by

J g(x0)
mν = J g(x0)

ν J g(x0)
ν . . . J g(x0)

ν (m-times), m ∈ N. (25.1.25)

We need:

Theorem 25.3 Here0 < ν < 1. Assume that
(

Dmν
g(x0)

(
f ◦ g−1

)) ∈Cν
g(x0)

([g (a) , g (b)]),

where x0 ∈ [a, b] is fixed. Assume also that
(

D(m+1)ν
g(x0)

(
f ◦ g−1

)) ∈ C ([g (x0) , g (b)]).

Then

(
J g(x0)

mν Dmν
g(x0)

(
f ◦ g−1

))
(g (x)) −

(
J g(x0)
(m+1)ν D(m+1)ν

g(x0)

(
f ◦ g−1

))
(g (x)) = 0,

(25.1.26)
for all x0 ≤ x ≤ b.
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Proof We observe that (l := f ◦ g−1)

(
J g(x0)

mν Dmν
g(x0) (l)

)
(g (x)) −

(
J g(x0)
(m+1)ν D(m+1)ν

g(x0)
(l)

)
(g (x)) =

(
J g(x0)

mν

(
Dmν

g(x0) (l) − J g(x0)
ν D(m+1)ν

g(x0)
(l)

))
(g (x)) = (25.1.27)

(
J g(x0)

mν

(
Dmν

g(x0) (l) − (
J g(x0)
ν Dν

g(x0)

) ((
Dmν

g(x0) (l)
) ◦ g ◦ g−1

)))
(g (x)) =

(
J g(x0)

mν

(
Dmν

g(x0) (l) − (
Dmν

g(x0) (l)
)))

(g (x)) = (
J g(x0)

mν (0)
)
(g (x)) = 0.

�

We make:

Remark 25.4 Let 0 < ν < 1. Assume that
(

Diν
g(x0)

(
f ◦ g−1

)) ∈ Cν
g(x0)

([g (a) , g (b)]),

x0 ∈ [a, b], for all i = 0, 1, . . . , m. Assume also that
(

D(m+1)ν
g(x0)

(
f ◦ g−1

)) ∈
C ([g (x0) , g (b)]). We have that

m∑

i=0

[(
J g(x0)

iν Diν
g(x0)

(
f ◦ g−1

))
(g (x)) −

(
J g(x0)
(i+1)ν D(i+1)ν

g(x0)

(
f ◦ g−1

))
(g (x))

]
= 0.

(25.1.28)
Hence it holds

f (x) −
(

J g(x0)
(m+1)ν D(m+1)ν

g(x0)

(
f ◦ g−1

))
(g (x)) = 0, (25.1.29)

for all x0 ≤ x ≤ b.

That is
f (x) =

(
J g(x0)
(m+1)ν D(m+1)ν

g(x0)

(
f ◦ g−1

))
(g (x)) , (25.1.30)

for all x0 ≤ x ≤ b.

We have proved the following modified and generalized left fractional Taylor’s
formula of Canavati type:

Theorem 25.5 Let 0 < ν < 1. Assume that
(

Diν
g(x0)

(
f ◦ g−1

)) ∈ Cν
g(x0)

([g (a) , g (b)]),

x0 ∈ [a, b], for i = 0, 1, . . . , m. Assume also that
(

D(m+1)ν
g(x0)

(
f ◦ g−1

)) ∈
C ([g (x0) , g (b)]). Then

f (x) = 1

� ((m + 1) ν)

∫ g(x)

g(x0)
(g (x) − z)(m+1)ν−1

(
D(m+1)ν

g(x0)

(
f ◦ g−1)

)
(z) dz

(25.1.31)

= 1

� ((m + 1) ν)
·
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∫ x

x0

(g (x) − g (s))(m+1)ν−1
(

D(m+1)ν
g(x0)

(
f ◦ g−1

))
(g (s)) g′ (s) ds,

all x0 ≤ x ≤ b.

(IV) Denote by

Dmν
g(x0)− = Dν

g(x0)− Dν
g(x0)− . . . Dν

g(x0)− (m-times), m ∈ N. (25.1.32)

Also denote by

J mν
g(x0)− = J ν

g(x0)− J ν
g(x0)− . . . J ν

g(x0)− (m-times), m ∈ N. (25.1.33)

We need:

Theorem 25.6 Here 0 < ν < 1. Assume that
(

Dmν
g(x0)−

(
f ◦ g−1

)) ∈ Cν
g(x0)− ([g (a) , g (b)]),

where x0 ∈ [a, b] is fixed. Assume also that
(

D(m+1)ν
g(x0)−

(
f ◦ g−1

)) ∈ C ([g (a) , g (x0)]).
Then

(
J mν
g(x0)− Dmν

g(x0)−
(

f ◦ g−1
))

(g (x)) −
(

J (m+1)ν
g(x0)− D(m+1)ν

g(x0)−
(

f ◦ g−1
))

(g (x)) = 0,

(25.1.34)
for all a ≤ x ≤ x0.

Proof We observe that (l := f ◦ g−1)

(
J mν
g(x0)− Dmν

g(x0)− (l)
)
(g (x)) −

(
J (m+1)ν
g(x0)− D(m+1)ν

g(x0)− (l)
)

(g (x)) =
(

J mν
g(x0)−

(
Dmν

g(x0)− (l) − J ν
g(x0)− D(m+1)ν

g(x0)− (l)
))

(g (x)) =
(
J mν
g(x0)−

(
Dmν

g(x0)− (l) − (
J ν
g(x0)− Dν

g(x0)−
) ((

Dmν
g(x0)− (l)

) ◦ g ◦ g−1
)))

(g (x))

(25.1.35)
= (

J mν
g(x0)−

(
Dmν

g(x0)− (l) − Dmν
g(x0)− (l)

))
(g (x)) = J mν

g(x0)− (0) (g (x)) = 0.

�

We make:

Remark 25.7 Let 0 < ν < 1.Assume that
(

Diν
g(x0)−

(
f ◦ g−1

)) ∈Cν
g(x0)− ([g (a) , g (b)]),

x0 ∈ [a, b], for all i = 0, 1, . . . , m. Assume also that
(

D(m+1)ν
g(x0)−

(
f ◦ g−1

)) ∈
C ([g (a) , g (x0)]). We have that (by (25.1.34))

m∑

i=0

[(
J iν
g(x0)− Diν

g(x0)−
(

f ◦ g−1)) (g (x)) −
(

J (i+1)ν
g(x0)− D(i+1)ν

g(x0)−
(

f ◦ g−1)
)

(g (x))
]

= 0.

(25.1.36)
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Hence it holds

f (x) −
(

J (m+1)ν
g(x0)− D(m+1)ν

g(x0)−
(

f ◦ g−1
))

(g (x)) = 0, (25.1.37)

for all a ≤ x ≤ x0 ≤ b.

That is
f (x) =

(
J (m+1)ν
g(x0)− D(m+1)ν

g(x0)−
(

f ◦ g−1
))

(g (x)) , (25.1.38)

for all a ≤ x ≤ x0 ≤ b.

We have proved the following modified and generalized right fractional Taylor’s
formula of Canavati type:

Theorem 25.8 Let 0 < ν < 1. Assume that
(

Diν
g(x0)−

(
f ◦ g−1

)) ∈ Cν
g(x0)− ([g (a) , g (b)]),

x0 ∈ [a, b], for all i = 0, 1, . . . , m. Assume also that
(

D(m+1)ν
g(x0)−

(
f ◦ g−1

))

∈ C ([g (a) , g (x0)]). Then

f (x) = 1

� ((m + 1) ν)

∫ g(x0)

g(x)

(z − g (x))(m+1)ν−1
(

D(m+1)ν
g(x0)−

(
f ◦ g−1

))
(z) dz

(25.1.39)

= 1

� ((m + 1) ν)
·

∫ x0

x
(g (s) − g (x))(m+1)ν−1

(
D(m+1)ν

g(x0)−
(

f ◦ g−1
))

(g (s)) g′ (s) ds,

all a ≤ x ≤ x0 ≤ b.
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Kernel of an operator, 266
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Riemann-Liouville fractional integral, 1
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Secant-like method, 164
Secant method, 113
Semi local convergence, 2
Set of bounds for an operator, 3
Singular system, 265
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Surjective-under determined system, 270
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