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During the preparation of this volume,
Alfredo Lorenzi, one of the organizers of the
meeting “Differential Equations, Inverse
Problems and Control Theory”, passed away.
We would like to dedicate this work to him.
His death left an immeasurable emptiness for
those who knew him as a student, professor,
colleague or friend, or as a father or
husband. Alfredo, we shall miss you
immensely and we shall always remember
you with your smile.
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Preface

The International Conference Differential Equations, Inverse Problems and Control
Theory took place at the Palazzone in Cortona (Italy), from June 16 to 21, 2013.
The conference, organized by Angelo Favini and Alfredo Lorenzi, was held in
collaboration with the Mathematics Department of the University of Bologna and
with INdAM (Istituto Nazionale di Alta Matematica). It was attended by about
40 mathematicians from universities in a variety of countries, including France,
Germany, Israel, Italy, Japan, Romania, and the USA.

As is well known, applied sciences consider situations in which one observes
the evolution over time of a given system. The related models can be formulated
in terms of evolution equations, mathematical structures in which the dependence
on time plays an essential role. Such equations have been studied intensively in
theoretical research and are the source of an enormous number of applications.

A typical class of problems that has been investigated over the years concerns
the well-posedness of an evolution equation with the given initial and boundary
conditions, possibly with some degeneration (the so-called DIRECT problems).
However, in several situations, initial conditions are difficult to determine exactly,
while measurements of the solution at different stages of its evolution might be
available.Many techniques have been developed to recover, from such pieces of
information, important parameters governing the evolution, such as forcing terms
or diffusion coefficients. This avenue of investigation is usually referred to as
INVERSE problems.

A third way to study evolution equations is to try to influence the evolution of a
given system through various kinds of external action called CONTROL. Of course,
control problems may vary in nature, ranging from a given system to a desired
configuration in finite or infinite time, to trying to optimize a performance criterion.

Although for some time direct, inverse and control problems for evolution
equations were viewed as almost independent issues, in recent years it has become
clear that they can profit enormously from a strong interaction with each other.
For instance, a priori estimates for solutions of partial differential equations that
were originally developed to study unique continuation problems, i.e. Carleman’s

vii



viii Preface

estimates, have been proved to be extremely useful in studying exact controllability
and inverse problems.

For these reasons, one of the main cultural goals of our initiative was to bring
together experts in the above fields to speed up interaction and stimulate the
development of new ideas. To achieve this aim, several conferences were organized,
the most recent being the meeting Differential Equations, Inverse Problems and
Control Theory.

This volume assembles the contributions of most of the speakers who partici-
pated in the meeting. It provides an overview that reflects the richness and vitality
of the subject. All the contributions underwent peer review, in compliance with the
standard procedure for the Springer INdAM Collection.

Bologna, Italy Angelo Favini
Bari, Italy Genni Fragnelli
Bari, Italy Rosa Maria Mininni
June 2014
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Chapter 1
Exponential Stability of the Wave Equation
with Memory and Time Delay

Fatiha Alabau-Boussouira, Serge Nicaise, and Cristina Pignotti

In memory of Alfredo Lorenzi

Abstract We study the asymptotic behaviour of the wave equation with viscoelas-
tic damping in presence of a time-delayed damping. We prove exponential stability
if the amplitude of the time delay term is small enough.

1.1 Introduction

This paper is devoted to the stability analysis of a viscoelastic model. In particular,
we consider a model combining viscoelastic damping and time-delayed damping.
We prove an exponential stability result provided that the amplitude of time-delayed
damping is small enough. Moreover, we give a precise estimate on this smallness
condition. This shows that even if delay effects usually generate instability (see e.g.
[6, 7, 14, 20]), the damping due to viscoelasticity can counterbalance them.
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2 F. Alabau-Boussouira et al.

Let ˝ � IRn be an open bounded set with a smooth boundary. Let us consider
the following problem:

utt.x; t/ ��u.x; t/C
Z 1

0

�.s/�u.x; t � s/ds C kut .x; t � �/ D 0

in ˝ � .0;C1/ (1.1)

u.x; t/ D 0 on @˝ � .0;C1/ (1.2)

u.x; t/ D u0.x; t/ in ˝ � .�1; 0� (1.3)

where the initial datum u0 belongs to a suitable space, the constant � > 0 is the
time delay, k is a real number and the memory kernel � W Œ0;C1/ ! Œ0;C1/ is a
locally absolutely continuous function satisfying

(i) �.0/ D �0 > 0;
(ii)

R C1
0

�.t/dt D Q� < 1;
(iii) �0.t/ � �˛�.t/; for some ˛ > 0.

We know that the above problem is exponentially stable for k D 0 (see e.g. [9]).
We will show that an exponential stability result holds if the delay parameter k

is small with respect to the memory kernel.
Observe that for � D 0 and k > 0 the model (1.1)–(1.3) presents both

viscoelastic and standard dissipative damping. Therefore, in that case, under the
above assumptions on the kernel �, the model is exponentially stable.

We will see that exponential stability also occurs for k < 0, under a suitable
smallness assumption on jkj. Note that the term kut .t/ with k < 0 is a so-called
anti-damping (see e.g. [8]), namely a damping with an opposite sign with respect to
the standard dissipative one, and therefore it induces instability. Indeed, in absence
of viscoelastic damping, i.e. for � � 0, the solutions of the above problem, with
� D 0 and k < 0, grow exponentially to infinity.

We will prove our stability results by using a perturbative approach, first
introduced in [18] (see also [15] for a more general setting).

The stability properties of the wave equation with memory and time delay have
been first studied by Kirane and Said-Houari [11], in the case of finite memory.
However, in their model, an extra standard dissipative damping is added in order to
contrast the destabilizing effect of the time delay term. The stabilization problem
for model (1.1)–(1.3) has been studied also by Guesmia in [10] by using a different
approach based on the construction of a suitable Lyapunov functional (see also
[5] for the case of finite memory). Our analysis allows to determine an explicit
estimate on the constant k0 (cf. Theorem 1.1). Moreover, our approach can be
extended to the case of localized viscoelastic damping (cf. [13]). In fact, we first
prove the exponential stability of an auxiliary problem having a decreasing energy
and then, regarding the original problem as a perturbation of that one, we extend the
exponential decay estimate to it.
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The paper is organized as follows. In Sect. 1.2 we study the well-posedness by
introducing an appropriate functional setting and we formulate our stability result.
In Sect. 1.3 we introduce the auxiliary problem and prove the exponential decay
estimate for it. Then, the stability result is extended to the original problem.

1.2 Main Results and Preliminaries

As in [4], let us introduce the new variable

�t .x; s/ WD u.x; t/ � u.x; t � s/: (1.4)

Moreover, as in [14], we define

z.x; �; t/ WD ut .x; t � ��/; x 2 ˝; � 2 .0; 1/; t > 0: (1.5)

Using (1.4) and (1.5) we can rewrite (1.1)–(1.3) as

utt.x; t/ D .1� Q�/�u.x; t/C
Z 1

0

�.s/��t .x; s/ds � kz.x; 1; t/

in ˝ � .0;C1/ (1.6)

�tt .x; s/ D ��ts.x; s/C ut .x; t/ in ˝ � .0;C1/ � .0;C1/; (1.7)

�zt .x; �; t/C z�.x; �; t/ D 0 in ˝ � .0; 1/ � .0;C1/; (1.8)

u.x; t/ D 0 on @˝ � .0;C1/ (1.9)

�t .x; s/ D 0 in @˝ � .0;C1/; t � 0; (1.10)

z.x; 0; t/ D ut .x; t/ in ˝ � .0;C1/; (1.11)

u.x; 0/ D u0.x/ and ut .x; 0/ D u1.x/ in ˝; (1.12)

�0.x; s/ D �0.x; s/ in ˝ � .0;C1/; (1.13)

z.x; �; 0/ D z0.x;���/ x 2 ˝; � 2 .0; 1/; (1.14)

where

u0.x/ D u0.x; 0/; x 2 ˝;
u1.x/ D @u0

@t
.x; t/jtD0; x 2 ˝;

�0.x; s/ D u0.x; 0/ � u0.x;�s/; x 2 ˝; s 2 .0;C1/;

z0.x; s/ D @u0
@t
.x; s/; x 2 ˝; s 2 .��; 0/:

(1.15)

Let us denote U WD .u; ut ; �t ; z/T . Then we can rewrite problem (1.6)–(1.14) in
the abstract form

�
U 0 D AU ;

U .0/ D .u0; u1; �0; z0/T ;
(1.16)
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where the operator A is defined by

A

0
BB@

u
v
w
z

1
CCA WD

0
BB@

v
.1 � Q�/�u C R1

0 �.s/�w.s/ds � kz.�; 1/
�ws C v
���1z�

1
CCA ; (1.17)

with domain (cf. [16])

D.A / WD
n
.u; v; �; z/T 2 H1

0 .˝/ �H1
0 .˝/� L2�..0;C1/IH1

0 .˝//

�H1..0; 1/IL2.˝// W v D z.�; 0/; .1� Q�/u C
Z

1

0

�.s/�.s/ds 2 H2.˝/\H1
0 .˝/;

�s 2 L2�..0;C1/IH1
0 .˝//

o
; (1.18)

whereL2�..0;1/IH1
0 .˝// is the Hilbert space ofH1

0 -valued functions on .0;C1/,
endowed with the inner product

h'; iL2�..0;1/IH1
0 .˝//

D
Z
˝

�Z 1

0

�.s/r'.x; s/r .x; s/ds

�
dx:

Denote by H the Hilbert space

H D H1
0 .˝/ � L2.˝/ � L2�..0;1/IH1

0 .˝// � L2..0; 1/IL2.˝//;

equipped with the inner product

*0BB@
u
v
w
z

1
CCA ;
0
BB@

Qu
Qv
Qw
Qz

1
CCA
+

H

WD .1� Q�/
Z
˝

rur Qudx C
Z
˝

vQvdx C
Z
˝

Z
1

0

�.s/rwr Qwdsdx

C
Z 1

0

Z
˝

z.x; �/Qz.x; �/ dxd�: (1.19)

Combining the ideas from [19] with the ones from [14] (see also [3]), we can
prove that the operator A generates a strongly continuous semigroup (A � cI is
dissipative for a sufficiently large constant c > 0) and therefore the next existence
result holds.

Proposition 1.1 For any initial datum U0 2 H there exists a unique solution U 2
C.Œ0;C1/;H / of problem (1.16). Moreover, if U0 2 D.A /, then

U 2 C.Œ0;C1/;D.A //\ C1.Œ0;C1/;H /:
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Let us define the energy F of problem (1.1)–(1.3) as

F.t/ D F.u; t/ WD 1

2

Z
˝

u2t .x; t/dx C 1 � Q�
2

Z
˝

jru.x; t/j2dx

C1

2

Z C1

0

Z
˝

�.s/jr�t .s/j2dsdx C � jkje�
2

Z t

t��
e�.t�s/

Z
˝

u2t .x; s/dsdx;

(1.20)

where � is any real constant satisfying

� > 1: (1.21)

We will prove the following exponential stability result.

Theorem 1.1 For any � > 1 in the definition (1.20), there exists a positive constant
k0 such that for k satisfying jkj < k0 there is 	 > 0 such that

F.t/ � F.0/e1�	t ; t � 0I (1.22)

for every solution of problem (1.1)–(1.3). The constant k0 depends only on the kernel
�.�/ of the memory term, on the time delay � and on the domain˝ .

To prove our stability result we will make use of the following result of Pazy
(Theorem 1.1 in Chap. 3 of [17]).

Theorem 1.2 Let X be a Banach space and let A be the infinitesimal generator of
a C0 semigroup T .t/ on X , satisfying kT .t/k � Me!t . If B is a bounded linear
operator on X then ACB is the infinitesimal generator of a C0 semigroup S.t/ on
X , satisfying kS.t/k � Me.!CMkBk/t .

Moreover, we will use the following lemma (see Theorem 8.1 of [12]).

Lemma 1.1 Let V.�/ be a non negative decreasing function defined on Œ0;C1/. If

Z C1

S

V .t/dt � CV.S/ 8S > 0 ;

for some constants C > 0, then

V.t/ � V.0/ exp

�
1 � t

C

�
; 8 t � 0 :

Remark 1.1 Observe that the well-posedness result in the case � D 0, namely
viscoelastic wave equation with standard frictional damping or anti-damping,
directly follows from Theorem 1.2. Furthermore, from Theorem 1.2 we can also
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deduce an exponential stability estimate under a suitable smallness assumption on
jkj. Indeed, for jkj small, we can look at problem (1.1)–(1.3) (with � D 0) as a
perturbation of the wave equation with only the viscoelastic damping. And it is by
now well-known that for the last model an exponential decay estimate is available
(see e.g. [9]).

1.3 Stability Results

In this section we will prove Theorem 1.1.
In order to study the stability properties of problem (1.1)–(1.3), we look at an
auxiliary problem (cf. [18]) which is near to this one and easier to deal with. Then,
let us consider the system

utt.x; t/ ��u.x; t/C
Z 1

0

�.s/�u.x; t � s/ds C � jkje�ut .x; t/

Ckut .x; t � �/ D 0

in ˝ � .0;C1/ (1.23)

u.x; t/ D 0 on @˝ � .0;C1/ (1.24)

u.x; t/ D u0.x; t/ in ˝ � .�1; 0�: (1.25)

First of all we show that the energy, defined by (1.20), of any solution of the
auxiliary problem is not increasing.

Proposition 1.2 For every solution of problem (1.23)–(1.25) the energy F.�/ is not
increasing and the following estimate holds

F 0.t/ � 1

2

Z 1

0

Z
˝

�0.s/jr�t .x; s/j2dxds

�jkj.�e� � 1/

2

Z
˝

u2t .x; t/dx � jkj.� � 1/

2

Z
˝

u2t .x; t � �/dx

�� jkje�
2

Z t

t��
e�.t�s/

Z
˝

u2t .x; s/dxds :

(1.26)

Remark 1.2 Note that the energy F.�/ of solutions of the original problem (1.1)–
(1.3) is not in general decreasing.
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Proof (of Proposition 1.2.) Differentiating (1.20) we have

F 0.t/ D
Z
˝

ut .x; t/utt.x; t/dx C .1 � Q�/
Z
˝

ru.x; t/rut .x; t/dx

C
Z 1

0

Z
˝

�.s/r�t .x; s/r�tt .x; s/dxds C � jkje�
2

Z
˝

u2t .x; t/dx

�� jkj
2

Z
˝

u2t .x; t � �/dx � � jkje�
2

Z t

t��
e�.t�s/

Z
˝

u2t .x; s/dxds :

Then, integrating by parts and using (1.7) and the boundary condition (1.24),

F 0.t/ D
Z
˝

ut .x; t/Œutt.x; t/ � .1 � Q�/�u.x; t/�dx

C
Z

1

0

Z
˝

�.s/r�t .x; s/.rut .x; t/ � r�ts.x; s//dxds C � jkje�
2

Z
˝

u2t .x; t/dx

�� jkj
2

Z
˝

u2t .x; t � �/dx � � jkje�
2

Z t

t��

e�.t�s/

Z
˝

u2t .x; s/dxds :

By using Eqs. (1.23), (1.24), after integration by parts, we deduce

F 0.t/ D
Z
˝

ut .t /
h

�
Z

1

0

�.s/�u.x; t � s/C Q��u.x; t/

�� jkje�ut .x; t/� kut .x; t � �/
i
dx

C
Z

1

0

Z
˝

�.s/r�t .x; s/rut .x; t/dxds C 1

2

Z
1

0

Z
˝

�0.s/jr�t .x; s/j2dxds

C� jkje�
2

Z
˝

u2t .x; t/dx � � jkj
2

Z
˝

u2t .x; t � �/dx � � jkje�
2

Z t

t��

e�.t�s/

Z
˝

u2t .x; s/dxds

D �� jkje�
Z
˝

u2t .x; t/dx � k
Z
˝

ut .x; t/ut .x; t � �/dx C � jkje�
2

Z
˝

u2t .x; t/dx

�� jkj
2

Z
˝

u2t .x; t � �/dx C 1

2

Z
1

0

Z
˝

�0.s/jr�t .x; s/j2dxds

�� jkje�
2

Z t

t��

e�.t�s/

Z
˝

u2t .x; s/dxds :

Now, using Cauchy–Schwarz inequality we obtain (1.26). ut
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Corollary 1.1 For every solution of problem (1.23)–(1.25), we have

�1
2

Z T

S

Z 1

0

Z
˝

�0.s/jr�t .x; s/j2dxds � F.S/; (1.27)

and then by the condition �0.t/ � �˛�.t/ we directly get

1

2

Z T

S

Z 1

0

�.s/

Z
˝

jr�t .x; s/j2dxdsdt � 1

˛
F.S/ : (1.28)

Proof As each term of the right-hand side of (1.26) is non positive, we directly get
that

�1
2

Z T

S

Z 1

0

Z
˝

�0.s/jr�t .x; s/j2dxds �
Z T

S

.�F 0.t//dt � F.S/: ut

Theorem 1.3 For any � > 1 in the definition (1.20), there exist positive constants
C and k, depending on �, ˝ and � , such that if jkj < k then for any solution of
problem (1.23)–(1.25) the following estimate holds

Z C1

S

F.t/dt � CF.S/ 8S > 0 : (1.29)

In order to prove Theorem 1.3 we need some preliminary results. Our proof relies
in many points on [2] but we have to perform all computations because, in order to
extend the exponential estimate related to the perturbed problem (1.23)–(1.25) to the
original problem (1.1)–(1.3) we need to determine carefully all involved constants.
From the definition of the energy we deduce

Z T

S

F.t/dt D 1

2

Z T

S

Z
˝

u2t .x; t/dxdt C 1 � Q�
2

Z T

S

Z
˝

jru.x; t/j2dxdt

C1

2

Z T

S

Z 1

0

Z
˝

�.s/jr�t .x; s/j2dxdsdt

C� jkje�
2

Z T

S

Z t

t��
e�.t�s/

Z
˝

u2t .x; s/dsdxdt :

(1.30)

Now, as in [2] we will use multiplier arguments in order to bound the right-hand
side of (1.30) (cf. [1]). We note that we could not apply the same arguments directly
to our original problem since the energy is not decreasing.

In the following we will denote by CP the Poincaré constant, namely the smallest
positive constant such that

Z
˝

w2.x/dx � CP

Z
˝

jrw.x/j2dx; 8 w 2 H1
0 .˝/: (1.31)
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Lemma 1.2 Assume

jkj < 1 � Q�
2CP .�e� C 1/

: (1.32)

Then, for any T � S � 0 we have

.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt � C0

Z T

S

Z
˝

u2t .x; t/dxdt C C1F.S/; (1.33)

with

C0 D 2C � jkje� ; C1 D 4
�
1C Q�

˛.1 � Q�/ C CP

1 � Q� C 1

2.� � 1/

�
: (1.34)

Proof Multiplying Eq. (1.23) by u and integrating on ˝ � ŒS; T � we have

Z T

S

Z
˝

Œutt.x; t/ ��u.x; t/C
Z 1

0

�.s/�u.x; t � s/ds

C� jkje�ut .x; t/C kut .x; t � �/�u.x; t/dxdt D 0 :

So, integrating by parts and using the boundary condition (1.24), we get

�
Z T

S

Z
˝

u2t .x; t/dxdt C
Z T

S

Z
˝

jru.x; t/j2dxdt C
h Z

˝

u.x; t/ut .x; t/dx
iT
S

C� jkje�
Z T

S

Z
˝

u.x; t/ut .x; t/dxdt C k

Z T

S

Z
˝

u.x; t/ut .x; t � �/dxdt

� Q�
Z T

S

Z
˝

jru.x; t/j2dxdt C
Z T

S

Z
˝

Z 1

0

�.s/ru.x; t/r�t .x; s/dsdxdt D 0 ;

where we used (1.4).
Then,

.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt D
Z T

S

Z
˝

u2t .x; t/dxdt �
h Z

˝

u.x; t/ut .x; t/dx
iT
S

�� jkje�
Z T

S

Z
˝

u.x; t/ut .x; t/dxdt � k
Z T

S

Z
˝

u.x; t/ut .x; t � �/dxdt

�
Z T

S

Z
˝

Z 1

0

�.s/ru.x; t/r�t .x; s/dsdxdt : (1.35)
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In order to estimate the integral

Z T

S

ˇ̌
ˇ̌Z
˝

Z 1

0

�.s/r�t .x; s/ru.x; t/dsdx

ˇ̌
ˇ̌ dt ;

we note that, for all " > 0,

Z T

S

� Z
˝

jru.x; t/j2dx
�1=2 Z 1

0

�.s/
� Z

˝

jr�t .x; s/j2dx
�1=2

dsdt

� "

2

Z T

S

Z
˝

jru.x; t/j2dxdt C 1

2"

Z T

S

h Z 1

0

�.s/
� Z

˝

jr�t .x; s/j2dx
�1=2

ds
i2

dt :

(1.36)

We have

Z T

S

h Z 1

0

�.s/
� Z

˝

jr�t .x; s/j2dx
�1=2

ds
i2

dt

�
Z T

S

� Z 1

0

�.s/ds
�� Z 1

0

�.s/

Z
˝

jr�t .x; s/j2dxds
�

dt

D Q�
Z T

S

Z 1

0

�.s/

Z
˝

jr�t .x; s/j2dxdsdt :

Therefore, recalling the estimate (1.28), we obtain

Z T

S

h Z 1

0

�.s/
� Z

˝

jr�t .x; s/j2dx
�1=2

ds
i2

dt � 2 Q�
˛
F.S/ : (1.37)

Then, (1.36) and (1.37) give

Z T

S

ˇ̌
ˇ̌Z
˝

Z 1

0

�.s/.ru.x; t � s/� ru.x; t// � ru.x; t/dsdx

ˇ̌
ˇ̌ dt

� "

2

Z T

S

Z
˝

jru.x; t/j2dxdt C Q�
˛"
F.S/ :

(1.38)

Now observe that

F.t/ � 1

2

Z
˝

u2t .x; t/dx C 1 � Q�
2

Z
˝

jru.x; t/j2dx : (1.39)

Then, from (1.39),

1

2

Z
˝

jru.x; t/j2dx � F.t/

1 � Q� ; (1.40)



1 Exponential Stability of the Wave Equation with Memory and Time Delay 11

and also, from Poincaré’s inequality,

1

2

Z
˝

ju.x; t/j2dx � CP

2

Z
˝

jru.x; t/j2dx � CP

1 � Q�F.t/ : (1.41)

Using the above inequalities

ˇ̌
ˇ̌
Z
˝

ut .x; t/u.x; t/dx

ˇ̌
ˇ̌ � 1

2

Z
˝

u2t .x; t/dx C 1

2

Z
˝

u2.x; t/dx � F.t/
�
1C CP

1 � Q�
�
:

(1.42)

Therefore,

�
h Z

˝

ut .x; t/u.x; t/dx
iT
S

� 2F.S/
�
1C CP

1 � Q�
�
; (1.43)

where we used also the fact that F is decreasing. Using (1.38), (1.43) and Cauchy–
Schwarz’s inequality in order to bound the terms in the right-hand side of (1.35) we
have that for any " > 0,

.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt �
Z T

S

Z
˝

u2t .x; t/dxdt C "

2

Z T

S

Z
˝

jru.x; t/j2dxdt

C Q�
˛"
F.S/C 2

�
1C CP

1 � Q�
�
F.S/C � jkje�

2

Z T

S

Z
˝

u2.x; t/dxdt

C� jkje�
2

Z T

S

Z
˝

u2t .x; t/dxdt C jkj
2

Z T

S

Z
˝

u2.x; t/dxdt

Cjkj
2

Z T

S

Z
˝

u2t .x; t � �/dxdt :

Therefore, from Poincaré’s inequality,

.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt �
�
1C � jkje�

2

� Z T

S

Z
˝

u2t .x; t/dxdt

C"C .�e� C 1/jkjCP
2

Z T

S

Z
˝

jru.x; t/j2dxdt C Q�
˛"
F.S/

C2
�
1C CP

1 � Q�
�
F.S/C jkj

2

Z T

S

Z
˝

u2t .x; t � �/dxdt :
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Now, observe that from (1.26),

jkj
2

Z T

S

Z
˝

u2t .x; t � �/dxdt D 1

� � 1

jkj.� � 1/
2

Z T

S

Z
˝

u2t .x; t � �/dxdt

� 1

� � 1
Z T

S

.�F 0.t//dt � 1

� � 1
F.S/ :

(1.44)

Now, choose " D 1� Q�
2

. Thus, using (1.32) and also (1.44) we obtain

.1� Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt � 2
�
1C � jkje�

2

� Z T

S

Z
˝

u2t .x; t/dxdt

C4
�
1C Q�

˛.1 � Q�/ C CP

1 � Q� C 1

2.� � 1/

�
F.S/ ;

that is (1.33) with constants C0; C1 given by (1.34). ut
Lemma 1.3 For any T � S � 0, the following identity holds:

Q�
Z T

S

Z
˝

u2t .x; t/dxdt D
h Z

˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
iT
S

�
Z T

S

Z
˝

ut .x; t/
Z 1

0

�0.s/�t .x; s/dsdxdt

C.1 � Q�/
Z T

S

Z
˝

ru.x; t/
Z 1

0

�.s/r�t .x; s/dsdxdt

C
Z T

S

Z
˝

ˇ̌
ˇ
Z 1

0

�.s/r�t .x; s/ds
ˇ̌
ˇ2dxdt

C� jkje�
Z T

S

Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdxdt

Ck
Z T

S

Z
˝

ut .x; t � �/

Z 1

0

�.s/�t .x; s/dsdxdt :

(1.45)
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Proof We multiply Eq. (1.23) by
R1
0 �.s/�t .x; s/ds and integrate by parts on

ŒS; T � �˝ . We obtain

Z T

S

Z
˝

n
utt.x; t/ ��u.x; t/C

Z 1

0

�.s/�u.x; t � s/ds C kut .x; t � �/

C� jkje�ut .x; t/
o
�
n Z 1

0

�.s/�t .x; s/ds
o
dxdt D 0 :

(1.46)

Integrating by parts, we have

Z T

S

Z
˝

utt.x; t/

Z 1

0

�.s/�t .x; s/dsdxdt

D
h Z

˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
iT
S

�
Z T

S

Z
˝

ut .x; t/
Z 1

0

�.s/.ut .x; t/ � �ts.x; s//dsdxdt

D
h Z

˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
iT
S

� Q�
Z T

S

Z
˝

u2t .x; t/dxdt �
Z T

S

Z
˝

ut .x; t/
Z 1

0

�0.s/�t .x; s/dsdxdt :

(1.47)

Moreover,

Z T

S

Z
˝

�
��u.x; t/C

Z
1

0

�.s/�u.x; t � s/ds
�Z 1

0

�.s/�t .x; s/dsdxdt

D
Z T

S

Z
˝

ru.x; t/
Z

1

0

�.s/r�t.x; s/dsdxdt

�
Z T

S

Z
˝

Z
1

0

�.s/ru.x; t � s/ds
Z

1

0

�.s/r�t.x; s/dsdxdt

D
Z T

S

Z
˝

ru.x; t/
Z

1

0

�.s/r�t.x; s/dsdxdt

C
Z T

S

Z
˝

Z
1

0

�.s/.ru.x; t/� ru.x; t � s//ds
Z

1

0

�.s/r�t.x; s/dsdxdt

� Q�
Z T

S

Z
˝

ru.x; t/
Z

1

0

�.s/r�t.x; s/dsdxdt

D .1� Q�
Z T

S

Z
˝

ru.x; t/
Z

1

0

�.s/r�t.x; s/dsdxdt

C
Z T

S

Z
˝

ˇ̌
ˇ
Z

1

0

�.s/r�t.x; s/ds
ˇ̌
ˇ2dxdt :

(1.48)

Using (1.47) and (1.48) in (1.46) we obtain (1.45). ut
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Lemma 1.4 Assume

jkj < Q�
2�
e�� : (1.49)

Then, for any T � S > 0 and for any " > 0 we have

Z T

S

Z
˝

u2t .x; t/dxdt � "

Z T

S

Z
˝

jru.x; t/j2dxdt C C2F.S/ ; (1.50)

where the constant C2 WD C2."/ is defined by

C2 D 4

Q�
�
1C 1

2

1

� � 1
C �.0/

Q� CP

�
C4CP C 2

˛

�
2C .1 � Q�/2

Q�" CCP jkj.�e� C1/
�
:

(1.51)

Proof In order to prove Lemma 1.4 we have to estimate the terms of the right-hand
side of (1.45). First we have,

ˇ̌
ˇ
Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
ˇ̌
ˇ

�
Z 1

0

�.s/
� Z

˝

jut .x; t/jj�t .x; s/jdx
�

ds

�
Z 1

0

�.s/
� Z

˝

u2t .x; t/dx
�1=2� Z

˝

.�t .x; s//2dx
�1=2

ds

� 1

2

Z
˝

u2t .x; t/dx C 1

2

� Z 1

0

�.s/
� Z

˝

.�t .x; s//2dx
�1=2

ds
�2
:

Then, recalling (1.20) and using Hölder’s inequality, we deduce

ˇ̌
ˇ
Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
ˇ̌
ˇ

� F.t/C CP

2

� Z 1

0

�.s/
� Z

˝

jr�t .x; s/j2dx
�1=2

ds
�2

� F.t/C CP

2
Q�
Z 1

0

�.s/

Z
˝

jr�t .x; s/j2dxds � F.t/.1C CP Q�/ :

(1.52)

Therefore,

h Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdx
iT
S

� 2.1C CP Q�/F.S/ : (1.53)
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Now we proceed to estimate the second term in the right-hand side of (1.45). For
any ı > 0 we have

ˇ̌
ˇ̌Z T

S

Z
˝

ut .x; t/
Z 1

0

�0.s/�t .x; s/dsdxdt

ˇ̌
ˇ̌

�
Z T

S

� Z
˝

u2t .x; t/dx
�1=2� Z

˝

� Z 1

0

�0.s/�t .x; s/ds
�2

dx
�1=2

dt

� ı

2

Z T

S

Z
˝

u2t .x; t/dxdt C 1

2ı

Z T

S

Z
˝

� Z 1

0

�0.s/�t .x; s/ds
�2

dxdt

� ı

2

Z T

S

Z
˝

u2t .x; t/dxdt

C 1

2ı

Z T

S

Z
˝

Z 1

0

.��0.s//ds
Z 1

0

j�0.s/j.�t .x; s//2dsdxdt ;

and then by Corollary 1.1

ˇ̌
ˇ̌Z T

S

Z
˝

ut .x; t/
Z 1

0

�0.s/�t .x; s/dsdxdt

ˇ̌
ˇ̌

� ı

2

Z T

S

Z
˝

u2t .x; t/dxdt � �.0/

2ı
CP

Z T

S

Z 1

0

�0.s/
Z
˝

jr�t .x; s/j2dxdsdt

� ı

2

Z T

S

Z
˝

u2t .x; t/dxdt C �.0/

ı
CPF.S/ :

(1.54)

Moreover, by (1.28) we have

Z T

S

Z
˝

ˇ̌
ˇ
Z 1

0

�.s/r�t .x; s/ds
ˇ̌
ˇ2dxdt

�
Z T

S

Z
˝

Q�
Z 1

0

�.s/jr�t .x; s/j2dsdxdt

� 2 Q�
˛
F.S/ :

(1.55)
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Then, it results also

Z T

S

Z
˝

ru.x; t/
Z 1

0

�.s/r�t .x; s/dsdxdt

�
Z T

S

ˇ̌
ˇ
Z
˝

ru.x; t/
Z 1

0

�.s/r�t .x; s/dsdx
ˇ̌
ˇdt

� "

2

Z T

S

Z
˝

jru.x; t/j2dxdt C Q�
˛"
F.S/ :

(1.56)

Now we estimate the last two integrals in the right-hand side of (1.45).

� jkje�
Z T

S

Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdxdt

Ck
Z T

S

Z
˝

ut .x; t � �/
Z 1

0

�.s/�t .x; s/dsdxdt

� jkj
2

Z T

S

Z
˝

u2t .x; t � �/dxdt C � jkje�
2

Z T

S

Z
˝

u2t .x; t/dxdt

Cjkj.1C �e�/

2

Z T

S

Z
˝

� Z 1

0

�.s/�t .x; s/ds
�2

dxdt

� jkj
2

Z T

S

Z
˝

u2t .x; t � �/dxdt C � jkje�
2

Z T

S

Z
˝

u2t .x; t/dxdt

Cjkj.1C �e�/

2
CP Q�

Z T

S

Z
˝

Z 1

0

�.s/jr�t .x; s/j2dsdxdt :

Therefore, recalling (1.28) and (1.44), we have

� jkje�
Z T

S

Z
˝

ut .x; t/
Z 1

0

�.s/�t .x; s/dsdxdt

Ck
Z T

S

Z
˝

ut .x; t � �/
Z 1

0

�.s/�t .x; s/dsdxdt � jkj
2

Z T

S

Z
˝

u2t .x; t � �/dxdt

C� jkje�
2

Z T

S

Z
˝

u2t .x; t/dxdt C CP .jkj.�e� C 1//
Q�
˛
F.S/

� 1

� � 1F.S/C � jkje�
2

Z T

S

Z
˝

u2t .x; t/dxdt C CP Q�
˛

jkj.�e� C 1/F.S/ :

(1.57)
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Using (1.53)–(1.57) in (1.45) we obtain

�
Q� � � jkje�

2
� ı

2

� Z T

S

Z
˝

u2t .x; t/dx � "

2
.1 � Q�/

Z T

S

Z
˝

jru.x; t/j2dxdt

C 1

� � 1
F.S/C 2.1C CP Q�/F.S/C �.0/

ı
CPF.S/

C Q�
˛
.
1 � Q�
"

C 2/F.S/C CP Q� jkj.�e� C 1/

˛
F.S/ :

(1.58)

Now, fix ı D Q�
2

. Then, from (1.49), for any T � S > 0, we have

Z T

S

Z
˝

u2t .x; t/dxdt � "

Q�.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dxdt C 2

Q�
�
2.1C CP Q�/

C 1

� � 1
C 2

�.0/

Q� CP C Q�
˛
.2C 1� Q�

"
C CP jkj.�e� C 1//

�
F.S/;

(1.59)

that is (1.50) with constant C2 as in (1.51). ut
Lemma 1.5 Assume

jkj < min
n 1 � Q�
2CP .�e� C 1/

;
Q�
2�
e��o : (1.60)

Then, for any T � S > 0,

1 � Q�
2

Z T

S

Z
˝

jru.x; t/j2dxdt C 1

2

Z T

S

Z
˝

u2t .x; t/dxdt � C �F.S/ ; (1.61)

with

C � D C0C2 C C1 C C2 ; (1.62)

where C0 and C1 are the constants defined by (1.34) and

C2 WD C2

� 1 � Q�
2.C0 C 1/

�
D 4

Q�
�
1C 1

2

1

� � 1
C �.0/

Q� CP

�
C 4CP

C 2

˛

�
2C .6C 2� jkje� / .1� Q�/

Q� C CP jkj.�e� C 1/
�
:

(1.63)
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Proof The assumptions of previous lemmas are verified. Thus, we can use (1.50) in
(1.33). Then,

.1 � Q�/
Z T

S

Z
˝

jru.x; t/j2dx

� C0"

Z T

S

Z
˝

jru.x; t/j2dxdt C .C0C2 C C1/F.S/ :

(1.64)

Therefore, from (1.50) and (1.64), we obtain

1 � Q�
2

Z T

S

Z
˝

jru.x; t/j2dx C 1

2

Z T

S

Z
˝

u2t .x; t/dxdt

� "

2
.C0 C 1/

Z T

S

Z
˝

jru.x; t/j2dxdt C 1

2
.C0C2 C C1 C C2/F.S/ :

(1.65)

Now, fix

" D 1 � Q�
2.C0 C 1/

:

Then, from (1.65) we deduce

1 � Q�
4

Z T

S

Z
˝

jru.x; t/j2dx C 1

2

Z T

S

Z
˝

u2t .x; t/dxdt

� 1

2
.C0C2 C C1 C C2/F.S/ ;

where, from (1.51) with the above choice of ",C2 is as in (1.63). This clearly implies
(1.61) with C � as in (1.62). ut
Proof (of Theorem 1.3.) Notice also that (1.27) directly implies that

� jkje�
2

Z T

S

Z t

t��
e�.t�s/

Z
˝

u2t .x; s/dxdsdt � �
Z T

S

F 0.t/dt � F.S/ : (1.66)

Let us define k as

k WD min
n 1 � Q�
2CP .�e� C 1/

;
Q�
2�
e��

o
: (1.67)
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Then, if jkj < k, using (1.61), (1.28) and (1.66) in (1.30), we obtain

Z T

S

F.t/dt � C �F.S/C 1

˛
F.S/C F.S/ :

Therefore (1.29) is verified with

C D C � C 1C 1

˛
; (1.68)

where C � is as in (1.62) with C0; C1 and C2 defined in (1.34) and (1.63). ut
Proof (of Theorem 1.1) From Theorem 1.3 and Lemma 1.1, it follows that for any
solution of the auxiliary problem (1.23)–(1.25) if jkj < k, we have

F.t/ � F.0/e1�Q	t ; t � 0; (1.69)

with

Q	 WD 1

C
; (1.70)

where C is as in (1.68).
From this and Theorem 1.2 we deduce that Theorem 1.1 holds, with 	 WD Q	 �

e� jkje� , if

�Q	 C e� jkje� < 0;

that is if the delay parameter k satisfies

jkj < g.jkj/ WD 1

Ce�e�
; (1.71)

with C WD C.jkj/ defined in (1.68). Now observe that (1.71) is satisfied for k D 0

because g.0/ > 0. Moreover, by recalling the definitions of the constants C0; C1; C2
and C �, used to define C , we note that g W Œ0;1/ ! .0;1/ is a continuous
decreasing function satisfying

g.jkj/ ! 0 for jkj ! 1:

Thus, there exists a unique constant Ok > 0 such that Ok D g. Ok/. We can then
conclude that for any � in the definition (1.20) of the energy F.�/, inequality (1.71)
is satisfied for every k with

jkj < k0 D minf Ok; kg: ut
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Remark 1.3 We can compute an explicit lower bound for k0. Indeed (1.71) may be
rewritten as

jkj�e�C1
�
C � C 1C 1

˛

�
< 1:

Then, from (1.62), we have

Œ1C 1=˛ C C2.C0 C 1/C C1��e
�C1jkj < 1; (1.72)

that is

h.jkj/ WD
�
1C 1

˛
C
�
4

Q�
�
1C 1

2

1

� � 1
C �.0/

Q� CP

�
C 4CP

C 2

˛

�
2C .6C 2� jkje�/ .1 � Q�/

Q� C CP jkj.�e� C 1/
��
.3C � jkje� /

C4
�
1C Q�

˛.1 � Q�/ C CP

1 � Q� C 1

2.� � 1/
�	
�e�C1jkj < 1:

(1.73)

Now, we use the assumption jkj < k with k defined in (1.67) in order to majorize
the left-hand side of (1.73), h.jkj/, with a linear function. We have

h.jkj/ �
�
1C 1

˛
C
�
4

Q�
�
1C 1

2

1

� � 1 C �.0/

Q� CP

�
C 4CP

C 2

˛

�
2C .6C Q�/.1 � Q�/

Q� C 1 � Q�
2

��
.3C Q�=2/

C4
�
1C Q�

˛.1 � Q�/ C CP

1 � Q� C 1

2.� � 1/

�	
�e�C1jkj;

(1.74)

from which follows

h.jkj/ �
�
1C 1

˛

1 C 
2

�
� jkje�C1;

with


1 D 
1. Q�/ D 4
Q�

1� Q� � 8C 36

Q� � 23

2
Q� � 3

2
Q�2;


2 D 
2.�.0/; Q�; �; CP /
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D 6C 12CP C 3

� � 1
C 12

Q� C 6

Q�.� � 1/

C12�.0/Q�2 CP C 2
�.0/

Q� CP C 2CP Q�C 4CP

1 � Q�:

Then, we deduce the following explicit lower bound

k0 � e�.�C1/

�.1C 1
˛

1 C 
2/

; (1.75)

with 
1; 
2 as before. For example, if we take

�.t/ D e�2t ;

then Q� D 1=2 and so, fixing � D 2, we can compute 
1 D 495
8
; 
2 D 45C 73CP .

Hence, for this particular choice of the memory kernel, we obtain

k0 � 8e�.�C1/

1231C 1168CP
:

Remark 1.4 In the case � D 0 and k < 0, namely viscoelastic wave equation
with anti-damping, we can simplify previous arguments. Indeed, the absence of time
delay allows us to take � D 1 obtaining an exponential stability estimate under the
condition

jkj <
�
C1 C 3C2 C 1

˛

��1
1

e
;

where

C1 D 4
�
1C Q�

˛.1 � Q�/ C CP

1 � Q�
�

and

C2 D 2

Q�
�
2C �.0/

Q� CP

�
C 4CP C 2

˛

�
2C 6

1� Q�
Q�

�
:
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Chapter 2
Existence of Global Weak Solutions
to a Generalized Hyperelastic-Rod Wave
Equation with Source

Fabio Ancona and Giuseppe Maria Coclite

In memory of Alfredo with a vivid remembering of his
enthusiasm and dedication in fostering various activities of the
inverse and control theoretic community

Abstract We consider a weakly dissipative hyperelastic-rod wave equation
describing nonlinear dispersive dissipative waves in compressible hyperelastic
rods. We endow it with a nonlinear source and establish the existence of global
weak solutions for any initial condition in H1.R/.

2.1 Introduction

We are interested in the Cauchy problem for the nonlinear equation

(
@tu � @3txxu C @x

�
g.u/
2

�
D 




2@xu@2xxu C u@3xxxu

�C f .t; x; u/; t > 0; x 2 R;

u.0; x/ D u0.x/; x 2 R;
(2.1)

where the functions g W R ! R; f W Œ0;1/ � R � R ! R; and the constant

 2 R are given. Observe that if g.u/ D 2�u C 3u2; f � 0; and 
 D 1, then
(2.1) is the classical Camassa–Holm equation [6, 20]. With g.u/ D 3u2, Dai [13–
15] derived (2.1) as an equation describing finite length, small amplitude radial
deformation waves in cylindrical compressible hyperelastic rods, and the equation
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is often referred to as the hyperelastic-rod wave equation. The constant 
 is given in
terms of the material constants and the prestress of the rod.

We shall assume

u0 2 H1.R/; g 2 C1.R/; jg.u/j � M u2; 
 > 0;

f 2 C1.Œ0;1/ � R � R/; jf .�; �; u/j; j@tf .�; �; u/j � Ljuj; j@uf .�; �; u/j � L;
(2.2)

for some constants L; M > 0 and every u 2 R. Observe that the case 
 D 0

is much simpler than the one we are considering. Moreover, if 
 < 0, peakons
become antipeakons, so we can use a similar argument. The assumptions of infinite
differentiability and subquadratic growth of g is made just for convenience. In fact,
locally Lipschitz continuity would be sufficient. Define

h.�/ WD 1

2



g.�/ � 
�2

�
(2.3)

for � 2 R. Rewriting Eq. (2.1) as

.1 � @2x/@tu C 
.1� @2x/.u@xu/C @x

�
h.u/C 


2
.@xu/2

�
D f .t; x; u/; (2.4)

we see that Eq. (2.1) formally is equivalent to the elliptic-hyperbolic system

@tuC
u@xuC@xP D F; �@2xxPCP D h.u/C 


2
.@xu/2 ; �@2xxFCF D f .t; x; u/:

(2.5)

Moreover, since e�jxj=2 is the Green’s function of the operator �@2xx C 1, we have
that

P.t; x/ D 1
2

R
R
e�jx�yj

�
h.u.t; y//C 


2
.@xu.t; y//2

�
dy;

F .t; x/ D 1
2

R
R
e�jx�yjf .t; y; u.t; y//dy:

(2.6)

Motivated by this, we shall use the following definition of weak solution.

Definition 2.1 Let uW Œ0;1/ � R ! R be a function. We say that u is a weak
dissipative solution of the Cauchy problem (2.1) if

(i) u 2 C.Œ0;1/ � R/\ L1
.0; T /IH1.R/
�
; T > 0;

(ii) u satisfies (2.5) in the sense of distributions for some P; F 2 L1.Œ0;1/I
W 1;1.R//, that is

R1
0

R
R

�
u@t' C 
 u2

2
@x' C P@x' C F'

�
dtdx C R

R
u0.x/'.0; x/dx D 0;R1

0

R
R

�
�P@2xx' C P' � h.u/' � 


2
.@xu/2 '

�
dtdx D 0;R1

0

R
R


�F@2xx' C F' � f .t; x; u/'� dtdx D 0;

for every test function ' 2 C1.R2/ with compact support;
(iii) u.0; x/ D u0.x/, for every x 2 R;
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(iv) .Oleı̆nik type Estimate) for each T > 0 there exists a positive constant CT
depending on u0; 
; g; L; and T such that

@xu.t; x/ � 2


 t
C CT ;

for each x 2 R; 0 < t � T .

This definition is inspired by the definition of dissipative solution introduced in
[3,5,7,9–12,17,18,23] and differs from the one of conservative solution introduced
in [4, 19] for the presence of the Oleı̆nik type Estimate. The motivation behind the
existence of these two definitions can be easily understood considering the traveling
waves of the Camassa–Holm equations. The following peakon like function is a
travelling wave solution:

1

2

�
1 � 1




�
c C c

2

�
3



� 1

�
e

� jx�ct�j
p


 :

When two of these solitary waves interact may happen that at a time t0 they are
completely neglected and we have u.t0; x/ D 0. In the conservative solutions
the shape of these waves is retained after the interactions, in particular there is
the conservation of the total energy for all the times t 6D t0. On the contrary in
the dissipative solutions there is no reconstruction and then we have the trivial
solution for t � t0. One would expect that the Oleı̆nik type condition (iv) of
Definition 2.1 would yield uniqueness of dissipative solutions to (2.1). However, the
more general uniqueness result available in literature is [24] and it does not apply
to weak solutions, therefore is not clear if the dissipative solutions of [1–3, 5, 7, 9–
12, 17, 18, 23] are the same.

Remark 2.1 An alternative definition of weak dissipative solution can be found in
[1, 2], where the condition (ii) is replaced by the requirement that

d

dt
u D �
u@xu � @xP C F

holds in the L2-sense for almost every t . One can easily verify that a function that
is a solution of (2.1) according with Definition 2.1 turns out to be also a solution of
(2.1) in the sense of the definition given in [1, 2].

We have to remark that the Lagrangian approach used in [1–5, 17–19] gives the
existence of semigroups of solutions in both cases. The vanishing viscosity one used
here and in [3, 7, 9–12, 23] gives only the existence of weak solutions without any
semigroup property. The interest for this approach is motivated by the analysis of
numerical schemes, where for instance the convergence proof is usually based on
similar arguments to the ones used for the viscosity approximation (see [11, 12]).
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Remark 2.2 The only results available in literature that treat (2.1) in the case f 6� 0

are [1, 2]. There we prove the existence of a semigroup of asymptotically stable
dissipative solutions to (2.1) when f D ��.u � @2xxu/ and � > 0 is a constant.
Clearly the source term f D ��.u�@2xxu/ does not satisfies (2.2) because it depends
on @2xxu. However, the arguments in the present paper can be easily adapted to the
case in which (2.5) is replaced by

@tu C 
u@xu C @xP D ��u; �@2xxP C P D h.u/C 


2
.@xu/2 :

Moreover, in this case arguing as in Lemma 2.1 we gain the estimate

ku".t; �/k2H1.R/ C 2"e�2�t
Z t

0

e2�s k@xu".s; �/k2H1.R/ ds � e�2t ku0k2H1.R/ ;

which in turn letting " ! 0, yields the decay of the energy

ku.t; �/kH1.R/ � e��t ku0kH1.R/ :

Our existence results are collected in the following theorem:

Theorem 2.1 Let u0; 
; g; f satisfy (2.2). The initial value problem (2.1) has a
weak dissipative solution u W Œ0;1/ � R ! R in the sense of Definition 2.1.
Moreover, u satisfies the following property:

@xu 2 Lp..0; T / � .a; b//; (2.7)

for each 1 � p < 3; T > 0; a < b:

The paper is organized as follows. In Sect. 2.2 we state the viscous problem and
establish an Oleinik type estimate and a higher integrability estimate for the viscous
approximants. Section 2.3 is devoted to proving basic compactness properties for the
viscous approximants. In Sect. 2.4 we get the strong compactness of the derivative
of the viscous approximants and prove Theorem 2.1.

2.2 Viscous Approximants: Existence and Estimates

We will prove existence of a weak dissipative solution to the Cauchy problem for
(2.1) by proving compactness of a sequence of smooth functions fu"g">0 solving the
following viscous problems:

8̂
<̂
ˆ̂:

@tu" C 
u"@xu" C @xP" D F" C "@2xxu"; t > 0; x 2 R;

�@2xxP" C P" D h.u"/C 


2
.@xu"/

2 ; t > 0; x 2 R;

�@2xxF" C F" D f .t; x; u"/; t > 0; x 2 R;

u".0; x/ D u";0.x/; x 2 R:

(2.8)
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We shall assume that

fu";0g">0 � C1.R/; ku";0kH1.R/ � ku0kH1.R/ ; " > 0; u";0 ! u0 in H1.R/:

(2.9)

The well-posedness of smooth solutions for (2.8) has been proved in [8]. Due to
the smoothness of the solutions of (2.8), it is (rigorously) equivalent to the fourth
order equation

@tu" � @3txxu" C@x
�
g.u"/
2

�
D 




2@xu"@2xxu" C u"@3xxxu"

�C f .t; x; u"/C "@2xxu" � "@4xxxxu":
(2.10)

In our estimates we will frequently use the embedding H1.R/ � L1.R/. More
precisely we have that [21, Theorem 8.5]

k'kL1.R/ � 1p
2

k'kH1.R/ ; ' 2 H1.R/: (2.11)

Finally, we introduce the notation

q" D @xu"; " > 0:

Differentiating the first equation in (2.8) we get

@tq" C 
u"@xq" � "@2xxq" C 


2
q2" D h.u"/� P" C @xF": (2.12)

The remaining part of this section is dedicated to several a priori estimates that
will play a key role in the proof of our main result.

2.2.1 Energy Estimate

Lemma 2.1 The following inequality holds

ku".t; �/k2H1.R/ C 2"e2Lt
Z t

0

e�2Ls k@xu".s; �/k2H1.R/ ds � e2Lt ku0k2H1.R/ ; (2.13)

for every t � 0 and " > 0: In particular

ku".t; �/kH1.R/ � eLt ku0kH1.R/ ; (2.14)
p
" k@xu"kL2..0;t/IH1.R// � eLtp

2
ku0kH1.R/ ; (2.15)

ku".t; �/kL1.R/ � eLtp
2

ku0kH1.R/ ; (2.16)

for every t � 0 and " > 0.



28 F. Ancona and G.M. Coclite

Proof We (2.2) and (2.10) give

d
dt

R
R

u2"C.@xu"/2

2
dx D R

R



u"@tu" C @xu"@2txu"

�
dx D R

R
u"


@tu" � @3txxu"

�
dx

D � R
R

u"@x
�
g.u"/
2

�
dx C 2


R
R

u"@xu"@2xxu"dx C 

R
R

u2"@
3
xxxu"dx

C R
R

u"f .t; x; u"/dx C "
R
R

u"


@2xxu" � @4xxxxu"

�
dx

D 1
2

Z
R

g.u"/@xu"dx
„ ƒ‚ …

D0

C 2


Z
R

u"@xu"@
2
xxu"dx � 2


Z
R

u"@xu"@
2
xxu"dx

„ ƒ‚ …
D0

C R
R

u"f .t; x; u"/dx � "
R
R

�
.@xu"/

2 C 

@2xxu"

�2�
dx

D R
R

u"f .t; x; u"/dx � " R
R

�
.@xu"/

2 C 

@2xxu"

�2�
dx

� L
R
R

u2"dx � " R
R

�
.@xu"/

2 C 

@2xxu"

�2�
dx

� 2L
R
R

u2"C.@xu"/2

2
dx � "

R
R

�
.@xu"/

2 C 

@2xxu"

�2�
dx:

Therefore (2.13) follows from the Gronwall’s Lemma.
Clearly, (2.14) follows directly from (2.13), and (2.11) follows from (2.11) and

(2.13). Finally, from (2.13) we have

" k@xu"k2L2..0;t/IH1.R// D "
R t
0 k@xu".s; �/k2H1.R/ ds

� "e2Lt
R t
0
e�2Ls k@xu".s; �/k2H1.R/ ds � e2Lt

2
ku0k2H1.R/ ;

that give (2.15). ut
We continue this subsection with some a priori bounds that come directly from

the energy estimate stated in Lemma 2.1.

Lemma 2.2 The family fP"g">0 is uniformly bounded in L1.0; T IW 2;1.R// and
in L1.0; T I W 1;1.R//, for every T > 0. More precisely, we have

kP".t; �/kL1.R/ ; k@xP".t; �/kL1.R/ � MC

2
e2Lt ku0k2H1.R/ ; (2.17)

kP".t; �/kL1.R/ ; k@xP".t; �/kL1.R/ � MC

4
e2Lt ku0k2H1.R/ ; (2.18)

��@2xxP".t; �/
��
L1.R/

� 3
MC

4
e2Lt ku0k2H1.R/ ; (2.19)

for every t � 0 and " > 0.

Proof From (2.2), we know

ˇ̌
ˇh.u"/C 


2
.@xu"/

2
ˇ̌
ˇ � M C 


2



u2" C .@xu"/

2
�
: (2.20)
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In addition, since e�jxj=2 is the Green’s function of the operator �@2xx C 1, we have

P".t; x/ D 1
2

R
R
e�jx�yj

�
h.u".t; y//C 


2
.@xu".t; y//

2
�

dy; (2.21)

@xP".t; x/ D 1
2

R
R
e�jx�yjsign .y � x/

�
h.u".t; y//C 


2
.@xu".t; y//

2
�

dy: (2.22)

Since

Z
R

e�jxj

2
dx D 1; (2.23)

we have

jP".t; x/j; j@xP".t; x/j � 1
2

R
R
e�jx�yj

ˇ̌
ˇh.u".t; y//C 


2
.@xu".t; y//

2
ˇ̌
ˇ dy

� 1
2

R
R

ˇ̌
ˇh.u".t; y//C 


2
.@xu".t; y//

2
ˇ̌
ˇ dy;R

R
jP".t; x/jdx;

R
R

j@xP".t; x/jdx � 1
2

R
R�R

e�jx�yj jh.u".t; y//
C 


2
.@xu".t; y//

2
ˇ̌
ˇ dydx

� R
R

ˇ̌
ˇh.u".t; y//C 


2
.@xu".t; y//

2
ˇ̌
ˇ dy;

therefore (2.17) and (2.18) follow from (2.13) and (2.20).
Finally, since

@2xxP" D P" � h.u"/ � 


2
.@xu"/

2

(2.19) follows from (2.13), (2.18), and (2.20). ut
Lemma 2.3 The family fF"g">0 is uniformly bounded in L1.0; T IH2.R// and in
L1.0; T I W 2;1.R//, for every T > 0. More precisely, we have

kF".t; �/kL1.R/ ; k@xF".t; �/kL1.R/ � Lp
2
eLt ku0kH1.R/ ; (2.24)

kF".t; �/kL2.R/ ; k@xF".t; �/kL2.R/ � LeLt ku0kH1.R/ ; (2.25)
��@2xxF".t; �/

��
L1.R/

� LC1p
2
eLt ku0kH1.R/ ; (2.26)

��@2xxF".t; �/
��
L2.R/

�
�
Lp
2

C 1
�
eLt ku0kH1.R/ ; (2.27)

for every t � 0 and " > 0.

Proof From (2.2), we know

jf .t; x; u"/j � Lju"j: (2.28)
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In addition, since e�jxj=2 is the Green’s function of the operator �@2xx C 1, we have

F".t; x/ D 1
2

R
R
e�jx�yjf .t; y; u".t; y//dy; (2.29)

@xF".t; x/ D 1
2

R
R
e�jx�yjsign .y � x/ f .t; x; u".t; y//dy: (2.30)

Using (2.23) we have

jF".t; x/j ; j@xF".t; x/j � 1
2

R
R
e�jx�yj jf .t; y; u".t; y//j dy

� kf .t; �; u".t; �//kL1.R/ ;R
R

jF".t; x/j2dx ;
R
R

j@xF".t; x/j2dx � 1
4

R
R


R
R
e�jx�yjjf .t; y; .u".t; y//jdy

�2
dx

� 1
4


R
R
e�jx�yjdy

� 
R
R�R

e�jx�yjf 2.t; y; u".t; y//dydx
�

D R
R
f 2.t; y; u".t; y//dy;

therefore (2.24) and (2.25) follow from (2.14), (2.11) and (2.20).
Finally, since

@2xxF" D F" � f .t; x; u"/

(2.26) and (2.27) follow from (2.14), (2.11), (2.24), (2.25), and (2.28). ut
Lemma 2.4 The family fu"g">0 is uniformly bounded in H1..0; T / � R/, for each
T > 0.

Proof From (2.8) we have

@tu" D �
u"@xu" � @xP" C F" C "@2xxu";

that gives

k@tu"kL2..0;T /�R/ � 
 ku"kL1..0;T /�R/ k@xu"kL2..0;T /�R/

C
q

k@xP"kL1..0;T /�R/ k@xP"kL1..0;T /�R/

C kF"kL2..0;T /�R/ C "
��@2xxu"

��
L2..0;T /�R/

:

Therefore the claim follows from Lemmas 2.1–2.3. ut
Lemma 2.5 The family fP"g">0 is uniformly bounded in W 1;1

loc ..0;1/ � R/.

Proof Thanks to Lemma 2.2 we have to prove that f@tP"g">0 is uniformly bounded
in L1loc..0;1/� R/. We split P" in the following way

P" D P";1 C P";2;
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where [see (2.6)]

P";1.t; x/D 1

2

Z
R

e�jx�yjh.u".t; y//dy; P";2.t; x/D 1

2

Z
R

e�jx�yj



2
.@xu".t; y//

2 dy:

Since

@tP" D @tP";1 C @tP";2;

@tP";1.t; x/ D 1
2

R
R
e�jx�yjh0.u.t; y//@tu".t; y/dy;

@tP";2.t; x/ D 1
2

R
R
e�jx�yj
@xu.t; y/@2txu.t; y/dy:

We claim that

f@tP1;"g" is uniformly bounded in L2..0; T / � R/; (2.31)

f@tP2;"g" is uniformly bounded in L1..0; T / � R/: (2.32)

We begin by proving (2.31). Using (2.2), (2.11), the Tonelli theorem, and the
Hölder inequality,

k@tP1;"k2L2..0;T /�R/ � max
j�j�eLtku0kH1.R/=

p
2

.h0.�//2 k@tu"k2L2..0;T /�R/ : (2.33)

Then (2.31) is a direct consequence of Lemma 2.4.
We continue by proving (2.32). Observe that, from (2.12),

@tP2;".t; x/ D 


2

R
R
e�jx�yjq"@tq"dy

D 


2

R
R
e�jx�yj

�
� 
q"u"@xq" C "q"@

2
xxq"

� 


2
q3" C q" .h.u"/� P" C @xF"/

�
dy:

(2.34)

Using




2
@x.u"q

2
" / D 


2
q3" C 
q"u"@xq"; @x



q"@xq"

� D q"@
2
xxq" C .@xq"/

2 ;

(2.34), and integration by parts, we get

@tP2;".t; x/ D 


4

R
R
e�jx�yj

�
� 


2
@x.u"q2" /C "@x

�
q"@xq"

�

�" .@xq"/2 C q" .h.u"/ � P" C @xF"/
�

dy

D 


4

R
R
e�jx�yj

�
sign .y � x/

 

2

u"q2" � "q"@xq"
�

�" .@xq"/2 C q" .h.u"/ � P" C @xF"/
�

dy:



32 F. Ancona and G.M. Coclite

Using (2.2), (2.13), (2.11), Lemma 2.2, the Tonelli theorem, and the Hölder
inequality,

R
R�R

e�jx�yjju"jq2"dxdy � eLtp
2

ku0kH1.R/ ku".t; �/k2H1.R/

� e3Ltp
2

ku0k3H1.R/ ;

"
R T
0

R
R

R
R
e�jx�yjjq"j j@xq"j dtdxdy

� "
2

R T
0 ku".t; �/k2H1.R/ dt

C "
2

R T
0 k@xu".t; �/k2H1.R/ dt

� e2Lt

2



"T C 1

2

� ku0k2H1.R/ ;

"
R T
0

R
R

R
R
e�jx�yj .@xq"/2 dtdxdy � 2"

R T
0 k@xu".t; �/k2H1.R/ dt � e2Lt ku0k2H1.R/ ;R

R�R
e�jx�yjjq"jjh.u"/jdxdy � 1

2

R
R
q2"dy C 1

2
max

j�j�e2Ltku0kH1.R/=
p
2

.h0.�//2
R
R

u2"dy

� e2Lt

2

 
1C max

j�j�eLt ku0kH1.R/=
p
2

.h0.�//2
!

ku0k2H1.R/ ;

R
R�R

e�jx�yjjq"j.jP"j C j@xF"j/dxdy

� 1
2

ku".t; �/k2H1.R/ C kP".t; �/kL1.R/ kP".t; �/kL1.R/ C k@xF".t; �/k2L2.R/
� e2Lt

2

�
1C .MC
/2

4
e2Lt ku0k2H1.R/ C L2

�
ku0k2H1.R/ :

It follows from these estimates that (2.32) holds.
Since the bound on f@tP"g" is a consequence of (2.31) and (2.32), the family

fP"g" is bounded in W 1;1
loc .Œ0;1/ � R/. ut

Lemma 2.6 The family fF"g">0 is uniformly bounded in H1..0; T /IH1.R//;

T > 0.

Proof Thanks to Lemma 2.2 we have to prove that f@tF"g">0 and f@2txF"g">0 are
uniformly bounded in L1..0; T /IL2.R//.

We know

@tF".t; x/ D 1
2

R
R
e�jx�yj
@tf .t; x; u".t; y//C @uf .t; x; u".t; y//@tu".t; y/

�
dy;

@2txF".t; x/ D 1
2

R
R
e�jx�yjsign .y � x/



@tf .t; x; u".t; y//

C@uf .t; x; u".t; y//@tu".t; y/
�
dy;

and then

j@tF".t; x/j; j@2txF".t; x/j � L

2

Z
R

e�jx�yj
ju".t; y//j C j@tu".t; y/j
�
dy:
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Since

R
R

j@t F".t; x/j2dx;
R
R

j@2txF".t; x/j2dx

� 1
4

R
R


R
R
e�jx�yj
ju".t; y//j C j@tu".t; y/j

�
dy
�2

dx

� 1
4


R
R
e�jx�yjdy

� �R
R�R

e�jx�yj
ju".t; y//j C j@tu".t; y/j
�2

dydx
�

� 2
R
R

ju".t; y//j2dy C 2
R
R

j@tu".t; y/j2dy;

the claim follows from Lemmas 2.1 and 2.4. ut

2.2.2 Oleı̆nik Estimate

The main result of this subsection is the following one side estimate.

Lemma 2.7 For each 0 < t � T and x 2 R,

@xu".t; x/ � 2


 t
C CT ; (2.35)

where

CT WD
s
2




0
@ max

j�j� eLT
p

2
ku0kH1.R/

jh.�/j C M C 


2
e2LT ku0k2H1.R/

C Lp
2
eLT ku0kH1.R/

1
A
1=2

:

Proof From (2.11), (2.17), and (2.24)

kh.u"/� P" C @xF"kL1..0;T /�R/

� max
j�j� eLT

p

2
ku0kH1.R/

jh.�/j

CMC

2
e2LT ku0k2H1.R/ C Lp

2
eLT ku0kH1.R/ DW C 0

T :

(2.36)

So, from (2.12), we have

@tq" C 
u"@xq" � "@2xxq" C 


2
q2" � C 0

T : (2.37)

Let U D U.t/ be the solution of

dU

dt
C 


2
U 2 D C 0

T ; 0 < t � T; U.0/ D k@xu";0kL1.R/ : (2.38)



34 F. Ancona and G.M. Coclite

Since, U D U.t/ is a super-solution of the parabolic initial value problem (2.12),
due to the comparison principle for parabolic equations, we get

q".t; x/ � U.t/; 0 < t � T; x 2 R: (2.39)

Finally, consider the map

U .t/ WD 2


 t
C
s
2



C 0
T ; 0 < t � T:

Observe that

dU

dt
.t/C 


2
U
2
.t/ � C 0

T D 2

t

s
2
C 0
T



> 0; 0 < t � T;

so that U D U .t/ is a super-solution of (2.38). Due to the comparison principle for
ordinary differential equations, we get U.t/ � U.t/ for all 0 < t � T . Therefore,
by this and (2.39), the estimate (2.35) is proved. ut

2.2.3 Higher Integrability Estimate

The main result of this subsection is the following higher integrability estimate.

Lemma 2.8 Let 0 < ˛ < 1, T > 0, and a; b 2 R; a < b. Then there exists a
positive constant C depending only on ku0kH1.R/ ; ˛; T; a; and b, but independent
on ", such that

Z T

0

Z b

a

j@xu".t; x/j2C˛ dtdx � C; (2.40)

where u" D u".t; x/ is the unique solution of (2.8).

Proof The proof is a variant of the proof found in Xin and Zhang [23]. Let � 2
C1.R/ be a cut-off function such that

0 � � � 1; �.x/ D
�
1; if x 2 Œa; b�;
0; if x 2 .�1; a � 1� [ Œb C 1;1/:

Consider also the map

�.�/ WD �

j�j C 1

�˛
; � 2 R;
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and observe that, since 0 < ˛ < 1,

� 0.�/ D 

.˛ C 1/j�j C 1

�
j�j C 1
�˛�1

;

� 00.�/ D ˛ sign .�/

j�j C 1

�˛�2

.˛ C 1/j�j C 2

�
D ˛.˛C1/ sign .�/


j�jC1�˛�1 C .1�˛/˛ sign .�/

j�jC1�˛�2

;ˇ̌
�.�/

ˇ̌ � j�j˛C1 C j�j; ˇ̌
� 0.�/

ˇ̌ � .˛ C 1/j�j C 1;
ˇ̌
� 00.�/

ˇ̌ � 2˛;

��.�/ � 1
2
�2� 0.�/ D 1�˛

2
�2

j�j C 1

�˛ C ˛
2
�2

j�j C 1

�˛�1

� 1�˛
2
�2

j�j C 1

�˛
:

(2.41)

Multiplying (2.12) by �� 0.q"/, using the chain rule, and integrating over .0; T /�
R, we get

R T
0

R
R

�.x/q"�.q"/dtdx � 


2

R T
0

R
R
q2"�.x/�

0.q"/dtdx

D R
R
�.x/



�


q".T; x/

���
q".0; x/�� dx� R T
0

R
R

u"�0.x/�.q"/dtdx

C" R T
0

R
R
@xq"�

0.x/� 0.q"/dtdxC" R T
0

R
R
.@xq"/

2 �.x/� 00.q"/dtdx

� R T
0

R
R
.h.u"/� P" C @xF"/ �.x/�

0.q"/dtdx:

(2.42)

Observe that, by (2.41),

R T
0

R
R

�.x/q"�.q"/dtdx � 


2

Z T

0

Z
R

q2"�.x/�
0.q"/dtdx

D R T
0

R
R

�.x/

�
q"�.q"/� 1

2
q2" �

0.q"/
�

dtdx

� 
.1�˛/
2

R T
0

R
R
�.x/q2"


jq"j C 1
�˛

dtdx:

(2.43)

Let t � 0, since 0 < ˛ < 1; using the Hölder inequality, (2.11) and the first part of
(2.41),

ˇ̌R
R
�.x/�.q"/dx

ˇ̌ � R
R
�.x/

�
jq"j˛C1 C jq"j

�
dx

� k�kL2=.1�˛/.R/ kq".t; �/k˛C1
L2.R/

C k�kL2.R/ kq".t; �/kL2.R/
� .b�aC2/.1�˛/=2 ku0k˛C1

H1.R/
eL.˛C1/t

C.b�aC2/1=2eLt ku0kH1.R/ ;

(2.44)
and
ˇ̌
ˇ R T0

R
R

u"�0.x/�.q"/dtdx

ˇ̌
ˇ � R T

0

R
R

 ju"jj�0.x/j 
jq"j˛C1 C jq"j

�
dtdx

� R T
0

R
R

 ku".t; �/kL1.R/ j�0.x/j 
jq"j˛C1 C jq"j

�
dtdx

� 

ku0kH1.R/p

2
eLt
R T
0


 k�0kL2=.1�˛/.R/ kq".t; �/k˛C1
L2.R/

C k�0kL2.R/ kq".t; �/kL2.R/
�
dt

� 
T
ku0kH1.R/p

2
eLt

 k�0kL2=.1�˛/.R/ ku0k˛C1

H1.R/
eL.˛C1/t

C k�0kL2.R/ ku0kH1.R/ e
Lt
�
:

(2.45)
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Moreover, observe that

"

Z T

0

Z
R

@xq"�
0.x/� 0.q"/dtdx D �"

Z T

0

Z
R

�.q"/�
00.x/dtdx;

so, again by the Hölder inequality, (2.11) and the first part of (2.41),

ˇ̌
ˇ" R T0

R
R

@q"
@x
�0.x/�.q"/dtdx

ˇ̌
ˇ � "

Z T

0

Z
R

j�.q"/jj�00.x/jdtdx

� "

Z T

0

Z
R


jq"j˛C1 C jq"j
� j�00.x/jdtdx

� "
R T
0

�
k�00kL2=.1�˛/.R/kq".t; �/k˛C1

L2.R/
C k�00kL2.R/ kq".t; �/kL2.R/

�
dt

� "T
�

k�00kL2=.1�˛/.R/ku0k˛C1
H1.R/

e.˛C1/LtC k�00kL2.R/ku0kH1.R/ e
Lt
�
:

(2.46)
Since 0 < ˛ < 1, using (2.13) and the third part of (2.41),

"

ˇ̌
ˇ̌R T
0

R
R

�
@q"
@x

�2
�.x/� 00.q"/dtdx

ˇ̌
ˇ̌ � 2˛"

Z T

0

Z
R

.@xq"/
2 dtdx

� ˛ ku0k2H1.R/ e
2Lt:

(2.47)

Thanks to (2.36)

ˇ̌
ˇ R T0

R
R
.h.u"/� P" C @xF"/ �.x/�

0.q"/dtdx
ˇ̌
ˇ

� C 0
T

R T
0

R
R
�.x/ ..˛ C 1/jq"j C 1/ dtdx

� C 0
T

R T
0



.˛ C 1/ k�kL2.R/ kq".t; �/kL2.R/ C k�kL1.R/

�
dt

� C 0
T T



.˛ C 1/.b � a C 2/1=2eLt ku0kH1.R/ C .b � a C 2/

�
:

(2.48)

From (2.42), (2.43), (2.44), (2.45), (2.46), (2.47), and (2.48), there exists a constant
c > 0 depending only on ku0kH1.R/, ˛, T > 0, a, and b, but independent of ", such
that


.1� ˛/
2

Z T

0

Z
R

jq"j2�.x/

jq"j C 1

�˛
dtdx � c: (2.49)

Then

Z T

0

Z b

a

j@xu".t; x/j2C˛ dtdx �
Z T

0

Z
R

jq"j�.x/ .jq"j C 1/˛C1 dtdx � 2c


.1� ˛/ ;

hence estimate (2.40) is proved. ut
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2.3 Basic Compactness

Lemma 2.9 There exists a sequence f"j gj2N tending to zero and three functions

u 2 L1..0; T /IH1.R// \H1..0; T / � R/; for each T � 0;

P 2 L1..0; T /IW 1;1.R//; for each T � 0;

F 2 L1.0; T IH2.R// \ L1.0; T IW 2;1.R// \H1..0; T / � R/; for each T � 0;

such that

u"j * u inH1..0; T / � R/; for each T � 0; (2.50)

u"j ! u in L1
loc..0;1/� R/; (2.51)

P"j ! P strongly in Lploc..0;1/� R/; 1 � p < 1; (2.52)

F"j ! F strongly in Lploc..0;1/IW 1;p
loc .R//; 1 � p < 1: (2.53)

Proof Fix T > 0. Lemmas 2.1 and 2.4 say that fu"g" is uniformly bounded in
H1..0; T / � R/\ L1..0; T /IH1.R//; T > 0, and (2.50) follows.

Observe that, for each 0 � s; t � T ,

ku".t; �/� u".s; �/k2L2.R/ D R
R

� R t
s
@tu".�; x/d�

�2
dx

� pjt � sj R T0
R
R

�
@tu".�; x/

�2
d�dx:

Moreover, fu"g" is uniformly bounded in L1..0; T /IH1.R// and H1.R/ ��
L1

loc.R/ � L2loc.R/, then (2.51) is consequence of [22, Theorem 5].
Lemmas 2.2, 2.5, 2.3, and 2.6 give (2.52) and (2.53). ut
Throughout this paper we use overbars to denote weak limits (the spaces in which

these weak limits are taken should be clear from the context and thus they are not
always explicitly stated).

Lemma 2.10 There exists a sequence f"j gj2N tending to zero and two functions

q 2 Lploc..0;1/ � R/; q2 2 Lrloc..0;1/� R/

such that

q"j * q in Lploc..0;1/ � R/; q"j *
� q in L1

loc..0;1/IL2.R//; (2.54)

q2"j * q2 in Lrloc..0;1/ � R/; (2.55)
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for each 1 < p < 3 and 1 < r < 3
2
. Moreover,

q2.t; x/ � q2.t; x/ for almost every .t; x/ 2 Œ0;1/ � R (2.56)

@xu D q in the sense of distributions on Œ0;1/ � R: (2.57)

Proof Formulas (2.54) and (2.55) are direct consequences of Lemmas 2.1 and 2.8.
Inequality (2.56) is true thanks to the weak convergence in (2.55). Finally, (2.57) is
a consequence of the definition of q", Lemma 2.9, and (2.54). ut

In the following, for notational convenience, we replace the sequences fu"j gj2N;
fq"j gj2N; fP"j gj2N; fF"j gj2N by fu"g">0; fq"g">0; fP"g">0; fF"g">0, respectively.

In view of (2.54), we conclude that for any � 2 C1.R/with �0 bounded, Lipschitz
continuous on R and any 1 < p < 3 we have

�.q"/ * �.q/; in Lploc..0;1/ � R/;

�.q"/ *
� �.q/ in L1

loc..0;1/IL2.R//: (2.58)

Multiplying the equation in (2.12) by �0.q"/, we get

@t�.q"/ C@x .
u"�.q"// � "@2xx�.q"/ � "�00.q"/ .@x�.q"//2

D 
q"�.q"/� 


2
�0.q"/q2" C .h.u"/ � P" C @xF"/ �

0.q"/:
(2.59)

Lemma 2.11 For any convex � 2 C1.R/ with �0 bounded, Lipschitz continuous on
R, we have

@t �.q/C@x

�

u�.q/

�
� 
q�.q/� 


2
�0.q/q2C .h.u/�P C@xF /�0.q/; (2.60)

in the sense of distributions on Œ0;1/�R. Here q�.q/ and �0.q/q2 denote the weak
limits of q"�.q"/ and �0.q"/q2" in Lrloc..0;1/ � R/, 1 < r < 3

2
, respectively.

Proof In (2.59), by convexity of �, (2.2), (2.51), (2.54), and (2.55), sending " ! 0

yields (2.60). ut
Remark 2.3 From (2.54) and (2.55), it is clear that

q D qC C q� D qC C q�; q2 D .qC/2 C .q�/2; q2 D .qC/2 C .q�/2;

almost everywhere in Œ0;1/ � R, where �C WD ��Œ0;C1/.�/, �� WD ��.�1;0�.�/,
� 2 R. Moreover, by (2.35) and (2.54),

q".t; x/; q.t; x/ � 2


 t
C CT ; 0 < t � T; x 2 R: (2.61)
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Lemma 2.12 There holds

@tq C @x.
uq/ D 


2
q2 C h.u/� P C @xF (2.62)

in the sense of distributions on Œ0;1/ � R:

Proof Using (2.12), (2.51), (2.52), (2.54), and (2.55), the result (2.62) follows by
" ! 0 in (2.12). ut

The next lemma contains a renormalized formulation of (2.62).

Lemma 2.13 For any � 2 C1.R/ with �0 2 L1.R/,

@t�.q/ C@x .
u�.q//

D 
q�.q/C
�



2
q2 � 
q2

�
�0.q/C .h.u/� P C @xF / �

0.q/; (2.63)

in the sense of distributions on Œ0;1/ � R.

Proof Let f!ıgı be a family of mollifiers defined on R. Denote qı.t; x/ WD .q.t; �/?
!ı/.x/. Here and in the following all convolutions are with respect to the x variable.
According to Lemma II.1 of [16], it follows from (2.62) that qı solves

@t qıC
u@xqı D 


2
q2?!ı�
q2?!ıCh.u/?!ı�P ?!ıC@xF ?!ıC�ı; (2.64)

where the error �ı tends to zero in L1loc.Œ0;1/ � R/. Multiplying (2.64) by �0.qı/,
we get

@t �.qı/C @x .
u�.qı//

D q�.qı/C 


2

�
q2 ? !ı

�
�0.qı/� 




q2 ? !ı

�
�0.qı/

C .h.u/ ? !ı/ �0.qı/ � .P ? !ı/ �
0.qı/C .@xF ? !ı/ �

0.qı/C �ı�
0.qı/:

(2.65)

Using the boundedness of �; �0, we can send ı ! 0 in (2.65) to obtain (2.63). The
weak time continuity is standard. ut

2.4 Proof of Theorem 2.1

Following [23], in this section we wish to improve the weak convergence of q"
in (2.54) to strong convergence (and then we have an existence result for (2.1).
Roughly speaking, the idea is to derive a “transport equation” for the evolution of

the defect measure
�
q2 � q2

�
.t; �/ � 0, so that if it is zero initially then it will

continue to be zero at all later times t > 0. The proof is complicated by the fact
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that we do not have a uniform bound on q" from below but merely (2.61) and that
in Lemma 2.8 we have only ˛ < 1.

Lemma 2.14 There holds

lim
t!0C

Z
R

q2.t; x/dx D lim
t!0C

Z
R

q2.t; x/dx D
Z
R

.@xu0/
2 dx: (2.66)

Proof Since u 2 C.RC � R/ (see Lemma 2.9), from (2.57),

lim
t!0

R
R
q.t; x/'.x/dx D � lim

t!0

R
R

u.t; x/@x'.x/dx D
D � R

R
u0.x/@x'.x/dx D R

R
@xu0.x/'.x/dx;

for each test function ' 2 C1.R/ with compact support. Due to the boundedness
of fq"g">0 in L1..0;1/IL2.R// we get

q.t; �/ * @xu0 weakly in L2.R/ as t ! 0C;

so

lim inf
t!0C

Z
R

q2.t; x/dx �
Z
R

�
@xu0.x/

�2
dx: (2.67)

Moreover, from (2.9), (2.13), (2.51), and (2.55),

Z
R

u2.t; x/dx C
Z
R

q2.t; x/dx �
Z
R

u20.x/dx C
Z
R

.@xu0/
2 dx;

and, again using the continuity of u (see Lemma 2.9),

lim
t!0C

Z
R

u2.t; x/dx D
Z
R

u20dx:

Hence

lim sup
t!0C

Z
R

q2.t; x/dx �
Z
R

.@xu0/
2 dx: (2.68)

Clearly, (2.56), (2.67), and (2.68) imply (2.66). ut
Lemma 2.15 For each R > 0,

lim
t!0C

Z
R

�
�Ṙ .q/.t; x/ � �Ṙ .q.t; x//

�
dx D 0; (2.69)
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where

�R.�/ WD

8̂
<
:̂
1

2
�2; if j�j � R;

Rj�j � 1

2
R2; if j�j > R;

(2.70)

and

�C
R .�/ WD �R.�/�Œ0;C1/.�/; ��

R.�/ WD �R.�/�.�1;0�.�/;

for every � 2 R:

Proof Let R > 0. Observe that

�R.q/� �R.q/ D 1

2
.q2 � q2/�

�
fR.q/� fR.q/

�
;

where fR.�/ WD 1
2
�2 � �R.�/, � 2 R. Since �R and fR are convex,

0 � �R.q/� �R.q/ D 1

2

�
q2 � q2

�
�
�
fR.q/ � fR.q/

�
� 1

2

�
q2 � q2

�
:

Then, from (2.66), lim
t!0C

R
R

�
�R.q/.t; x/ � �R.q.t; x//

�
dx D 0. Since, �Ṙ .q/ �

�Ṙ .q/ � �R.q/ � �R.q/, the proof is done. ut
Remark 2.4 Let R > 0. Then for each � 2 R

�R.�/ D 1
2
�2 � 1

2
.R � j�j/2�.�1;�R/[.R;1/.�/;

�0
R.�/ D � C .R � j�j/ sign .�/ �.�1;�R/[.R;1/.�/;

�C
R .�/ D 1

2
.�C/2 � 1

2
.R � �/2�.R;1/.�/;

.�C
R /

0.�/ D �C C .R � �/�.R;1/.�/;

��
R.�/ D 1

2
.��/2 � 1

2
.RC �/2�.�1;�R/.�/;

.��
R/

0.�/ D �� � .RC �/�.�1;�R/.�/:

Lemma 2.16 Assume (2.2) and (2.9). Then for almost all t � 0

Z
R

�
.qC/2 � .qC/2

�
.t; x/dx � 2

Z t

0

Z
R

S.s; x/ ŒqC.s; x/ � qC.s; x/� dsdx;

(2.71)

where S.s; x/ WD h


u.s; x/

� � P.s; x/C @xF.s; x/.
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Proof Let 0 < t � T and R > CT (see Lemma 2.7). Subtract (2.63) from (2.60)
using the entropy �C

R (see Lemma 2.15). The result is

@t

�
�C
R .q/� �C

R .q/
�

C @x

�

u
h
�C
R .q/� �C

R .q/
i�

� 

h
q�C

R .q/� q�C
R .q/

i
� 


2

h
q2.�C

R /
0.q/� q2.�C

R /
0.q/

i

� 


2

�
q2 � q2

�
.�C
R /

0.q/C S.t; x/
h
.�C
R /

0.q/� .�C
R /

0.q/
i
:

(2.72)

Since �C
R is increasing and 
 � 0, by (2.56),

� 


2

�
q2 � q2

�
.�C
R /

0.q/ � 0: (2.73)

Moreover, from Remark 2.4,


q�C
R .q/ � 


2
q2.�C

R /
0.q/ D � 
R

2
q.R � q/�.R;1/.q/;


q�C
R .q/ � 


2
q2.�C

R /
0.q/ D � 
R

2
q.R � q/�.R;1/.q/:

Therefore, due to (2.61),


q�C
R .q/� 


2
q2.�C

R /
0.q/ D q�C

R .q/ � 1
2
q2.�C

R /
0.q/ D 0;

in ˝R WD
�

2
R�CT ;1

�
� R:

(2.74)

Then from (2.72)–(2.74) the following inequality holds in ˝R:

@t

�
�C
R .q/ � �C

R .q/
�

C @x

�

u
h
�C
R .q/ � �C

R .q/
i�

� S.t; x/
h
.�C
R /

0.q/ � .�C
R /

0.q/
i
:

(2.75)

In view of Remark 2.3 and due to (2.61),

�C
R .q/ D 1

2
.qC/2; .�C

R /
0.q/ D qC; �C

R .q/ D 1

2
.qC/2; .�C

R /
0.q/ D qC; in˝R:

Inserting this into (2.75) and integrating the result over . 2
R�CT ; t/ � R gives

1

2

Z
R

h
.qC/2.t; x/ � .qC.t; x//2/

i
dx

�
Z
R

�
�C
R .q/.

2

R � CT ; x/ � �C
R .q/.

2

R � CT ; x/
�

dx

C
Z t

2
R�CT

Z
R

S.s; x/ ŒqC.s; x/ � qC.s; x/� dsdx;
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for almost all 2
R�CT < t � T . Sending R ! 1 and using Lemma 2.15, we get

(2.71). ut
Lemma 2.17 For any t � 0 and any R > 0,

R
R


��
R.q/ � ��

R.q/
�
.t; x/dx

� 
R2

2

R t
0

R
R
.RC q/�.�1;�R/.q/dsdx

� 
R2

2

R t
0

R
R
.RC q/�.�1;�R/.q/dsdx C 
R

R t
0

R
R

h
��
R.q/ � ��

R.q/
i

dsdx

C 
R

2

R t
0

R
R

h
.qC/2 � q2C

i
dsdx C R t

0

R
R
S.s; x/

h
.��
R/

0.q/� .��
R/

0.q/
i

dsdx:

Proof Let R > 0. By subtracting (2.63) from (2.60), using the entropy ��
R (see

Lemma 2.15), we deduce

@
@t

�
��
R.q/� ��

R.q/
�

C @x

�

u
h
��
R.q/� ��

R.q/
i�

� 

h
q��

R.q/ � q��
R.q/

i
� 


2

h
q2.��

R/
0.q/ � q2.��

R/
0.q/

i

� 


2
.q2 � q2/.��

R/
0.q/C S.t; x/

h
.��
R/

0.q/� .��
R/

0.q/
i
:

(2.76)

Since �R � .��
R/

0 � 0 and 
 � 0, by (2.56),

� 


2

�
q2 � q2

�
.��
R/

0.q/ � 
R

2

�
q2 � q2

�
: (2.77)

Using Remarks 2.3 and 2.4


q��
R.q/ � 


2
q2.��

R/
0.q/ D � 
R

2
q.RC q/�.�1;�R/.q/; (2.78)


q��
R.q/ � 


2
q2.��

R/
0.q/ D � 
R

2
q.RC q/�.�1;�R/.q/: (2.79)

Inserting (2.77)–(2.79) into (2.76) gives

@
@t

�
��
R.q/� ��

R.q/
�

C @x

�

u
h
��
R.q/� ��

R.q/
i�

� � 
R

2
q.RC q/�.�1;�R/.q/C 
R

2
q.R C q/�.�1;�R/.q/

C 
R

2

�
q2 � q2

�
C S.t; x/

h
.��
R/

0.q/� .��
R/

0.q/
i
:
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Integrating this inequality over .0; t/ � R yields

R
R


��
R.q/ ���

R.q/
�
.t; x/dx

� � 
R

2

R t
0

R
R
q.RC q/�.�1;�R/.q/dsdx

C 
R

2

R t
0

R
R
q.RC q/�.�1;�R/.q/dsdx C R

2

R t
0

R
R

h
q2 � q2

i
dsdx

C R t
0

R
R
S.s; x/

h
.��
R/

0.q/ � .��
R/

0.q/
i

dsdx:

Using Remark 2.4,

��
R.q/ ���

R.q/

D 1
2

�
.q�/2 � .q�/2

�
C 1

2
.R C q/2�.�1;�R/.q/� 1

2
.RC q/2�.�1;�R/.q/:

Hence, from Remark 2.3 and (2.80),

R
R


��
R.q/ � ��

R.q/
�
.t; x/dx

� � 
R

2

R t
0

R
R
q.RC q/�.�1;�R/.q/dsdx

C 
R

2

R t
0

R
R
q.RC q/�.�1;�R/.q/dsdx C 
R

R t
0

R
R

h
��
R.q/ � ��

R.q/
i

dsdx

� 
R

2

R t
0

R
R
.RC q/2�.�1;�R/.q/dsdx C 
R

2

R t
0

R
R
.RC q/2�.�1;�R/.q/dsdx

C 
R

2

R t
0

R
R

h
.qC/2 � q2C

i
dsdx C R t

0

R
R
S.s; x/

h
.��
R/

0.q/ � .��
R/

0.q/
i

dsdx;

and applying twice the identity

R

2
.RC q/2 � R

2
q.RC q/ D R2

2
.RC q/;

we deduce (2.76). ut
Lemma 2.18 There holds q2 D q2 almost everywhere in Œ0;1/ � R.

Proof Let 0 < t � T . Adding (2.71) and (2.76) yields

R
R



1
2


.qC/2 � .qC/2

�C 
��
R.q/ � ��

R.q/
��
.t; x/dx

� 
R2

2

R t
0

R
R
.RC q/�.�1;�R/.q/dsdx � 
R2

2

R t
0

R
R
.RC q/�.�1;�R/.q/dsdx

C
R R t
0

R
R

h
��
R.q/� ��

R.q/
i

dsdx C 
R

2

R t
0

R
R

h
.qC/2 � q2C

i
dsdx

C R t
0

R
R
S.s; x/

�
ŒqC � qC�C

h
.��
R/

0.q/� .��
R/

0.q/
i�

dsdx:

Arguing as in the proof of Lemma 2.7, there exists a constant C 0
T > 0, depending

only on T and on ku0kH1.R/, such that

kSkL1..0;T /�R/ D kh.u/� P C @xF kL1..0;T /�R/ � C 0
T : (2.80)
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By Remarks 2.3 and 2.4,

qC C .��
R/

0.q/ D q � .RC q/�.�1;�R/.q/;
qC C .��

R/
0.q/ D q � .RC q/�.�1;�R/.q/;

so by the convexity of the map � 7! �C C .��
R/

0.�/,

0 � ŒqC � qC�C
h
.��
R/

0.q/ � .��
R/

0.q/
i

D .RC q/�.�1;�R/.q/� .RC q/�.�1;�R/.q/;

and, by (2.80),

S.s; x/
�
ŒqC.s; x/ � qC.s; x/� C

h
.��
R/

0.q/ � .��
R/

0.q/
i�

� �C 0
T

�
.RC q/�.�1;�R/.q/ � .RC q/�.�1;�R/.q/

�
:

Since � 7! .RC �/�.�1;�R/.�/ is concave and choosingR large enough,


R2

2
.RC q/�.�1;�R/.q/� 
R2

2
.RC q/�.�1;�R/.q/

CS.s; x/
�
ŒqC.s; x/ � qC.s; x/�C

h
.��
R/

0.q/� .��
R/

0.q/
i�

�
�

R2

2
� C 0

T

� �
.RC q/�.�1;�R/.q/� .R C q/�.�1;�R/.q/

i�
� 0:

Then, from (2.80) and (2.81),

0 � R
R

�
1
2

h
.qC/2 � .qC/2

i
C
h
��
R.q/ � ��

R.q/
i�
.t; x/dx

� 
R
R t
0

R
R

�
1
2

h
.qC/2 � q2C

i
C
h
��
R.q/ � ��

R.q/
i�

dsdx;

and using the Gronwall’s inequality and Lemmas 2.14 and 2.15 we conclude that

Z
R

�
1

2

h
.qC/2 � .qC/2

i
C
h
��
R.q/� ��

R.q/
i�
.t; x/dx D 0; for each t > 0:

By the Fatou’s lemma, Remark 2.3, and (2.56), sending R ! 1 yields

0 �
Z
R

�
q2 � q2

�
.t; x/dx � 0; t > 0; (2.81)

and we see that the claim holds. ut



46 F. Ancona and G.M. Coclite

Proof (Proof of Theorem 2.1) The conditions (i), (iii) of Definition 2.1 are satisfied,
due to (2.9), (2.13), and Lemma 2.9. We have to verify (ii). Due to Lemma 2.18, we
have

q" ! q in L2loc..0;1/� R/: (2.82)

Clearly (2.51)–(2.53), and (2.82) imply that u is a distributional solution of (2.5).
Finally, (iv) and (2.7) are consequence of Lemmas 2.7 and 2.8, respectively. ut
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Chapter 3
Exponential Decay Properties of a Mathematical
Model for a Certain Fluid-Structure Interaction
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With sincere respect and a deep sense of loss, we dedicate this
work to the memory of our colleague Alfredo Lorenzi

Abstract In this work, we derive a result of exponential stability for a coupled
system of partial differential equations (PDEs) which governs a certain fluid-
structure interaction. In particular, a three-dimensional Stokes flow interacts across
a boundary interface with a two-dimensional mechanical plate equation. In the case
that the PDE plate component is rotational inertia-free, one will have that solutions
of this fluid-structure PDE system exhibit an exponential rate of decay. By way
of proving this decay, an estimate is obtained for the resolvent of the associated
semigroup generator, an estimate which is uniform for frequency domain values
along the imaginary axis. Subsequently, we proceed to discuss relevant point control
and boundary control scenarios for this fluid-structure PDE model, with an ultimate
view to optimal control studies on both finite and infinite horizon. (Because of
said exponential stability result, optimal control of the PDE on time interval .0;1/

becomes a reasonable problem for contemplation.)

3.1 Introduction

In this work, we undertake a stability analysis of a certain partial differential
equation (PDE) system—(3.2)–(3.3) below—which has been previously studied in
[16] and [14], among other works, inasmuch as it simultaneously constitutes a math-
ematically interesting and physically relevant model of a particular fluid-structure
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(F-S) dynamics. This PDE model comprises a Stokes flow, evolving within a
three-dimensional cavity O , coupled via a boundary interface, to a two dimensional
Euler–Bernoulli or Kirchhoff plate which displaces upon a sufficiently smooth
bounded open set ˝ , which is taken to be a portion of the cavity boundary @O .
Our main result here (Theorem 3.2 below) is the derivation of exponential decay
rates for the composite fluid-structure dynamics, in the case that the Euler–Bernoulli
plate PDE model—i.e. the one corresponding to “rotational inertia” parameter
� D 0 in (3.2e)—is used to describe the mechanical displacements along ˝ . With
particular regard to the mechanical PDE component: Such thin plate models have
been carefully derived in [25] and [24] (in the latter reference, stability of linear plate
dynamics is also considered, under appropriate feedback, as well as situations where
the von Karman nonlinear system is in play). It is shown in these works that the rota-
tional inertia parameter � in the Kirchhoff plate model is proportional to the square
of the thickness of the plate. So in the case of the Euler–Bernoulli PDE—viz., � D
0—rotational forces are essentially neglected (See also the recent monograph [15].)

In the case � D 0, the stability result was originally given in [16] (but the primary
focus of this work was on global attractors for the given fluid-structure PDE system,
in the presence of nonlinearities and forcing terms). The real novelty in the present
work lies in the method of proof: whereas in [16], the exponential decay of the
given fluid-structure dynamics is obtained via a Lyapunov functional approach,
with the authors of [16] operating strictly within the time domain, the present
work is centered upon working instead in the frequency domain. In particular, we
work to attain a uniform estimate for the resolvent operator of the generator of
the associated fluid-structure semigroup, as it assumes values along the imaginary
axis. With such resolvent estimate in hand, we can then appeal to a well-known
resolvent criterion—the Gearhart–Herbst–Prüss–Huang Theorem, whose variants
by Prüss and Huang are posted here as Theorems 3.3 and 3.4, respectively—so as
to ultimately infer exponential decay. The virtue of the frequency domain approach
which is employed here, is that it can eventually be adapted so as to treat the case
� > 0 (Kirchhoff plate). Indeed, the frequency domain methodology outlined here is
invoked and refined in [3], so as to provide rational decay rates for Stokes–Kirchhoff
plate dynamics. (The higher topology for the mechanical velocity component in
Kirchhoff plate equation—viz., H1.˝/ for the Kirchhoff plate, as opposed to
L2.˝/ for Euler–Bernoulli—prevents the attainment of exponential decay in [3].
Hence, weaker polynomial rates of decay are attained for � > 0.)

We should also state that our estimate of said resolvent on the imaginary axis
is direct and explicit, in the style of what was attained in [8]; previous exponential
stability works which are geared so as to eventually invoke said resolvent criterion
(by Prüss) tend to obtain the requisite resolvent estimates via an argument by
contradiction (see, e.g., [33]).

In addition, in the final Section of this work we offer some insight into a further
analysis which is needed to pursue the solvability of natural/appropriate optimal
control problems (with quadratic functionals) associated with the PDE system under
investigation. We note that a full understanding of the stability properties of this F-S
interaction is not only of intrinsic interest, but indeed a prerequisite step in the study
of optimal control problems over an infinite time horizon. In this respect, the uniform
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(exponential) stability result established for the composite PDE system (3.2) in the
presence of an elastic equation of Euler–Bernoulli type ensures that both finite and
infinite time horizon problems are equally valid objects of investigation.

Instead, when the elastic equation is of Kirchhoff type, the (rational) decay rate
O.1=t/ for smooth solutions, which is shown in [3], will not allow us to consider
associated optimal control problems with quadratic functionals on an infinite time
interval. In particular, the lack of exponential decay for � > 0 implies that the
so-called finite cost condition is not necessarily satisfied for finite energy solutions
of (3.2)–(3.3); see e.g., [28].
(On the other hand, the aforeasid (weaker, though) stability property of the
linear dynamics might be utilized—just like in the case � D 0 (see [16])—in
order to establish a soughtafter quasi-stability property for the dynamical system
corresponding to nonlinear variants of the PDE system (3.2)–(3.3), in particular the
ones which include physical nonlinearities in the structural PDE component.)

We also point out here that the introduction of boundary or point control actions
into the model, will necessitate a careful technical analysis of the regularity proper-
ties of the (so-called) “input-to-state map” for the abstract equation corresponding
to the controlled boundary value problem (3.2). Such a (PDE) analysis will be
unavoidable, inasmuch as the control operator (or, operators) which models (model)
the physically relevant control action will be intrinsically unbounded from the
control space into the state space. In consequence—and which has been in the past
for other PDE control problems; see e.g., [29]—sharp PDE regularity estimates
for the solutions to the “free” (or uncontrolled) system should be instrumental in
bringing about sought-after regularity properties for the input-to-state map.

A brief description of a couple of relevant scenarios for the placement of control
functions in the model is given in Sect. 3.4, along with some remarks about the
technical challenges which are expected. A natural question which arises is whether
the recent results on the LQ-problem and Riccati equations for abstract dynamics—
inspired by and tailored for coupled PDE systems of hyperbolic/parabolic type (such
as [1] and [2])—are applicable, or whether novel theories need to be devised.

3.2 The PDE Model, Statement of the Main Result

In what follows, the geometrical situation which prevailed in [16] will obtain here.
Namely: (fluid) domain O will be a bounded subset of R

3, with boundary @O .
Moreover, @O D S [˝, with S \˝ D ;, and with (structure) domain˝ being a
flat portion of @O . In particular, @O has the following specific configuration:

˝ � fx D .x1; x2; 0/g ; S � fx D .x1; x2; x3/Wx3 � 0g :

So if �.x/ denotes the unit normal vector to @O , pointing outward, then

�j˝ D Œ0; 0; 1� : (3.1)
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The relatively low regularity, allowed for the boundary of the container O , is
made rigorous and explicit in the following Geometric Assumption.

Assumption 3.1 (Geometric Assumption) ŒO;˝� is assumed to fall within one
of the following classes:

(G.1) O is a convex domain with wedge angles � 2�
3

. Moreover, ˝ has
smooth boundary, and S is a piecewise smooth surface;

(G.2) O is a convex polyhedron having angles � 2�
3

, and so then ˝ is a
convex polygon with angles � 2�

3
.

The picture below illustrates a geometrical configuration which is consistent with
the case (G.2).

On such geometry, the PDE model is as follows, with rotational inertia parameter
� � 0, and in solution variables u.x; t/ D Œu1.x; t/; u2.x; t/; u3.x; t/� and
Œw.x; t/;wt .x; /�:

ut ��u C rp D 0 in O � .0;1/ (3.2a)

div.u/ D 0 in O � .0;1/ (3.2b)

u D 0 on S � .0;1/ (3.2c)

u D Œu1; u2; u3� D Œ0; 0;wt � on ˝ � .0;1/; (3.2d)

wt t � ��wt t C�2w D pj˝ in ˝ � .0;1/ (3.2e)

w D @w

@�
D 0 on @˝ � .0;1/ (3.2f)

with initial conditions

Œu.0/;w.0/;wt .0/� D Œu0;w0;w1� 2 H� : (3.3)
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Here, the space of initial data H� is defined as follows: Let the (fluid) space Hfluid

(Hf , in short) be defined by

Hf WD ˚
f 2 L2.O/ W div.f / D 0; f � �jS D 0

�
; (3.4)

and let

V� D
8<
:

OL2.˝/ if � D 0

H1
0 .˝/\ OL2.˝/ if � > 0,

(3.5)

where

OL2.˝/ �
�
$ 2 L2.˝/ W

Z
˝

$d˝ D 0

	
; (3.6)

after invoking the notation of [16]. (We note that the matching of fluid and structure
velocities in (3.2d) ultimately dictates this average mean zero constraint; see [16]
and [4].) Therewith, we then set

H� D
n
f; h0; h1

� 2 Hf � H2
0 .˝/\ OL2.˝/� � V� ;

with f � �j˝ D Œ0; 0; f 3� � Œ0; 0; 1� D h1

o
:

(3.7)

In this paper, we shall focus on the case � D 0.
In addition: By way of constructing an abstract operator A� W D.A�/ � H� !

H� which describes the PDE dynamics (3.2)–(3.3), we denote AD W L2.˝/ !
L2.˝/ by

ADg D ��g ; D.AD/ D H2.˝/\H1
0 .˝/ : (3.8)

If we subsequently make the denotation for all � � 0

P� D I C �AD ; D.P�/ D
(
L2.˝/ if � D 0

D.AD/ if � > 0,
(3.9)

then the mechanical PDE component (3.2e) of the system (3.2) can be written as

P�wt t C�2w D pj˝ on .0; T /.

Using the fact from [20] that

D.P 1=2
� / D

(
L2.˝/ if � D 0

H1
0 .˝/ if � > 0,
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then we can endow the Hilbert space H� with the norm-inducing inner product



Œ�0; !1; !2�; Œ Q�0; Q!1; Q!2�

�
H�

D .�0; Q�0/O C .�!1;� Q!1/˝ C .P 1=2
� !2; P

1=2
� Q!2/˝ ;

where .�; �/O and .�; �/˝ are the L2-inner products on their respective geometries.
Moreover, as was done in [4] and [3, Lemma 1.1], so as to eliminate the pressure

term p in (3.2)–(3.3) (see also [5] for an analogous elimination for a different
fluid-structure PDE model), we recognize the pressure term as the solution of the
following BVP, pointwise in time:

8̂
<̂
ˆ̂:

�p D 0 in O

@p

@�
D �u � � ˇ̌

S
on S

@p

@�
C P�1

� p D P�1
� �2w C�u3

ˇ̌
˝

on ˝ .

(3.10)

To ‘solve’ for the pressure term, we then invoke appropriate ‘Neumann–Robin’
maps R� and QR� defined as follows:

R�g D f ”
n
�f D 0 in O ;

@f

@�
D 0 on S ;

@f

@�
C P�1

� f D g on ˝
o

I

QR�g D f ”
n
�f D 0 in O ;

@f

@�
D g on S ;

@f

@�
C P�1

� f D 0 on ˝
o
:

By Lax–Milgram Theorem, we then have,

R� 2 L


H�1=2.˝/;H1.O/

� I QR� 2 L


H�1=2.S/;H1.O/

�
:

(We are also using implicity the fact that P�1
� is positive definite and self-adjoint on

˝ .) Consequently, the pressure variable p.t/, as necessarily the solution of (3.10)—
that is, p.t/ is an appropriate harmonic extension from the boundary of O into the
interior—can be written pointwise in time as

p.t/ D G�;1.w.t//CG�;2.u.t// ;

where

G�;1.w/ D R�.P
�1
� �2w/ I (3.11a)

G�;2.u/ D R�.�u3
ˇ̌
˝
/C QR�.�u � �jS/ : (3.11b)
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These relations suggest the following choice for the generator A� W H� ! H�.
We set

A� �
2
4� � rG�;2 �rG�;1 0

0 0 I

P�1
� G�;2

ˇ̌
˝

�P�1
� �2 C P�1

� G�;1
ˇ̌
˝
0

3
5 (3.12)

with domain

D.A�/ D
n

u;w1;w2
� 2 H� W u 2 H2.O/ I w1 2 S� ; w2 2 H2

0 .˝/ ;

u D 0 on S ; u D .0; 0;w2/ on ˝
o
;

(3.13)

where the mechanical displacement space, denoted by S�, changes with �; as
follows:

S� WD
(
H4.˝/\H2

0 .˝/ � D 0

H3.˝/\H2
0 .˝/ � > 0 :

(3.14)

We note also, from the definition of D.A�/ that Œu;w1;w2� 2 D.A�/ implies
�u 2 L2.O/ and div�u D 0. Consequently, from elementary Stokes Theory (see,
e.g., [17, Proposition 1.4, p. 5], we have

k�u � �kH�1=2.@O/ � CkukH2.O/ � CkŒu;w1;w2�kD.A�/ (3.15)

and so associated pressure �0 satisfies

�0 � G�;1.w1/CG�;2.u/ 2 H1.O/ (3.16)

(recall that �u3
ˇ̌
˝

D �u � �j˝).
Well-posedness of the (linear) coupled system (3.2)–(3.3) when � D 0—

namely, when the elastic equation is of Euler–Bernoulli type, of specific concern
in the present investigation—was originally established in [16], by using Galerkin
approximations. An alternative proof of well-posedness which encompasses both
cases � D 0 and � > 0 has been recently given in [4]. It is important to
emphasize that the proof appeals to the Lumer–Phillips Theorem within classi-
cal semigroup theory, and yet also utilizes in a crucial and nontrivial way the
Babuška–Brezzi Theorem (see, e.g., [22, p. 116]). The precise statement is given
below.
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Theorem 3.1 ([4]) For � � 0 the operator A� W H� ! H� defined by (3.12)–
(3.13) generates a C0-semigroup of contractions

˚
eA�t

�
t�0 on H�. Thus, for any

Œu0;w0;w1� 2 H�, the (unique) weak solution to the initial/boundary value problem
(3.2)–(3.3) is given by

2
4 u.t/

w.t/
wt .t/

3
5 D eA�t

2
4 u0

w0
w1

3
5 2 C.Œ0; T �I H�/ : (3.17)

Remark 3.1 (Well-posedness) In a preliminary version of the aforementioned
[16]—in the Appendix of the e-Print arXiv:1109.4324 [math.AP] (September
2011), to be precise—the authors thereof provide an alternative description of a
modelling generator, for the fluid-structure dynamics (3.2)–(3.3). But this earlier
semigroup setup, based upon a coupled variational formulation, is fairly unwieldy,
and not easily used in any stability analysis and/or control theoretic investigation
of (3.2)–(3.3). In this sense, the semigroup eAt which is being presently used, and
which was formulated in [4], may be said to constitute an improvement.

Remark 3.2 (Higher Regularity for Fluid-Structure Variables) In the Appendix, we
briefly expand on the wellposedness paper in [4], to show that indeed, despite
the “edge” induced by the boundary interface of O with ˝ , one has the higher
regularity specified in D.A�/. (The driving force here is really Lemma 3.1 below.)
In particular, with ŒO;˝� having one of the geometrical configurations in (G.1)–
(G.2), then if Œu;w1;w2� 2 D.A�/, one has u 2 H2.O/, w1 2 S�, as defined in
(3.14), and associated pressure variable p is in H1.O/).

To the authors’ knowledge, the stability properties of solutions to the linear
model (3.2) (again, when � D 0) have been explored for the first time in [16]—
which again is primarily concerned with attracting sets for nonlinear fluid-structure
dynamics with forcing term—in the course of an analysis of the long-term behaviour
of a nonlinear coupled dynamics, which comprise a 3D linearized Navier–Stokes
system for the fluid velocity field in a bounded domain, and a nonlinear elastic plate
equation for the transversal displacement of a flat flexible part of the boundary.
Along with the various results established in [16] for attracting sets pertinent to
the nonlinear model, is the result of exponential stability for the linear dynamics,
attained by using Lyapunov function arguments; see [16, Section 3].

We aim here at presenting a different proof of exponential stability, based instead
on a (by now classical) resolvent criterion; see Theorem 3.3 and Theorem 3.4 in the
next Section. The adoption of a “frequency domain” approach—in contrast with the
more commonly invoked “time domain” analysis—is not only of intrinsic interest,
but also proves to be very effective in establishing the decay rates of solutions, even
when exponential stability fails. Indeed, in the case � > 0, the very same frequency
domain approach enables us to establish that the energy of strong solutions decays
at the rate of O.1=t/, as t ! C1; see [3].
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The main result of the present work is stated below.

Theorem 3.2 (Exponential Decay Rates) Let the rotational inertia parameter
� D 0 in (3.2e). Then all finite energy solutions of (3.2)–(3.3) decay at an
exponential rate. Namely, there exist constants ! > 0 and M � 1 such that
for arbitrary initial data Œu0;w0;w1� 2 H0, the corresponding solutions Œu;w;wt �
of (3.2)–(3.3) satisfy

kŒu.t/;w.t/;wt .t/�kH0 � M e�!t kŒu0;w0;w1�kH0 :

3.3 Exponential Stability

To show that the semigroup defined by (3.17) is exponentially stable, we appeal to a
celebrated result of semigroup theory which we recall explicitly—in two variants—
for the reader’s convenience.

Theorem 3.3 ([36]) Let X be a Hilbert space and eAt be a semigroup in X . Then
eAt decays exponentially iff

(i)
˚
� 2 CW Re� � 0

� � %.A/, and
(ii) there is M � 1 such that

��.� �A/�1�� � M for all � with Re� � 0.

Theorem 3.4 ([21]) Let eAt be a C0-semigroup generated by A in a Hilbert space
H , satisfying

keAtk � K0 8t � 0 ; for some K0 > 0.

Then eAt decays exponentially iff

(i)
˚
� 2 CW� D i! ; ! 2 R

� � %.A/, and
(ii) sup

!2R
��.i! �A/�1�� < 1.

In order to invoke the above resolvent criterion, we need, as a preliminary step,
to show that the imaginary axis belongs to the resolvent set of the dynamics
operator A. This property cannot be freely taken for granted: in the context of other
fluid-structure interactions, it is known that certain geometrical configurations will
give rise to eigenvalues on the imaginary axis; see, e.g., [5] and [6] (and also [8],
where examples of “non-pathological geometries” are given).

3.3.1 Preliminary Results, I: Higher Regularity

In order to justify the smoothness implicitly implied by our multiplier method
below—see Appendix—and by way of showing that � D 0 is in the resolvent set
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of A� W D.A�/ � H� ! H�, we must first establish a higher regularity result for
Stokes flow on O (3-D container), under the aforesaid specifications on ŒO;˝�.

Lemma 3.1 With ŒO;˝� obeying the assumptions above—including the flatness
of ˝ and (G.1)–(G.2)—we consider the following inhomogeneous Stokes problem,
with parameter � � 0:

�u ��u C rp D u� in O

div.u/ D 0 in O

ujS D Œ0; 0; 0� on S

uj˝ D Œ0; 0;w� in ˝ , (3.18)

where data Œu�;w� 2 L2.O/ � H
3=2C"
0 .˝/, with " > 0, and w satisfying the

compatibility condition
R
˝ wd˝ D 0. Then one has the following regularity

estimate for the solution pair Œu; p�:

kukH2.O/ C kpkH1.O/\ŒL2.O/=R� � C�
��u�;w

���
L2.O/�H3=2C"

0 .˝/
: (3.19)

Proof Step 1 We start by recalling the following trace theorem for three
dimensional Lipschitz domains:

Theorem 3.5 ([13], Theorem 5, p. 702) Let O be a bounded subset of R3, with
Lipschitz boundary. Let .
0; 
1/ W H2.O/ ! H1.@O/ � L2.@O/ be the standard
continuous trace operator

� !
"

0.�/ D �

ˇ̌
@O


1.�/ D @�

@�

ˇ̌
@O

#

(which is generally not surjective on nonsmooth domains; see [35, Theorem 4.11]).
Then the range of .
0; 
1/ is characterized by the following subspace of H1.@O/ �
L2.@O/:

Range Œ.
0; 
1/� D
n
.g0; g1/ 2 H1.@O/ �L2.O/W r@O.g0/C g1� 2 H1=2.@O/

o
:

(3.20)

(Here, r@O denotes the tangential gradient operator on @O .)

To use this result: since w 2 H
3=2C"
0 .˝/, then a continuous extension by zero

will allow us to take g0 in (3.20) to be

g0 D
(

w on ˝

0 on S
; (3.21)
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with extension g0 2 H3=2C".@O/ (see e.g., [32, Theorem 11.4], if ˝ is smooth; see
[34, Theorem 3.33], if ˝ is polygonal). Thus, with g1 � 0 in (3.20), we can appeal
to Theorem 3.5 to have the existence of a function v3 2 H2.O/, such that

v3
ˇ̌
@O

D
(

w on ˝

0 on S
and

@v3

@�

ˇ̌
ˇ
@O

D 0 on @O , (3.22)

with the estimate

kv3kH2.O/ � C
��r@Og0

��
H1=2.@O/

� C kwk
H
3=2C"
0 .˝/

: (3.23)

Therewith we set

v �
2
4 00

v3

3
5 2 H2.O/ : (3.24)

Step 2 We use variable v D v.w/ as data in the following inhomogeneous Stokes
problem: Find ŒQu; Qp� 2 H1

0.O/ � L2.O/=R which solves

�Qu ��Qu C r Qp D �v � �v C u� in O

div.Qu/ D �div.v/ in O

Qu D 0 on @O .

Since the compatibility condition
R

div.Qu/ dO D � R div.v/ dO D 0 is satisfied,
then there exists a unique solution ŒQu; Qp� 2 H1

0.O/ � L2.O/=R, which depends
continuously on the data (see, e.g., Theorem 2.4 and Remark 2.5 in [37]).

To justify additional regularity for this solution, we appeal to the paper [18], from
which the geometric configurations (G.1)–(G.2) spring forth; in particular, in [18]
we cite (1.9) and (1.10) on p. 75 with s � 1 (which is an inference of main Theorem
9.20 therein). From this statement in [18, p. 75], we will have that fluid pair ŒQu; Qp�
of (3.25) is in


H2.O/ \ H1

0.O/
� � H1.O/ \ L2.O/=R

�
continuously, if it can be

shown that divergence data div.v/ 2 H1
0 .O/. In other words, we must show that

div.v/ is zero at the singular points of O , for Sobolev index s D 1. (See Definition
9.17 (1) and Remark 9.18 (1) on p. 94 of [18]. See also Theorem 8.4 of [23], p.
53). Since v D Œ0; 0; v3�, with v3 2 H2.O/, it is left to establish that Dirichlet trace
div.v/j@O D 0.

Step 3 By way of showing that div.v/ 2 H1
0 .O/, we consider the respective

geometric scenarios, (G.1) and (G.2).

Case 1: ŒO;˝� satisfies (G.1). We proceed somewhat, but not completely, as in
the proof of Proposition A.1 (i) of [7, Appendix A], where the domain therein
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was smooth. Here, @O D S [ ˝, where again ˝ is flat, and S D S
i Si ,

with each Si being a smooth surface. Set QS � Si , for given i . Then QS can be
described by a smooth parametrization r.s; t/, defined on a rectangle a � s � b,
c � t � d . Then for this surface, two linear independent unit tangent vectors
may be given by

e D rs.s; t/
jrs.s; t/j and � D rt .s; t/

jrt .s; t/j : (3.25)

In turn, the corresponding unit normal � is

� D e � �

je � �j : (3.26)

With these vectors f�; e;�g being a linearly independent but generally not orthonor-
mal set, we proceed to consider the following system, for sufficiently smooth scalar
valued function � on O:

2
64

@�

@�
@�

@e
@�

@�

3
75 D

2
64

r�j@O � �
r�j@O � e
r�j@O � �

3
75 D L

2
664

@�

@x1

ˇ̌
@O

@�

@x2

ˇ̌
@O

@�

@x3

ˇ̌
@O

3
775 ; (3.27)

where

L D
2
4 �1 v2 �3
e1 e2 e3
�1 �2 �3

3
5 : (3.28)

Inverting this matrix, we have then on QS
2
664

@�

@x1

ˇ̌
@O

@�

@x2

ˇ̌
@O

@�

@x3

ˇ̌
@O

3
775 D L�1

2
64

@�

@�
@�

@e
@�

@�

3
75 D a

@�

@�
C b

@�

@e
C c

@�

@�
; (3.29)

where L�1 D Œa;b; c�.
We use the above relation as follows. Given f 2 ŒD.O/�3, we now replace @�

@xi

with @fi
@xi

, i D 1; 2; 3. This gives then from (3.29) that, on QS ,

rf j QS D Df ; (3.30)
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where for j D 1; 2; 3,

Œrf j@O �i;j D @fj

@xi

ˇ̌
ˇ
@O

and ŒDf �i;j D ai
@fj

@�
C bi

@fj

@e
C ci

@fj

@�
: (3.31)

We read off then from (3.30) and (3.31), that on given Si D QS ,

div.f /j QS D @f

@�
� a C @f

@e
� b C @f

@�
� c : (3.32)

This relation holds true for f 2 ŒD.O/�3. But since D.O/ is dense in H2.O/—see
e.g., [34, Theorem 3.29]—and since moreover the map � 7�! 

�j@O ; @�@�
ˇ̌
@O

�
is in

L .H2.O/;H1.@O/�L2.@O// and f 7�! div.f /j@O in L .H2.O/;H1=2.@O//—
see [35, Theorem 4.11] and [34, Theorem 3.38]—we can extend by density the
relation (3.32) to all f 2 H2.O/. Thus, for the boundary trace div.v/jS , where v is
given by (3.24) and (3.22), we have, upon taking f � v in (3.32),

div.v/jS D div.v/jS
i Si

D 0 : (3.33)

Likewise on the smooth boundary segment ˝ (flat), we will have a parametriza-
tion r D hg.s; t/; h.s; t/; 0i, on some closed rectangle a � s � b, c � t � d .

Accordingly, we can take linearly independent unit tangent and normal vectors
to be

e D 1p
g2s C h2s

2
4gshs
0

3
5 ; � D 1p

g2t C h2t

2
4gtht
0

3
5 ; � D

2
4 00
1

3
5 : (3.34)

By considering the system totally analogous to (3.27), we can proceed as we did on
QS , so as to have for all f 2 H2.O/ (cfr. (3.32))

div.f /j˝ D @f

@�
�
2
4 00
1

3
5C @f

@e
�

2
64

��2
�1e2��2e1

�1
�1e2��2e1
0

3
75C @f

@�
�

2
64

e2
�1e2��2e1�e1
�1e2��2e1
0

3
75 : (3.35)

Setting f D v in (3.35), where again v is given by (3.24) and (3.22), we have

div.v/j˝ D 0C
2
4 0

0
@w
@e

3
5 �

2
64

��2
�1e2��2e1

�1
�1e2��2e1
0

3
75C

2
4 0

0
@w
@�

3
5 �

2
64

e2
�1e2��2e1�e1
�1e2��2e1
0

3
75 D 0 : (3.36)

To conclude Case 1: the fact that div.v/ 2 H1.O/, and relations (3.33), (3.36) yield
now that the divergence data div.v/ in (3.25) is in H1

0 .O/.



62 G. Avalos and F. Bucci

Case 2: ŒO;˝� satisfies (G.2). We let �j , j D 1; : : : ; N , denote the j th faces of
the polyhedron O , with the last boundary face �N � ˝ . Then as noted in [12],
one will have, on each face �j , a set of tangent vectors fe;�g and normal vector
�, which are orthonormal in R

3 (just as we construct for ˝ below). This being
the case, one can use verbatim the proof of Proposition A.1(i) of [7, Appendix A],
so as to have, on any f 2 H2.O/,

div.f /j�j D @f

@�
� � C @f

@e
� e C @f

@�
� � ; j D 1; : : : ; N : (3.37)

In particular, if f D v, where again v is given by (3.24) and (3.22), we have

div.v/j�j D 0 � � C 0 � e C 0 � � ; j D 1; : : : ; N � 1 : (3.38)

On �N D ˝ (which we recall lies on the x1x2-plane) we take one tangent vector
e D he1; e2; 0i to be any unit vector which is parallel to an edge of ˝; we take unit
normal � D h0; 0; 1i. Then second unit tangent vector is given by � D e � � D
he2;�e1; 0i. Therewith, we have from (3.37), with f D v, where again v is given by
(3.24) and (3.22),

div.v/j�N D 0 � � C
2
4 0

0
@w
@e

3
5 �

2
4 e1e2
0

3
5C

2
4 0

0
@w
@e

3
5 �

2
4 e2

�e1
0

3
5 D 0 : (3.39)

The relations (3.38) and (3.39) now give the conclusion that in Case 2, divergence
data in div.v/ in (3.25) is in H1

0 .O/.

Step 4 To conclude the proof of Lemma 3.1: Since div.v/ 2 H1
0 .O/, then as we

noted above, the regularity results in [18] then allow the conclusion that Stokes
solution Œ Q�; Qp� of (3.25) satisfies

Œ Q�; Qp� 2 H2.O/\ H1
0.O/

�� H1.O/\L2.O/=R� ; continuously: (3.40)

In turn, we recover the solution u of (3.18) via

u D Qu C v : (3.41)

Combining (3.41) with (3.24), (3.22) and (3.25), we see that Œu; p� indeed solves
the Stokes system in (3.18), and moreover from (3.24) and (3.40) it follows

Œu; p� 2 H2.O/\ Hf

� �H1.O/ : (3.42)

Finally, the estimate (3.19) follows from (3.40) and (3.23). This concludes the
proof of Lemma 3.1. ut
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3.3.2 Preliminary Results, II: Spectral Analysis

Here, we limit ourselves to showing that � D 0 belongs to the resolvent set %.A/;
in other words, the resolvent operator is boundedly invertible on the state space
H�. The reader is referred to [3, Section 2] for a detailed analysis and proof of
the fact that the spectrum has empty intersection with the whole imaginary axis,
in the more challenging case � > 0. The arguments used therein can be easily
adapted to the case � D 0. In particular: as in [3, Section 2], one can invoke a
simple energy argument to quickly rule out the possibility of eigenvalues of A on
iR. This fact, and the particular form of the adjointA� W H0 ! H0, will in turn yield
the conclusion that there is no residual spectrum on the imaginary axis. Lastly, to
eliminate the possibility that there be continuous spectrum on the imaginary axis,
a certain argument by contradiction—which ultimately uses the average mean zero
constraint in (3.6) for the structural displacement—can be introduced.

As the parameter � equals 0 throughout, in order to simplify the notation we set
H0 DW H, as well as A0 DW A. (We note that P0 then coincides with the identity
operator I throughout.)

Proposition 3.1 The generator A W D.A/ � H ! H is boundedly invertible on H.
Namely, � D 0 is in the resolvent set of A.

Proof Given data Œu�;w�
1 ;w

�
2 � 2 H, we look for Œu;w1;w2� 2 D.A/ which solves

A

2
4 u

w1
w2

3
5 D

2
4 u�

w�
1

w�
2

3
5 : (3.43)

To this end, we must seek for Œu;w1;w2� in D.A/ and associated pressure �0 2
H1.O/ which uniquely solve

�u � r�0 D u� in O (3.44a)

div.u/ D 0 in O (3.44b)

u D 0 on S (3.44c)

u D .0; 0;w2/ on ˝ (3.44d)

w2 D w�
1 in ˝ (3.44e)

�2w1 � �0
ˇ̌
˝

D �w�
2 in ˝ (3.44f)

w1 D @w1
@�

D 0 on @˝ . (3.44g)

Moreover, we must justify that the pressure variable �0 above is given by the
expression

�0 D G1.w1/CG2.u/ ; (3.45)
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where we simply denoted by Gi , i D 1; 2, the operators G0;i defined in (3.11) (in
line with the appearance of A in (3.12)).

1. The Plate Velocity. From (3.44e), the velocity component w2 is immediately
resolved.

2. The Fluid Velocity. We next consider the Stokes system (3.44a)–(3.44d). From
(3.44e) and (3.44c)–(3.44d) we have uj@O satisfies

Z
@O

u � � d	 D
Z
˝

Œ0; 0; u3� � � d˝ D
Z
˝

w2 d˝ D
Z
˝

w�
1 d˝ D 0 ; (3.46)

where the last equality follows by the membership Œu�;w�
1 ;w

�
2 � 2 H. (This last

equality demonstrates the intrinsic nature of the zero average value constraint on
structural displacement data.) Since this compatibility condition is satisfied and
data fu�;w�

1 g 2 L2.O/�H2
0 .˝/, then by Lemma 3.1 we can find a unique (fluid

and pressure) pair .u; q0/ 2 ŒH2.O/ \ Hf � �H1.O/=R which solve

�u � rq0 D u� in O (3.47a)

div.u/ D 0 in O (3.47b)

u D 0 on S (3.47c)

u D .0; 0;w�
1 / on ˝: (3.47d)

Moreover, one has the estimate

kukH2.O/\Hf
C kq0kH1.O/=R � C

ku�kHf
C kw�

1 kH2
0 .˝/

�
: (3.48)

3. The Mechanical Displacement. Subsequently, we consider the plate component
boundary value problem (BVP) (3.44f)–(3.44g). By ellipticity and elliptic reg-
ularity (see [32] and [9]) there exists a solution Ow1 2 H4.˝/ \ H2

0 .˝/ to the
problem

8<
:
�2 Ow1 D q0j˝ � w�

2 in ˝

Ow1 D @ Ow1
@�

D 0 on @˝

where q0 is the pressure variable in (3.47a). Moreover, we have the estimate

k Ow1kH4.˝/\H2
0 .˝/

� C kq0j˝ C w�
2kL2.˝/

� C kq0j˝kH1=2.˝/ C kw�
2 kL2.˝/

� C kŒu�;w�
1 ;w

�
2 �kH (3.49)

(in the last inequality we have also invoked Sobolev Trace Theory and (3.48)).
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Now if, as in [16], we let P denote the orthogonal projection of H2
0 .˝/

onto H2
0 .˝/ \ OL2.˝/—orthogonal with respect to the inner product Œ!; Q!� !

.�!;� Q!/˝—, then one can readily show that its orthogonal complement I � P

can be characterized as

.I � P/H2
0 .˝/ D Spanf'g ; where

n
�2' D 1 in ˝; ' D @'

@�
D 0 on @˝

o
(3.50)

(see [16, Remark 2.1, p. 6]). With these projections, we then set

w1 D P Ow1
�0 D q0 ��2.I � P/ Ow1 : (3.51)

With this assignment of variables, then by (3.49) and Ow1 D P Ow1C .I �P/ Ow1, we
will have that w1 solves (3.44f)–(3.44g). (And of course since �0 and q0 differ
only by a constant, then the pair .u; �0/ also solves (3.44a)–(3.44d).)

Moreover, from elliptic theory, (3.48) and (3.49), we have the estimate

kw1kH4.˝/\H2
0 .˝/\ OL2.˝/ C k�0kH1.O/

� C

k�2.I � P/ Ow1kL2.˝/ C kq0kH1.O/=R C kw�

2 kL2.˝/
�

� C kŒu�;w�
1 ;w

�
2 �kH ;

(3.52)

where implicitly we are also using the fact that �2.I � P/ 2 L .H2
0 .˝/;R/, by

the Closed Graph Theorem.
4. Resolution of the Pressure. As we noted in (3.16) we have�u � � 2 H�1=2.@O/,

with the estimate

k�u � �j˝kH�1=2.@O/ � C kukH2.O/ � C
ku�kHf

C kw�
1kH2

0 .˝/

�
; (3.53)

where for the second inequality we have also used (3.48).

We will apply this estimate to the pressure variable�0 in (3.44)—given explicitly
in (3.51)—which solves a fortiori

8̂
<̂
ˆ̂:

��0 D 0 in O

@�0
@�

D �u � �jS on S

@�0
@�

C �0 D �2w1 C�u3j˝ on ˝

:
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In fact: Applying the divergence operator to both sides of (3.44a) and using
div.�u/ D div.u�/ D 0, we obtain that �0 is harmonic in O . Moreover, dotting
both sides of (3.44a) with respect to the normal vector, and subsequently taking the
boundary trace to the portion S , we get the boundary condition on S (implicitly we
are also using u� � �jS D 0, as Œu�;w�

1 ;w
�
2 � 2 H). Finally, as u� � �j˝ D w�

2 , and as
Œu�;w�

1 ;w
�
2 � 2 H, we have from (3.44f)

�0j˝ D w�
2 C�2w1 D �u � �j˝ � r�0 � �j˝ C�2w1 ;

which gives the asserted Robin boundary condition on ˝ . Necessarily then, the
pressure term must be given by the expression

�0 D G1.w1/CG2.u/ 2 H1.O/ (3.54)

(with the well-definition of right hand side assured by (3.53)).
Finally, we collect: (i) (3.47a)–(3.47d) and (3.48) (for the fluid variable u); (ii)

(3.49) and (3.44e) and (3.51) (for the respective structure and pressure variables
w1, w2 and �0); (iii) (3.52) and (3.54) (for the characterization of the pressure term
�0). In this way we have obtained the solution of (3.44)–(3.45) in D.A/, for given
Œu�;w�

1 ;w
�
2 � 2 H. (Because of (3.44e), (3.48) and (3.52), the solution is unique.) We

conclude now that 0 2 %.A/. ut

3.3.3 Proof of Main Result Theorem 3.2

Proof of Theorem 3.2 By Theorem 3.4, the fluid structure semigroup feAtgt�0 will
be uniformly stable provided its associated resolvent operator R.�IA/ is bounded
on the imaginary axis; viz.,

kR.iˇIA/kH � C for all ˇ 2 R: (3.55)

By way of establishing (3.55), we consider the following resolvent equation, for
ˇ 2 R n f0g (recall that we have already established that 0 2 %.A/): Given data
Œu�;w�

1 ;w
�
2 � 2 H, we look for Œw1;w2; u� 2 D.A/ which solves

.iˇ � A/

2
4 u

w1
w2

3
5 D

2
4 u�

w�
1

w�
2

3
5 : (3.56)

From (3.12) and (3.13) we consider solution variables Œu;w1;w2� 2 D.A/
satisfies the following PDE system

iˇu ��u C rp D u� 2 Hf (3.57a)

div.u/ D 0 in O (3.57b)
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u D 0 on S (3.57c)

u D .u1; u2; u3/ D .0; 0; iˇw1 � w�
1 / on ˝ (3.57d)

iˇw1 � w2 D w�
1 2 H2

0 .˝/\ OL2.˝/� (3.57e)

� ˇ2w1 C�2w1 � pj˝ D w�
2 C iˇw�

1 2 OL2.˝/ (3.57f)

w1
ˇ̌
@˝

D @w1
@n

ˇ̌
ˇ
@˝

D 0 : (3.57g)

Here, associated pressure variable p is given by

p D G1.w1/CG2.u/ 2 H1.O/ : (3.58)

Step 1 (A Relation for the Fluid Gradient). We start by taking the H-inner product
of both sides of (3.56), with respect to Œu;w1;w2�. This gives

iˇ

������

2
4 u

w1
w2

3
5
������

2

H

�
0
@A

2
4 u

w1
w2

3
5 ;

2
4 u

w1
w2

3
5
1
A

H

D
0
@
2
4 u�

w�
1

w�
2

3
5 ;

2
4 u

w1
w2

3
5
1
A

H

:

Combining this with the readily derivable relation

0
@A

2
4 u

w1
w2

3
5 ;

2
4 u

w1
w2

3
5
1
A

H

D �kruk2O � 2i Im


�w1;�w2

�
˝
; (3.59)

(see [3]) we then will have the following “static dissipation”:

kruk2L2.O/ D Re

0
@
2
4 u�

w�
1

w�
2

3
5 ;
2
4 u

w1
w2

3
5
1
A

H

: (3.60)

This gives then, for arbitrary " > 0,

krukL2.O/ � "

������

2
4 u

w1
w2

3
5
������

H

C C"

������

2
4 u�

w�
1

w�
2

3
5
������

H

: (3.61)

Step 2 (Control of the Mechanical Velocity). This comes quickly: using the fluid
Dirichlet boundary condition in (3.57) we have

iˇw1 D u3
ˇ̌
˝

C w�
1 :
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We estimate this expression by invoking in sequence, the Sobolev Embedding
Theorem, Poincaré’s Inequality and (3.61). In this way, we then obtain

kˇw1kH1=2.˝/ � k u3
ˇ̌
˝

C w�
1 kH1=2.˝/

� C
�

krukL2.O/ C kw�
1 kH2

0 .˝/

�

� "C

������

2
4 u

w1
w2

3
5
������

H

C C"

������

2
4 u�

w�
1

w�
2

3
5
������

H

:

(3.62)

Using subsequently the resolvent relation w2 D iˇw1 � w�
1 now gives

kˇw1kH1=2.˝/ C kw2kH1=2.˝/ � "C

������

2
4 u

w1
w2

3
5
������

H

C C"

������

2
4 u�

w�
1

w�
2

3
5
������

H

: (3.63)

Step 3 (Control of the Mechanical Displacement). We multiply both sides of the
mechanical equation (3.57f) by w1 and integrate. This gives the relation



�2w1;w1

�
L2.˝/

D 

pj˝;w1

�
˝

C ˇ2 kw1k2L2.˝/ C 

w�
2 C iˇw�

1 ;w1
�
L2.˝/

:

(3.64)

To handle the first term we use the fact that since Œu;w1;w2� 2 H, then in
particular

Z
˝

w1 d˝ D 0 :

In consequence, one can extend w1 by zero—see e.g., Theorem 3.3 of [34]—
so as to have well-posedness of the following boundary value problem (see [37,
Theorem 2.4 and Remark 2.5]):

8̂
ˆ̂̂<
ˆ̂̂̂
:

�� C rq D 0 in O

div D 0 in O

 jS D 0 on S

 j˝ D 

 1; 2;  3

�ˇ̌
˝

D .0; 0;w1/ on˝

(3.65)

with the estimate

kr kL2.O/ C kqkL2.O/ � C kw1kH1=2C".˝/: (3.66)
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Implicitly, we are also using Poincaré Inequality, and the fact that the Dirichlet
trace map 
0 W H1.O/ ! H1=2.@O/ is bounded and surjective on Lipschitz
domains; see [19]. (See also [26, 27] for similar “Dirichlet maneuvering”, used
therein to show decays for an altogether different fluid-structure PDE.)

With this solution variable  in hand, we now address the first term on the right
hand side of (3.64): since normal vector � equals .0; 0; 1/ on˝ , and uj˝ D ˝

0; 0; u3
˛

on ˝ , and moreover div.u/ D 0 in O , we have

.pj˝;w1/˝ D 0C
0
@p �;

2
4 0

0

w1

3
5
1
A

L2.˝/

D �
0
@
2
4D3u1

D3u2

D3u2

3
5 ;
2
4 0

0

w1

3
5
1
A
˝

C
0
@p �;

2
4 0

0

w1

3
5
1
A
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C .p �;  /L2.@O/ ; (3.67)

after invoking the boundary conditions in (3.65).
The use of Green’s Identities and the fluid equation in (3.67) then gives

.pj˝;w1/˝ D �
�
@u

@�
;  

�
L2.@O/

C .p �;  /L2.@O/

D �.�u;  /L2.O/ � 
ru;r �L2.O/ C .rp; /L2.O/
D �iˇ.u;  /L2.O/ � .ru;r /L2.O/ C .u�;  /L2.O/ :

Estimating the latter right hand side by means of (3.61), (3.62) and (3.66) (and a
rescaling of parameter " > 0), we get for ˇ 2 R n f0g,

k.pj˝;w1/˝ j � 
jˇj krukL2.O/ C krukL2.O/ C ku�kL2.O/

� kr kL2.O/
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: (3.68)
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Applying the obtained estimate (3.68) to the right hand side of (3.64), and using
once more (3.62), we get



�2w1;w1

�
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������
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������

2

H

:

Another application of Green’s formula, along the fact that w1 satisfies clamped
boundary conditions, gives

k�w1k2L2.˝/ � 3"C

������
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������
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������
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������
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H

: (3.69)

Thus, combining (3.61), (3.63) and (3.69) yields now

kŒu;w1;w2�k2H � 3"C kŒu;w1;w2�k2H C C" kŒu�;w�
1 ;w

�
2 �k2H :

This yields the required uniform norm estimate (3.55), upon taking " > 0 small
enough. The proof of exponential decay of finite energy solutions of (3.2)–(3.3) is
now complete. ut
Remark 3.3 In the course of our “frequency domain” proof of the exponential
stability result Theorem 3.2, we have seen that, analogous to “time dependent”
stability proofs of PDE systems under dissipative feedback, one must essentially
estimate the finite energy norms of the structural solution variables in terms of the
fluid dissipation. When � D 0 (the case under present consideration), control of the
structural velocity solution variable ˇw1 comes about very quickly; in particular, the
boundary condition (3.57d) is invoked to control structural velocity variable ˇw1 in
L2.˝/-norm (even the H1=2.˝/-norm; see (3.62)).

However, for � > 0 the corresponding finite energy topology of the static
structural velocity is instead H1

0 .˝/ \ OL2.˝/ (see (3.5)). Because of this higher
topology, the matching velocity boundary condition (3.57d) is of limited use for
� > 0: indeed, the dissipation of the fluid velocity is measured in H1.O/-norm; thus
by the Sobolev Trace Theorem, an immediate application of the boundary condition
(3.57d) gives only a measurement of ˇw1 inH1=2.˝/-norm, at best. As we show in
[3], for � > 0 a measurement of ˇw1 in H1.˝/-norm is ultimately accomplished,
but at the price of ‘penalizing’ the majorizing constant by parameter jˇj. This
‘ˇ-corrupted’ estimate is ultimately what gives rise to the rational decay rate
O.1=t/, as opposed to exponential decay. From what we have seen, an improvement
in this rate of decay does not seem likely.

If, however, for � > 0 one were to incorporate structural damping into the PDE
component (3.2e), so as to have instead

wt t � ��wt t C�2w � ��wt D pj˝ in ˝ � .0;1/, where parameter � > 0;
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then the frequency domain approach we have illustrated here would allow for a
recovery of exponential decay for the fluid-structure solution variables. Indeed,
very likely the resulting—structurally and fluid—damped C0-semigroup would be
analytic.

3.4 The Associated Optimal Control Problems: Relevant
Scenarios, Expected Difficulties

In this section we briefly discuss a couple of possible implementations for the
placement of control actions into the PDE system (3.2)–(3.3); these are comple-
mented with some remarks about the technical challenges which are expected in
the forthcoming study of the associated optimal control problems (with quadratic
functionals).

3.4.1 A First Setup: Point Control on the Mechanical
Component

A classical scenario worth studying is the case of point control exerted on the elastic
wall ˝ . The control action may be mathematically described by

Bg D
JX
jD1

aj gj ı�j ;

where �j are points in ˝ , and ı�j denote the corresponding delta functions. The
control space here is U D R

J and

B W U ! H�1�	 .˝/ ; 	 > 0 I
accordingly, the initial/boundary value problem (IBVP) is as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

ut ��u C rp D 0 in O � .0; T /
div u D 0 in O � .0; T /
u D 0 on S � .0; T /
u D .u1; u2; u3/ D .0; 0;wt / on ˝ � .0; T /
wt t � ��wt t C�2w D pj˝ C Bg in ˝ � .0; T /
w D @w

@�
D 0 on @˝ � .0; T /

u.�; 0/ D u0 in O

w.�; 0/ D w0 ; wt .�; 0/ D w1 in ˝ :

(3.70)
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To deal with the IBVP problem (3.70), with the natural state space Y given by H�

and the control space U defined above, we will appeal to the corresponding abstract
formulation

8<
:
y0.t/ D Ay.t/C Bg.t/ ; 0 < t < T

y.0/ D y0 2 Y ;
(3.71)

where

• A W D.A/ � Y ! Y is the infinitesimal generator of a C0-semigroup eAt on Y ,
t � 0;

• B 2 L .U; ŒD.A�/�0/; equivalently,A�1B 2 L .U; Y /.

The most prominent features of the controlled dynamics come are that (i) the
control operator B is not bounded from U into Y ; (ii) the semigroup eAt is not
analytic.

Remark 3.4 We elaborate on the second feature: the (uncontrolled) PDE system
(3.70) appears similar in structure to certain “rotational-inertia free and non-free”
hyperbolic-parabolic PDE’s, which describe elastic plate dynamics subjected to a
thermal damping (see [24] and [29]). When � D 0, such thermoelastic systems
are in fact associated with analytic semigroups; when rotational inertia parameter
is present, these thermoelastic PDE systems are not. However, for all � � 0 the
distinct PDE components of these systems of thermoelasticity evolve on the very
same geometry, and hence the strong coupling of hyperbolic-parabolic dynamics is
accomplished via interior differential terms. By contrast, the coupling in the present
fluid-structure PDE system (3.70) occurs only on the boundary interface ˝ . Thus,
the dissipation manifested by the three dimensional (analytic) Stokes component is
propagated to the two dimensional hyperbolic plate component in restricted fashion;
namely, via boundary traces of the fluid and pressure.

To the control system (3.71) we associate a quadratic functional:

J.g/ D
Z T

0


kRy.t/k2Z C kg.t/k2U
�

dt ; (3.72)

whereR 2 L .Y;Z/ denotes the observation operator andZ the observation space;
thus, the optimal control problem is formulated as follows.

Problem 3.1 (The Optimal Control Problem) Given y0 2 Y , we seek a control
function g 2 L2.0; T IU / which minimizes the cost functional (3.72), where y.�/ D
y.� Iy0; g/ is the solution to (3.71) corresponding to g.�/.

As is well known, the core of the work is to pinpoint the regularity of the input-
to-state map

L W g.�/ 7�! .Lg/.t/ WD
Z t

0

eA.t�s/Bg.s/ ds ; (3.73)



3 Exponential Decay Properties of a Mathematical Model for a Certain Fluid-. . . 73

which, in turn, is related to the regularity properties of the kernel eAtB (or,
equivalently, of B�eA�t ).

We expect to make use of the sharp regularity theory for the uncoupled plate
equation in the presence of point control; see e.g., [38]. We also expect that, with
the possible exception of the one-dimensional case for ˝ , the presence of point
control acting on the hyperbolic component of the PDE system will prevent one
from establishing that the gain operator is bounded—unbounded even on a dense
subset of Y—unless the observation operator R possesses appropriate smoothing
properties.

3.4.2 A Different Setup: Boundary Control on the Fluid
Component

Another interesting scenario is the case of boundary control acting on some part˙
of S . A tentative condition1 to be taken into consideration is u D g � on ˙ . The
IBVP becomes as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

ut ��u C rp D 0 in O � .0; T /
div u D 0 in O � .0; T /
u D 0 on S n˙ � .0; T /
u D g � on ˙ � .0; T /
u D .u1; u2; u3/ D .0; 0;wt / on ˝ � .0; T /
wt t � ��wt t C�2w D pj˝ in ˝ � .0; T /
w D @w

@�
D 0 on @˝ � .0; T /

u.�; 0/ D u0 in O

w.�; 0/ D w0 ; wt .�; 0/ D w1 in ˝ :

(3.74)

A first task to be accomplished is to derive the proper abstract formulation of
the IBVP (3.74), having chosen—beside the state space Y � H�—a natural control
space U , as well as a class of control functions (such as, e.g., L2.0; T IU /). At
the outset, an important question which arises is whether the PDE problem (3.74)
can in fact be modeled by an appropriate abstract ODE control system of the form
(3.71); then y.t/ D eAty0 C .Lg/.t/, with the operator L given by (3.73). If this
is the case, the presence of boundary control acting on the parabolic component
of the PDE system would suggest that we investigate whether the optimal control

1This condition was suggested by Giovanna Guidoboni (Indiana University and Purdue University
at Indianapolis; also Acting Co-Director of the School of Science Institute of Mathematical
Modeling and Computational Science), in connection with the modeling of ocular blood flow and
specifically with the issue of reducing the ocular pressure.
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theory devised in [1] (T < 1) and [2] (T D 1) is applicable. It is known that the
analysis to be performed—in order to prove that the PDE problem actually fits into
the abstract class of control systems formerly introduced in [1]—would then require
that suitable regularity results for the boundary traces of the fluid component on ˙
are established. This kind of “hidden regularity” has been shown to hold true in the
case of a different F-S interaction (body immersed in a fluid); see [10] and [11].
(See [30] and [31] for a study of a Bolza problem associated with the very same
PDE model.)

Remark 3.5 It is important to remind the reader (and to be emphasized) that a major
feature of the aforesaid theory of [1,2], inspired by and tailored for certain boundary
control problems for significant coupled PDE systems of hyperbolic-parabolic type,
guarantees well-posedness of Riccati equations with bounded gains (on a dense
subset of Y ), without requiring smoothing effects of the observation operator R.

3.5 Appendix: Proof of Higher Regularity for D.A�/

Here, with Lemma 3.1 in hand, we infer the higher regularity for the fluid-structure
generator, as stated in (3.13). Namely, if Œu0;w0;w1� 2 D.A�/, then corresponding
Œu0;w1;w2� 2 H2.O/� S� �H2

0 .˝/, and associated pressure variable �0, as given
in (3.16), is in H1.O/.

In [4], by way of demonstrating the maximality of A� W D.A�/ � H� ! H�, we
undertook the task of finding Œu;w1;w2� 2 D.A�/ � H� which solves the resolvent
equation

.�I � A�/

2
4 u

w1
w2

3
5 D

2
4u�

w�
1

w�
2

3
5

for given � > 0, and data Œw�
1 ;w

�
2 ; u

�� 2 H�. In PDE terms, this is the following
system:

�w1 � w2 D w�
1 in ˝ (3.75a)

�w2 C P�1
� �2w1 � CP�1

� p
ˇ̌
˝

D w�
2 in ˝ (3.75b)

w1 D @w1
@�

D 0 on @˝ (3.75c)

�u ��u C rp D u� in O (3.75d)

div.u/ D 0 in O (3.75e)

ujS D Œ0; 0; 0� on S (3.75f)

uj˝ D Œ0; 0;w2� in ˝ , (3.75g)
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where again, pressure term

p D G�;1.w1/CG�;2.u/ : (3.76)

We start by briefly recalling what was done in [4] to recover the structural
component w1: in [4], the existence of a unique pair

Œw1; Qc� 2 H2
0 .˝/\ OL.˝/� � R (3.77)

which solves the following mixed variational formulation

(
a�.w1; �/C b.�; Qc/ D F.�/ 8� 2 H2

0 .˝/

b.w1; r/ D 0 8r 2 R

(3.78)

was established. Here,

.i/ a�. ; �/ D �2.P 1=2
�  ; P 1=2

� �/˝ C .� ;��/˝ C �.r Qf . /;r Qf .�//O
C �2. Qf . /; Qf .�//O ; 8 ; � 2 H2

0 .˝/ I

.ii/ b.�; r/ D �r
Z
˝

� d˝; 8� 2 H2
0 .˝/ and r 2 R I

.iii/ F.�/ D .r Qf .w�

1 /;r Qf .�//O C �. Qf .w�

1 /;
Qf .�//O � .r Q�.u�/;r Qf .�//O

� �. Q�.u�/; Qf .�//O C .u�; Qf .�//O C 

P�.�w�

1 C w�

2 /; �
�
˝
; 8� 2 H2

0 .˝/ :

Also, Œ Qf ; Q�� and Œ Q�; Qq� are the following solution maps (the solvability of each of
which is assured by [37, Theorem 2.4 and Remark 2.5]): For given � 2 H1=2C"

0 .˝/,
" > 0, let Œ Qf .�/; Q�.�/� 2 H1.O/ �L2.O/=R solve

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

� Qf �� Qf C r Q� D 0 in O

div. Qf / D 1 � R
˝
� d˝

meas.O/
in O

Qf jS D Œ0; 0; 0� in S

Qf j˝ D Œ0; 0; �� in ˝ .

(3.79)

(We note that the classic compatibility condition for solvability is satisfied, and
that pressure variable Q� is uniquely defined up to a constant. Also, the fact that
" > 0 allows us to extend Dirichlet boundary �, by zero, so to have a function in
H1=2C".@O/; see e.g., [34, Theorem 3.33].)
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Likewise, for given fluid data u� 2 L2.O/ the solution variables Œ Q�.u�/; Qq.u�/� 2
H1.O/ � L2.O/=R solve

8̂
<̂
ˆ̂:

� Q� �� Q�C r Qq D u� in O

div. Q�/ D 0 in O

Q�ˇ̌
@O

D 0 on @O:

(3.80)

With solution component w1 of (3.78) in hand, we then have from (3.75a),

w2 � �w1 � w�
1 2 H2

0 .˝/\ OL.˝/� : (3.81)

As was done in [4], we can in turn use Qc of (3.77), w2 of (3.81), and the maps (3.79)
and (3.80), to recover the fluid component variable Œu; p� of (3.75d)–(3.75g) via the
identification

(
u D Qf .w2/C Q�.u�/ 2 H1.O/\ Hf

p D Q�.w2/C Qq.u�/C Qc 2 L2.O/ (3.82)

where Œ Qf ; Q�� and Œ Q�; Qq� are the solution maps defined respectively in (3.79) and
(3.80).

But from Lemma 3.1, Œu; p� as the solution of (3.75d)–(3.75g)—with Dirichlet
data w2 2 H2

0 .˝/\ OL.˝/�—in fact enjoys the additional regularity

Œu; p� 2 H2.O/\ Hf

� �H1.O/ : (3.83)

Using (3.81) and (3.82), it was shown in [4] that the structural solution com-
ponent w1 of the variational system (3.78) indeed solves the biharmonic BVP
(3.75b)–(3.75c). Consequently, as “forcing term” pj˝ in (3.75b) is in L2.˝/

(conservatively) from (3.83), then by elliptic regularity w1 resides in the space S�,
as defined in (3.14). (In the case that˝ is polygonal—i.e., ŒO;˝� obeys (G.2)—we
appeal to [9, Theorem 2] to justify this extra regularity for w1.)

Finally, the characterization of pressure term in (3.82) via the relation (3.76) was
shown in [4].
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Chapter 4
Inverse Coefficient Problem for Grushin-Type
Parabolic Operators

Karine Beauchard and Piermarco Cannarsa

To the memory of Alfredo Lorenzi, to his enthusiasm for
mathematics and human warmth

Abstract The approach to Lipschitz stability for uniformly parabolic equations
introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates,
seems hard to apply to the case of Grushin-type operators studied in this paper.
Indeed, such estimates are still missing for parabolic operators degenerating in the
interior of the space domain. Nevertheless, we are able to prove Lipschitz stability
results for inverse coefficient problems for such operators, with locally distributed
measurements in arbitrary space dimension. For this purpose, we follow a strategy
that combines Fourier decomposition and Carleman inequalities for certain heat
equations with nonsmooth coefficients (solved by the Fourier modes).

4.1 Introduction

4.1.1 Model

The relevance of the Heisenberg group to quantum mechanics has long been
acknowledged. Indeed, it was recognized by Weyl [13] that the Heisenberg algebra
generated by the momentum and position operators comes from a Lie algebra
representation associated with a corresponding group—namely the Heisenberg
group (Weyl group in the traditional language of physicists). In such a group, the role
played by the so-called Heisenberg laplacian is absolutely central, being analogous
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to the standard laplacian in Euclidean spaces, see [11]. On an even larger scale,
deep connections have been pointed out between the properties of subriemannian
operators, like the Heisenberg laplacian, and other topics of interest to current
mathematical research such as isoperimetric problems and systems theory, see, for
instance [9].

Another important example of sublaplacian is the Grushin operator which takes
the form

Gu D �.@2xu C x2@2yu/ (4.1)

on the plane. As a matter of fact, the Heisenberg laplacian and the Grushin
operator are deeply related: the former can be transformed into the latter, and the
corresponding heat kernels are connected by an integral map, see [12].

This paper is a part of a general project we are pursuing, which consists of
investigating the possibility of extending the known controllability, observability,
and Lipschitz stability properties of the heat equation, to degenerate parabolic
problems. On all such topics, several results are available for parabolic operators
which degenerate at the boundary of the space domain in low dimension, see, for
instance [1, 4–8].

In two space dimensions, a fairly complete analysis of Grushin operator is
presented in [2] as far as controllability and observability are concerned, and
generalized to the multidimensional case in [3]. The inverse source problem is
treated in [3]. To the best of our knowledge, there are no results on inverse coefficient
problems for Grushin-type equations. The goal of this article is to prove a Lipschitz
stability estimate for the inverse coefficient problem, by adapting the techniques
developed in [3] for the inverse source problem.

We consider Grushin-type equations of the form

8<
:
@tu ��xu � jxj2
b.x/�yu D 0 ; .t; x; y/ 2 .0; T / �˝ ;

u.t; x; y/ D 0 ; .t; x; y/ 2 .0; T / � @˝ ;

u.0; x; y/ D u0.x; y/ ; .x; y/ 2 ˝ ;

(4.2)

where T > 0, ˝ WD ˝1 � ˝2, ˝1 is a bounded open subset of R
N1 , with C4

boundary, such that 0 2 ˝1,˝2 is a bounded open subset of RN2 , with C2 boundary,
N1;N2 2 N

� WD f1; 2; 3; : : : :g, b 2 C1.˝1I .0;1//, 
 2 .0; 1� and j:j is the
Euclidean norm on R

N1 .
Specifically, we are interested in the inverse coefficient problem: is it possible

to recover the coefficient b.x/ from the knowledge of an observation @tuj.T0;T1/�! ,
where ! is a nonempty open subset of ˝?

First, we recall well-posedness and regularity results for such equations. To
this aim, we introduce the space H1


 .˝/, which is the closure of C1
0 .˝/ for the

topology defined by the norm

kf kH1



WD
�Z

˝


jrxf j2 C jxj2
 jryf j2� dxdy

�1=2
;
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and the Grushin operatorG
 defined by

G
u WD ��xu � jxj2
b.x/�yu 8u 2 D.G
/;
where

D.G
/ D
n
f 2 H1


 .˝/ W 9c > 0 s.t.
ˇ̌
ˇ
Z
˝


rxf � rxg C jxj2
ryf � ryg
�

dxdy
ˇ̌
ˇ

6 ckgkL2.˝/ 8g 2 H1

 .˝/

o
;

Theorem 4.1 Let 
 > 0. For every u0 2 L2.˝/ and g 2 L2..0; T / � ˝/, there
exists a unique weak solution u 2 C0.Œ0; T �IL2.˝// \ L2.0; T IH1


 .˝// of (4.2).
Moreover, u 2 C0..0; T �ID.G
 //.

We refer to [2] for the proof with N1 D N2 D 1; the general case can be treated
similarly.

4.1.2 Hypotheses and Notations

We introduce an open subset ˝ 0
1 �� ˝1 such that 0 … ˝ 0

1 and ı > 0 such that

x 2 ˝ 0
1 ) jxj > ı :

The function b is a priori assumed to satisfy

b 2 M WD fb 2 C1.˝1I Œm;M �/ W b � 1 on ˝1 n˝ 0
1g

for some positive constantsm;M with 0 < m 6 1 6 M that are fixed in the whole
article. In particular, b � 1 on a neighborhood of x D 0 and @˝1.

In order to introduce the hypotheses on the initial data u0 of system (4.2), under
which we prove Lipschitz stability estimate, the following notation is required. Let
A be the operator defined by

D.A / WD H2 \H1
0 .˝2/; A ' WD ��y'

and let .�n/n2N� be the nondecreasing sequence of its eigenvalues, with associated
eigenvectors .'n/n2N� , so that

� ��y'n.y/ D �n'n.y/ ; y 2 ˝2 ;

'n.y/ D 0 ; y 2 @˝2 :
(4.3)

When v D v.x; y/ 2 L2.˝/, then, we denote by vn D vn.x/ its Fourier components
(with respect to variable y)

vn.x/ WD
Z
˝2

v.x; y/'n.y/dy;8n 2 N
�:
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To prove the Lipschitz stability estimate, the initial data u0 of system (4.2) will
be assumed to belong to the class

DN;K1;T1 WD
n

u0 2 D.Gs=2

 /I u0N > 0 on ˝1 and

supx2˝0

1

�
e
T1
2 �˝0

1u0N

�
.x/ > K1e

ı2
mT1�N ku0k
D.G

s=2

 /

o

where s > N1=2 is fixed in the whole article, K1; T1 > 0 and N 2 N
�. Here,

e
��

˝0

1 denotes the heat flow on ˝ 0
1: for �0 2 L2.˝ 0

1/, the function �.�; x/ WD�
e
��

˝0

1 �0
�
.x/ is the solution of

8<
:
@��.�; x/ ��x�.�; x/ D 0 ; .�; x/ 2 .0;C1/ �˝ 0

1 ;

�.�; x/ D 0 ; .�; x/ 2 .0;C1/ � @˝ 0
1 ;

�.0; x/ D �0.x/ ; x 2 ˝ 0
1 :

Note that
n
u0 2 D.Gs=2


 /I u0N > 0 on ˝1

o
D [1

jD1DN;1=j;T1 :

In particular if u0 2 D.Gs=2

 / is > 0 on ˝1 then u01 > 0 thus u0 2 D1;1=j for j large

enough. Thus, this class of functions is quite general.
Finally, we denote by C a constant which may change from line to line.

4.1.3 Main Results

Our main result consists of a Lipschitz stability estimate, with observation on a
vertical strip ! WD !1 �˝2, for appropriate initial conditions. When 
 2 .0; 1/, the
Lipschitz stability estimate holds in any positive time.

Theorem 4.2 Let 
 2 .0; 1/, !1 be a nonempty open subset of ˝1, ! WD !1 �˝2

a vertical strip, T 2 .0;1/, T1 2 .0; T / and K1 > 0. Then there exists a constant
C D C .K1; T1/ > 0 such that, for every b; Qb 2 M , N 2 N, u0 2 L2.˝/, and
Qu0 2 DN;K1;T1 , the associated solutions u and Qu of (4.2) satisfy

Z
˝0

1

.b � Qb/.x/2dx 6 C

kQu0k2
D.G

s=2

 /

�Z T

0

Z
!

j@t .u � Qu/.t; x; y/j2dxdydt

C
Z
˝0

1�˝2
jG
.u � Qu/.T1; x; y/j2dxdy

#
:

(4.4)

Note that the constant C above does not depend on N .
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When 
 D 1, the Lipschitz stability estimate holds for a sufficiently large time,
as stated below.

Theorem 4.3 We assume 
 D 1, !1 is a nonempty open subset of ˝1 and ! WD
!1 �˝2 is a vertical strip. There exists T �

1 > 0 such that, for every T1; T 2 .0;1/

with T �
1 < T1 < T there exists C D C .K1; T1/ > 0 such that, for every b; Qb 2 M ,

N 2 N, u0 2 L2.˝/, Qu0 2 DN;K1;T1 , the associated solutions u and Qu of (4.2) satisfy
(4.4).

The assumption on the initial data (Qu0 2 DN;K1;T1 ) is an important restriction,
essentially related to technical difficulty. The validity of the Lipschitz stability
estimate under more general assumptions is an interesting open problem that will
be investigated in future works.

4.1.4 Structure of the Article

This article is organized as follows. Section 4.2 is devoted to preliminary results
concerning the well posedness of (4.2), the Fourier decomposition of its solutions,
the dissipation speed of the Fourier modes, embeddings between spaces related to
the Grushin operator, and Harnack’s inequality. In Sect. 4.3, we prove our main
results, namely, Theorems 4.2 and 4.3.

4.2 Preliminaries

4.2.1 Well Posedness

In this section, we recall a known regularity result (see, e.g., [3]) for the solution of
problem (4.2) that will be used in what follows.

Theorem 4.4 Let 
 2 .0; 1�, u0 2 D.G
/, g 2 H1..0; T /; L2.˝//, and

u 2 C0.Œ0; T �IL2.˝//\L2.0; T IH1

 .˝//

be the solution of

8<
:
@tu ��xu � jxj2
 b.x/�yu D g.t; x; y/ ; .t; x; y/ 2 .0;1/ �˝ ;

u.t; x; y/ D 0 ; .t; x; y/ 2 .0;1/ � @˝ ;

u.0; x; y/ D u0.x; y/ ; .x; y/ 2 ˝ :
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Then the function v WD @tu belongs to L2.0; T IH1

 .˝// and is a weak solution of

8<
:
@t v ��xv � b.x/jxj2
�yv D @tg.t; x; y/ ; .t; x; y/ 2 .0;1/ �˝ ;

v.t; x; y/ D 0 ; .t; x; y/ 2 .0;1/ � @˝ ;

v.0; x; y/ D �G
u0.x; y/C g.0; x; y/ ; .x; y/ 2 ˝ :

(4.5)

4.2.2 Fourier Decomposition

The following known result is the starting point of our analysis (see [2] for the
proof).

Theorem 4.5 Let u0 2 L2.˝/, g 2 L2..0; T / �˝/ and u be the weak solution of

8<
:
@tu ��xu � jxj2
 b.x/�yu D g.t; x; y/ ; .t; x; y/ 2 .0;1/ �˝ ;

u.t; x; y/ D 0 ; .t; x; y/ 2 .0;1/ � @˝ ;

u.0; x; y/ D u0.x; y/ ; .x; y/ 2 ˝ :

For every n 2 N
�, the function

un.t; x/ WD
Z
˝2

u.t; x; y/'n.y/dy

belongs to C0.Œ0; T �IL2.˝// and is the unique weak solution of

8<
:
@tun ��xun C �njxj2
 b.x/un D gn.t; x/ ; .t; x/ 2 .0; T / �˝1;

un.t; x/ D 0 ; t 2 .0; T / � @˝1;

un.0; x/ D un;0.x/ ; x 2 ˝1;

(4.6)

where

gn.t; x/ WD
Z
˝2

g.t; x; y/'n.y/dy and u0;n.x/ D
Z
˝2

u0.x; y/'n.y/dy:

4.2.3 Dissipation Speed

We introduce, for every n 2 N
�; 
 > 0, the operatorGn;
 defined on L2.˝1/ by

D.Gn;
 / WD H2 \H1
0 .˝1/ ; Gn;
u WD ��xu C �njxj2
b.x/u: (4.7)
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The smallest eigenvalue of Gn;
 is given by

�n;
 D min

( R
˝1

jrv.x/j2 C �njxj2
 b.x/v.x/2� dxR
˝1

v.x/2dx
W v 2 H1

0 .˝1/; v ¤ 0

)
:

The asymptotic behavior of �n;
 as n ! 1, which quantifies the dissipation speed
of the solutions of (4.2), is described below (see [3] for a proof).

Theorem 4.6 For every 
 > 0, there exists constants c�; c� > 0 such that

c��
1

1C

n 6 �n;
 6 c��

1
1C

n ; 8 n 2 N

� :

4.2.4 Continuous Embeddings

In this section, we obtain a continuous embedding result for the domains of powers
of GN;
 , which is used in the proof of our main theorem.

Theorem 4.7 For every s > N1=2 we have that D.Gs=2
N;
 / � L1.˝1/, with

continuous embedding.

We prove the conclusion just when s is an even positive integer. In this case,
setting k D s=2, it suffices to show that

k 2 N; k >
N1

4
H) D.Gk

N;
 / � L1.˝1/: (4.8)

Let k D 1. We have that

u 2 D.GN;
 / ” u 2 H2 \H1
0 .˝1/: (4.9)

Therefore, u is continuous for N1 D 1. Moreover,

u 2
�
W 1;p.˝1/ 8p > 1 if N1 D 2

W 1;2�

.˝1/ if N1 > 2
(4.10)

where

1

2� D 1

2
� 1

N1
: (4.11)

So, u is Hölder continuous in ˝1 by Sobolev’s embedding provided that 2� > N1,
that is, N1 < 4. We have thus checked (4.8) for k D 1.
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Now, suppose N1 � 4 (so that 2� � N1), let k D 2, and take u 2 D.G2
N;
 /. Set

v WD GN;
u, and observe that u satisfies the boundary value problem

� ��xu C �N jxj2
 b.x/u D v.x/ x 2 ˝1

u.x/ D 0 x 2 @˝1:

Moreover, since

v 2 W 1;2�

.˝1/;

it follows that

v 2
�
Lp.˝1/ 8p > 1 if 2� D N1 D 4

L2
��

.˝1/ if N1 > 4:

Thus, owing to the Lp-regularity of solutions to elliptic equations with Hölder
continuous coefficients, we have that

u 2
�
W 2;p.˝1/ 8p > 1 if 2� D N1 D 4

W 2;2��

.˝1/ if N1 > 4:
(4.12)

The above inclusions imply that u is smooth right away if 2�� > N1, that is,N1 < 6.
By a refinement of the above argument one obtains the embedding in (4.8). Indeed,
for N1 � 6, (4.12) yields

u 2
�
W 1;p.˝1/ 8p > 1 if 2�� D N1 D 6

W 1;2���

.˝1/ if N1 > 6:
(4.13)

This implies that u is Hölder continuous for N1 < 2���, that is, N1 < 8. We have
thus checked (4.8) for k D 1; 2. The general result follows by iteration.

4.2.5 Harnack’s Inequality

In our next proposition, we recall the well-known Harnack inequality for the heat
equation (see [10]).

Theorem 4.8 Let U be an open subset of ˝1 and let V �� U be connected. Let
T > 0, 0 < t1 < T1 < T , and set UT WD .0; T / � U . Then there exists CH > 0

such that, for every solution u 2 C2.UT / of

@tu ��u D 0 in UT
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with u > 0 on UT , one has that

inf
x2V u.T1; x/ > CH sup

x2V
u.t1; x/:

4.3 Proof of Lipschitz Stability

In this section, first, we prove Theorem 4.2, then we explain how to adapt the
reasoning to the proof of Theorem 4.3.

The function v.t; x; y/ WD .u � Qu/.t; x; y/ satisfies

8<
:
@tvN ��xvN C�N jxj2
b.x/vN D�N jxj2
 .b� Qb/.x/QuN ; .t; x/2 .0; T /�˝1 ;

vN .t; x/ D 0 ; .t; x/ 2 .0; T /� @˝1 ;

vN .0; x/ D v0N .x/ ; x 2 ˝1 :

Step 1: Use of Harnack inequality and assumption Qu0 2 DN;K1;T1 . We recall
that

8<
:
@t QuN ��x QuN C �N jxj2
b.x/QuN D 0 ; .t; x/ 2 .0;C1/ �˝1 ;

QuN .t; x/ D 0 ; t 2 .0;C1/ � @˝1 ;

QuN .0; x/ D Qu0N .x/ ; x 2 ˝1 :

Let us introduce the solution �N .t; x/ of

8<
:
@t�N ��x�N C �Nı

2
m�N D 0 ; .t; x/ 2 .0; T / �˝ 0
1 ;

�N .t; x/ D 0 ; .t; x/ 2 .0; T / � @˝ 0
1 ;

�N .0; x/ D Qu0N .x/ ; x 2 ˝ 0
1 :

Then

�N jxj2
 b.x/ > �N ı
2
m ; 8x 2 ˝ 0

1 ;

QuN .t; x/ > 0 D �N .t; x/ ; 8.t; x/ 2 .0;C1/ � @˝ 0
1 ;

QuN .0; x/ D �N .0; x/ ; 8x 2 ˝ 0
1 :

By the maximum principle, we deduce that

QuN .t; x/ > �N .t; x/ ; 8.t; x/ 2 .0;C1/ �˝ 0
1 :

Note that

�N .t; x/ D e��N ı2
mt
�
e
t�

˝0

1u0N

�
.x/ :
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Thus

infz2˝0

1
jQuN .T1; z/j > infz2˝0

1
j�N .T1; z/j

> e��N ı2
mT1 infz2˝0

1

ˇ̌
ˇ
�
e
T1�˝0

1 Qu0N
�
.z/
ˇ̌
ˇ

> e��N ı2
mT1CH supz2˝0

1

ˇ̌
ˇ
�
e
T1
2 �˝0

1 Qu0N
�
.z/
ˇ̌
ˇby Proposition 4.8

> CHK1kQu0k
D.G

s=2

 /

because Qu0 2 DN;K1;T1 . In particular, infz2˝0

1
jQuN .T1; z/j is positive thus

R
˝0

1
.b� Qb/.x/2dx 6 1

�2N ı
4
 infz2˝0

1
jQuN .T1;z/j2

R
˝0

1

ˇ̌
ˇ�N jxj2
 .b � Qb/.x/QuN .T1; x/

ˇ̌
ˇ2 dx

6 1

�2N ı
4
C 2HK

2
1kQu0k2

D.G
s=2

 /

R
˝0

1

ˇ̌
ˇ�N jxj2
 .b� Qb/.x/QuN .T1; x/

ˇ̌
ˇ2 dx:

Therefore

R
˝0

1
.b � Qb/.x/2dx 6 C

2kQu0k2
D.G

s=2

 /

R
˝0

1

ˇ̌
ˇ�N jxj2
 .b � Qb/.x/QuN .T1; x/

ˇ̌
ˇ2dx

6 C

kQu0k2
D.G

s=2

 /

R
˝0

1

�
j@tvN .T1; x/j2 C jGN;
vN .T1; x/j2

�
dx

(4.14)

where

C WD 1

�21ı
4
C 2

HK
2
1

:

In order to dominate properly the first term of the right hand side, we revisit the
proof of Proposition 6 of [3].

Step 2: Duhamel formula reads as

@t vN .T1/ D e�GN;
 .T1�t /@tvN .t/C
Z T1

t

e�GN;
 .T1��/gN .�/d�; 8t 2 .0; T1/

where

gN .�; x/ D �N jxj2
 .b � Qb/.x/@t QuN .�; x/:

Thus,

k@t vN .T1/kL2.˝1/ 6 e��N;
 .T1�t /k@tvN .t/kL2.˝1/
C R T1

t e��N;
 .T1��/kgN .�/kL2.˝1/d� :
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Moreover,

kgN .�/kL2.˝1/ 6 C�N kb � QbkL2.˝0

1/
k@t QuN .�/kL1.˝1/ :

By the continuous embedding proved in Sect. 4.2.4, we have

k@t QuN .�/kL1.˝1/ 6 Ck@t QuN .�/kD.Gs=2N;
 /
6 CkQu0N k

D.G
s=2
N;
 /
e��N;
 �

6 CkQu0k
D.G

s=2

 /
e��N;
 � :

Therefore,

kgN .�/kL2.˝1/ 6 C�N kb � QbkL2.˝0

1/
kQu0k

D.G
s=2

 /
e��N;
 � (4.15)

and

k@t vN .T1/kL2.˝1/ 6 e��N;
 .T1�t /k@t vN .t/kL2.˝1/
CC.T1 � t/kQu0k

D.G
s=2

 /
�N e

��N;
T1kb � QbkL2.˝0

1/
:

Taking the square, we get

R
˝1

j@tvN .T1; x/j2dx 6 2e�2�N;
 .T1�t /
R
˝1

j@tvN .t; x/j2dx

C2C 2.T1 � t /2kQu0k2
D.G

s=2

 /
�2N e

�2�N;
 T1
R
˝0

1
.b � Qb/.x/2dx:

Integrating over t 2 .T1=3; 2T1=3/, we obtain

R
˝1

j@tvN .T1/j2 6 6
T1
e�2�N;
 T1=3 R 2T1=3

T1=3

R
˝1

j@tvN .t; x//j2dxdt

C2C 2


2T1
3

�2 kQu0k2
D.G

s=2

 /
�2N e

�2�N;
T1R
˝0

1
jxj4
 .b � Qb/.x/2dx:

(4.16)

Step 3: We apply Carleman estimate. Working exactly as in the step 2 of the
proof of Proposition 6 of [3], we get, for N large enough

R 2T1=3
T1=3

R
˝1

j@tvN .t; x/j2dxdt 6 CeC�
p.
/
N

� R T1
0

R
!1

j@tvN .t; x/j2dxdt

C R T1
0

R
˝1

jgN .t; x/j2dxdt
�

where C D C.T1/ > 0 and

p.
/ WD
�
1=2 if 
 2 Œ1=2; 1� ;
2=3 if 
 2 .0; 1=2/ : (4.17)
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Moreover, estimate (4.15) justifies that

Z T1

0

Z
˝1

jgN .t; x/j2dxdt 6 C2

2�N;

�2N kQu0k2

D.G
3=2

 /

Z
˝0

1

.b � Qb/.x/2dx:

Thus,

R 2T1=3
T1=3

R
˝1

j@tvN .t; x/j2dxdt 6 CeC�
p.
/
N

R T1
0

R
!1

j@tvN .t; x/j2dxdt

C C
�N;


�2N e
C�

p.
/
N kQu0k2

D.G
s=2

 /

R
˝0

1
.b � Qb/.x/2dx:

(4.18)

Step 4: By combining (4.14), (4.16) and (4.18), we obtain

R
˝0

1
.b � Qb/.x/2dx

6 C

ku0k2
D.G

s=2

 /

�R
˝0

1
jGN;
vN .T1; x/j2dx C eC�

p.
/
N �2�N;
 T1=3

R T1
0

R
!1

j@tvN .t; x/j2dxdt
�

C
�

1
�N;


�2N e
C�

p.
/
N �2�N;
 T1=3 C �2N e

�2�N;
 T1

� R
˝0

1
.b � Qb/.x/2dx:

For N large enough, the source term in the right hand side may be absorbed
by the left hand side. Indeed, by (4.17), we have 1

1C
 > p.
/ for every 
 2
.0; 1/; thus, by Proposition 4.6, �p.
/N D o.�N;
 / when N ! 1. Thus, we get a
constant C > 0 (independent ofN ) such that, forN large enough (i.e.N > N�),

R
˝0

1
.b � Qb/.x/2jxj4
dx

6 C
ku0k2

D.G
s=2

 /

�R T1
0

R
!1

j@tvN .t; x/j2dxdt C R
˝0

1
jGN;
vN .T1; x/j2dx

�

6 C
ku0k2

D.G
s=2

 /

�R T1
0

R
!

j@tv.t; x; y/j2dxdydt C R
˝

jG
v.T1; x; y/j2dxdy
�
:

When 
 D 1, then �N;
 behaves asymptotically like C�p.
/N , thus the time T1
needs to be taken large enough for the same conclusion to hold.

The previous arguments treat the high frequencies (i.e. N > N�). For low
frequencies (i.e., N < N�), the Lipschitz stability estimate for the inverse source
problem in the uniformly parabolic case (see [14]) yields the conclusion.
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Chapter 5
Determining the Scalar Potential in a Periodic
Quantum Waveguide from the DN Map

Mourad Choulli, Yavar Kian, and Eric Soccorsi

Dedicated to the memory of Alfredo Lorenzi (1944–2013)

Abstract We prove logarithmic stability in the determination of the time-dependent
scalar potential in a periodic quantum cylindrical waveguide, from the boundary
measurements of the solution to the dynamic Schrödinger equation.

5.1 Introduction

In this short paper we review the main ideas and results developed in [4].

5.1.1 Statement of the Problem

Let ! be a bounded connected open subset of R2 that contains the origin, with C2-
boundary @!. We put ˝ D R � ! and write x D .x1; x

0/ with x0 D .x2; x3/ for
every x D .x1; x2; x3/ 2 ˝ throughout this text. Given T > 0, we consider the
following initial boundary value problem (IBVP in short)

8<
:
.�i@t ��u C V.t; x//u D 0 in Q D .0; T / �˝;
u.0; �/ D u0 in ˝;
u D g on ˙ D .0; T / � @˝;

(5.1)
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where the time dependent electric potential V is 1-periodic with respect to the
infinite variable x1:

V.t; x1 C 1; x0/ D V.t; x1; x
0/; .t; x1; x0/ 2 Q: (5.2)

In the present paper we examine the stability issue in the determination of V from
the knowledge of the “boundary” operator

�V W .u0; g/ �! .@�uj˙; u.T; �//; (5.3)

where the measure of @�uj˙ (resp., u.T; �/) is performed on ˙ (resp., in ˝). Here
�.x/, x 2 @˝ , denotes the outward unit normal to˝ and @�u.t; x/ D ru.t; x/��.x/,
t 2 .0; T /.

5.1.2 What is Known so Far

There are only a few results available in the mathematical literature on the identi-
fication of time-dependent coefficients appearing in an IBVP, such as [1, 2, 6, 10].
All these results were obtained in bounded domains. Several authors considered
the problem of recovering time independent coefficients in an unbounded domain
from boundary measurements. In most of the cases the unbounded domain under
consideration is either a half space [15, 16] or an infinite slab [12, 14, 18].

The case of an infinite cylindrical waveguide was addressed in [3, 13]. For
inverse problems with time-independent coefficients in unbounded domains we
also refer to [8]. In [7], uniqueness modulo gauge invariance was proved in the
inverse problem of determining the time-dependent electric and magnetic potentials
from the Dirichlet-to-Neumann map for the Schrödinger equation in a simply-
connected bounded or unbounded domain. More specifically the inverse problem of
determining periodic coefficients in the Helmholz equation was recently examined
in [9].

5.1.3 Boundary Operator

We define the trace operator �0 by

�0w D 

wj˙ ;w.0; �/

�
for all w 2 C1

0 .Œ0; T � � R; C1.!//;

and extend it to a bounded operator fromH2.0; T IH2.˝// into

L2..0; T / � RIH3=2.@!// � L2.˝/:
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Then the space X0 D �0.H
2.0; T IH2.˝/// is easily seen to be Hilbertian for the

norm

kwkX0 D inffkW kH2.0;T IH2.˝//;W 2 H2.0; T IH2.˝// such that �0W D wg

and we recall from [4, Corollary 2.1] the following useful existence and uniqueness
result:

Proposition 5.1 Fix M > 0 and let V 2 C.Œ0; T �;W 2;1.˝// be such that

kV kC.Œ0;T �IW 2;1.˝// � M:

Then for every .g; u0/ 2 X0, the IBVP (5.1) admits a unique solution

s.g; u0/ 2 Z D L2.0; T IH2.˝//\H1.0; T IL2.˝//

and there is a constant C > 0, depending only on !, T andM , such that we have

ks.g; u0/kZ � Ck.g; u0/kX0: (5.4)

Armed with Proposition 5.1 we turn now to defining the operator �V appearing
in (5.3). To do that we introduce the linear bounded operator �1 from L2..0; T / �
RIH2.!// \H1.0; T IL2.˝// into X1 D L2.˙/ � L2.˝/, obeying

�1w D 

@�wj˙ ;w.T; �/

�
for w 2 C1

0 .Œ0; T � � RIC1.!//:

In view of (5.4) we have k�1s.g; u0/kX1 � Cks.g; u0/kZ � Ck.g; u0/kX0 , where,
as in the remaining part of this text, C denotes some generic positive constant. As
a consequence the operator �V D �1 ı s is bounded from X0 into X1 and k�V k D
k�V kB.X0;X1/ � C .

5.1.4 Main Result

The main result of this paper is borrowed from [4, Theorem 1.1] and claims
logarithmic stability in the determination of V from �V . Putting ˝ 0 D .0; 1/ � !,
Q0 D .0; T / �˝ 0 and ˙ 0� D .0; T / � .0; 1/� @!, it may be stated as follows.

Theorem 5.1 For M > 0 fixed, let V1; V2 2 W 2;1.0; T IW 2;1.˝// fulfill (5.2)
together with the three following conditions:

.V2 � V1/.T; �/ D .V2 � V1/.0; �/ D 0 in ˝ 0; (5.5)

V2 � V1 D 0 in ˙ 0�; (5.6)

kVj kW 2;1.0;T IW 2;1.˝0// � M; j D 1; 2: (5.7)
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Then there are two constants C > 0 and 
� > 0, depending only on T , ! and M ,
such that the estimate

kV2 � V1kL2.Q0/ � C

�
ln

�
1

k�V2 ��V1kB.X0;X1/

���1=5
;

holds whenever 0 < k�V2 ��V1kB.X0;X1/ < 

�.

5.1.5 Outline

The paper is organized as follows. In Sect. 5.2 we introduce the Floquet–Bloch–
Gel’fand transform, that is used to decompose the IBVP (5.1)–(5.2) into a collection
of IBVPs in Q0, with quasi-periodic boundary conditions on .0; T / � f0; 1g � !.
Section 5.3 is devoted to building suitable optics geometric solutions (abbreviated
as OGS in the sequel) for each of these problems. Finally a sketch of the proof
of Theorem 5.1, which is by means of the OGS defined in Sect. 5.3, is given in
Sect. 5.4.

5.2 Floquet–Bloch–Gel’fand Analysis

The main tool in the analysis of the periodic system (5.1)–(5.2) is the partial
Floquet–Bloch–Gel’fand transform (abbreviated to FBG in the sequel) with respect
to the x1-direction, that is described below.

5.2.1 Partial FBG Transform

For any arbitrary open subset Y of Rn, n 2 N
�, we define the partial FBG transform

with respect to x1 of f 2 C1
0 .R � Y / by

LfY;� .x1; y/ D .UY f /� .x1; y/ D
C1X
kD�1

e�ik�f .x1 C k; y/; x1 2 R; y 2 Y; � 2 Œ0; 2�/:
(5.8)

With reference to [17, Sect. XIII.16], UY extends to a unitary operator, still denoted
by UY , from L2.R � Y / onto the Hilbert space

Z ˚

.0;2�/

L2..0; 1/ � Y /d�=.2�/ D L2..0; 2�/d�=.2�/IL2..0; 1/ � Y //:
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Let Hs
];loc.R � Y /, s D 1; 2, denote the subspace of distributions f in R �

Y such that fjI�Y 2 Hs.I � Y / for any bounded open subset I � R. Then a
function f 2 Hs

];loc.R � Y / is said to be 1-periodic with respect to x1 if it satisfies
f .x1 C k; y/ D f .x1; y/ for a.e. .x1; y/ 2 .0; 1/ � Y and all k 2 Z. The subspace
of functions of Hs

];loc.R � Y /, that are 1-periodic with respect to x1, is denoted
by Hs

];per.R � Y /. Such a function being obviously determined by its values on
.0; 1/ � Y , we put Hs

];per..0; 1/ � Y / D fuj.0;1/�Y ; u 2 Hs
];per..0; 1/ � Y /g. Since

LfY;� .x1 C 1; y/ D ei� LfY;� .x1; y/ for a.e. .x1; y/ 2 R � Y and all � 2 Œ0; 2�/, by
(5.8), we next setHs

];� ..0; 1/�Y / D fei�x1u; u 2 Hs
];per..0; 1/�Y /g and then derive

from [5, Chap. II, Sect. 1, Définition 1] that

UY H
s.R � Y / D

Z ˚

.0;2�/

Hs
];� ..0; 1/ � Y /d�

2�
; s D 1; 2:

For the sake of simplicity we will systematically omit the subscript Y in UY and
LfY;� in the remaining part of this text.

5.2.2 FBG Decomposition

Let � 0
0 denote the linear bounded operator fromH2.0; T IH2.˝ 0// into L2..0; T /�

.0; 1/IH3=2.@!// � L2.˝ 0/ such that � 0
0w D 


wj˙ 0

�

;w.0; �/� for w 2 C1
0 ..0; T / �

.0; 1/IC1.!//. Thus, putting X 0
0;� D � 0

0.H
2.0; T IH2

];� .˝
0/// for all � 2 Œ0; 2�/,

it is easy to check that X0 D U X0 D R ˚
.0;2�/

X 0
0;� d�=.2�/ and

U �0U
�1 D

Z ˚

.0;2�/

� 0
0d�=.2�/;

where the notation � 0
0 stands for the operator � 0

0 restricted to H2.0; T IH2
];� .˝

0//.
The last identity means that .U �0f /� D � 0

0.U f /� for all f 2 H2.0; T IH2.˝//

and a. e. � 2 .0; 2�/.
Further, we have Z D U Z D R ˚

.0;2�/
Z 0
� d�=.2�/, where

Z 0
� D L2.0; T IH2

];� .˝
0//\H1.0; T IL2.˝ 0//:

Thus, applying the transform U to (5.1), we immediately get the:

Proposition 5.2 Let V 2 W 2;1.0; T IW 2;1.˝// fulfill (5.2) and let .g; u0/ 2 X0.
Then u is the solution s.g; u0/ 2 Z to (5.1) defined in Proposition 5.1 if and only if
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U u 2 Z and each Lu� D .U u/� 2 Z� , for � 2 Œ0; 2�/, is solution to the following
IBVP

8<
:
.�i@t ��C V /v D 0 in Q0 D .0; T / �˝ 0;
v.0; �/ D Lu0;� in ˝ 0;
v D Lg� on˙ 0�;

(5.9)

where Lg� (resp. Lu0;� ) stands for .U g/� (resp. .U u0/� ), that is

. Lg� ; Lu0;� / D .U .g; u0//� :

The existence and uniqueness of solutions to (5.9) for � 2 Œ0; 2�/ is guaranteed by
[4, Lemma 2.1]:

Lemma 5.1 Assume that V obeys the conditions of Proposition 5.2 and satisfies

kV kW 2.0;T IW 2;1.˝0// � M;

for someM > 0. Then for every . Lg� ; Lu0;� / 2 X 0
0;� , � 2 Œ0; 2�/, there exists a unique

solution s� . Lg� ; Lu0;� / 2 Z 0
� to (5.9), such that the estimate

ks� . Lg� ; Lu0;� /kZ 0

�
� Ck. Lg� ; Lu0;� /kX 0

0;�
; (5.10)

holds for some constant C > 0 depending only on T , ! andM .

5.2.3 Boundary Operators

In view of Lemma 5.1 the linear operator s� , � 2 Œ0; 2�/, is bounded from X 0
0;�

into Z 0
� , with

ks�k D ks�kB.X 0

0;� ;Z
0

� /
� C; � 2 Œ0; 2�/: (5.11)

Let � 0
1 be the linear bounded operator from

L2..0; T / � .0; 1/IH2.˝ 0// \H1.0; T IL2.˝ 0//

�! X 0
1 DL2..0; T / � .0; 1/ � @!/ � L2.˝ 0/;

satisfying � 0
1w D 


@�wj˙ 0

�

;w.T; �/� for all w 2 C1
0 ..0; T /�.0; 1/IC1.!//, in such

a way that X1 D U X1 D R ˚
.0;2�/

X 0
1 d�=.2�/ and U �1U �1 D R ˚

.0;2�/
� 0
1d�=.2�/.

Then we have k� 0
1s� . Lg� ; Lu0;� /kX 0

1
� Cks� . Lg� ; Lu0;� /kZ 0

�
� Ck. Lg� ; Lu0;� /kX 0

0;�
for
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every � 2 Œ0; 2�/, from (5.10), so the reduced boundary operator�V;� D � 0
1 ı s� 2

B.X 0
0;� ;X

0
1 /. Further, it follows from Proposition 5.2 and Lemma 5.1 that

U �VU
�1 D

Z ˚

.0;2�/

�V;� d�=.2�/;

hence [5, Chap. II, Sect. 2, Proposition 2] yields:

k�V kB.X0;X1/ D sup
�2.0;2�/

k�V;�kB.X 0

0;� ;X
0

1 /
: (5.12)

5.3 Optics Geometric Solutions

For each � 2 Œ0; 2�/ we aim to build solutions to the system

8<
:
.�i@t ��C V /v D 0 in Q0;
u.�; 1; �/ D ei�u.�; 0; �/ on .0; T / � !;
@x1u.�; 1; �/ D ei�@x1u.�; 0; �/ on .0; T / � !:

(5.13)

Specifically, for r > 0 fixed, we seek solutions uk;� , k 2 Z, to (5.13) of the form

uk;� .t; x/ D
�
ei�x1 C wk;� .t; x/

�
e�i..���C4�2k2/tC2�kx1Cx0��/; .t; x/ D .t; x1; x

0/ 2 Q0;
(5.14)

where wk;� 2 H2.0; T IH2
];� .˝

0// obeys

kwk;�kH2.0;T IH2.˝0// � c

r
.1C jkj/ ; (5.15)

for some constant c > 0 independent of r , k and � , and � 2 C
2 n R

2 is such that

=� � <� D 0: (5.16)

The main issue here is the quasi-periodic condition imposed on wk;� (through the
requirement that wk;� .t; �/ is in H2

];� .˝
0/ for a.e. t 2 .0; T /). This problem may

be overcomed upon adapting the framework introduced in [11] for the definition of
OGS in periodic media, giving (see [4, Lemma 3.2]):

Lemma 5.2 Let � 2 C
2 n R

2 obey (5.16) and let f 2 H2.0; T IH2.˝ 0//.
Then for all � 2 Œ0; 2�/ and all k 2 Z, there exists Ek;� 2 B.H2.0; T I
H2.˝ 0//IH2.0; T IH2

];� .˝
0/// such that ' D Ek;�f is solution to the equation

.�i@t ��C 4i�k@x1 C 2i� � rx0/' D f in Q0: (5.17)
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Moreover we have

kEk;�kB.H2.0;T IH2.˝0/// � c0

j=�j ; (5.18)

for some constant c0 > 0, which is independent of �, k and � .

The occurrence of (5.17) in Lemma 5.2 follows from a direct calculation showing
that uk;� fulfills (5.13) if and only if wk;� is solution to

8<
:
.�i@t ��C 4i�k@x1 C 2i� � rx0 C V /w C ei�x1Wk;� D 0 in Q0;
w.�; 1; �/ D ei�w.�; 0; �/ on .0; T / � !;
@x1w.�; 1; �/ D ei�@x1w.�; 0; �/ on .0; T / � !;

(5.19)

with

Wk;� D V C �2 � 4�k�:

Taking r D j=�j so large (relative to c0 and kV kW 2;1.0;T IW 2;1.˝//) that

Gk;� W H2.0; T IH2
];� .˝

0// �! H2.0; T IH2
];� .˝

0//
q 7�! �Ek;�



Vq C ei�x1Wk;�

�

is a contraction mapping, we may apply Lemma 5.2 with fD�.V wk;� Cei�x1Wk;� /

2 H2.0; T IH2.˝ 0//. In light of (5.17), wk;� D Ek;�f is thus a solution to (5.19)
and fulfills (5.15). As a consequence we have (see [4, Proposition 3.1]) obtained:

Proposition 5.3 We assume that V 2 W 2;1.0; T IW 2;1.˝// satisfies (5.2) and

kV kW 2;1.0;T IW 2;1.˝// � M

for some M � 0. Pick r � r0 D c0.1CM/, where c0 is the same as in (5.18), and
let � 2 C

2 nR2 fulfill (5.16) and j=�j D r . Then for all � 2 Œ0; 2�/ and k 2 Z, there
exists wk;� 2 H2.0; T IH2

];� .˝
0// obeying (5.15) such that the function uk;� defined

by (5.14) is a H2.0; T IH2
];� .˝

0//-solution to (5.13).

5.4 Stability Estimate

This section contains the proof of Theorem 5.1.
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5.4.1 Auxiliary Result

Fix r > 0 and let  D .�; `/ 2 R
2 � R with � ¤ 0R2 . Then there exists j D

j .r; �; `/ D .�j ; �j / 2 C
2 � R, j D 1; 2, such that we have

j=�j j D r; �j D �j � �j ; 1 � 2 D ; <�j � =�j D 0; (5.20)

and

j�j j � 1

2

�
j�j C j`j

j�j
�

C r; j�j j � j�j2 C `2

j�j2 C 2r2: (5.21)

This can be checked by direct calculation upon setting

�j D 1

2

�
.�1/jC1 C `

j�j2
�
�C .�1/j i�?

r ;

�j D 1

4

�
.�1/jC1 C `

j�j2
�2

j�j2 � r2; j D 1; 2;

where �? is any non zero R
2-vector, orthogonal to � and �?

r D r�?=j�?j.
This, combined with Proposition 5.3, immediately yields the:

Lemma 5.3 Assume that Vj 2 W 2;1.0; T IW 2;1.˝//, j D 1; 2, fulfill (5.2) and
fix r � r0 D c0.1 C M/ > 0, where M � maxjD1;2 kVj kW 2;1.0;T IW 2;1.˝// and
c0 is the same as in (5.18). Pick  D .�; `/ 2 R

2 � R with � ¤ 0R2 , and let
j D .�j ; �j / 2 C

2 � R, j D 1; 2, obey (5.20)–(5.21). Then, there exists a constant
C > 0 depending only on T , j!j andM , such that for every k 2 Z and � 2 Œ0; 2�/,
the function uj;k;� , j D 1; 2, defined in Proposition 5.3 by substituting �j for �,
satisfies the estimate

kuj;k;�kH2.0;T IH2.˝0// � C.1C q.; k//
13
2
.1C r2/3

r
ej!jr ; k 2 Z; � 2 Œ0; 2�/; r � r0;

with

q.; k/ D q.�; `; k/ D j�j2 C j`j
j�j C k2:
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5.4.2 Sketch of the Proof

Let  D .�; `/, r and j D .�j ; �j /, j D 1; 2, be as in Lemma 5.3, fix k 2 Z, and
put

.k1; k2/ D
�
.k=2;�k=2/ if k is even;
..k C 1/=2;�.k � 1/=2/ if k is odd:

Further we pick � 2 Œ0; 2�/ and note uj , j D 1; 2, the OGS uj;kj ;� ,
defined by Lemma 5.3. In light of Lemma 5.1 there is a unique solution
v 2 L2.0; T IH2

];� .˝
0// \H1.0; T IL2.˝ 0// to the IBVP

8<
:
.�i@t C�C V2/v D 0 in Q0
v.0; �/ D u1.0; �/ in ˝ 0;
v D u1 on ˙ 0�:

(5.22)

Hence u D v � u1 is solution to the following system

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

.�i@t C�C V2/u D .V1 � V2/u1 in Q0
u.0; �/ D 0 in ˝ 0;
u D 0 on ˙ 0�;
u.�; 1; �/ D ei�u.�; 0; �/ on .0; T / � !
@x1u.�; 1; �/ D ei�@x1u.�; 0; �/ on .0; T / � !;

(5.23)

so we get

Z
Q0

.V1 � V2/u1u2 dtdx D
Z
˙ 0

�

@�uu2 dtd	.x/ � i

Z
˝0

u.T; �/u2.T; �/ dx; (5.24)

by integrating by parts and taking into account the quasi-periodic boundary
conditions satisfied by u and u2. Notice from (5.22)–(5.23) that @�u D�
�1
V2;�

��1
V1;�

�
.g1/ and u.T; :/ D

�
�2
V2;�

��2
V1;�

�
.g1/, where

g1 D 

u1j˙ 0

�

; u1.0; :/
� 2 X 0

0;� :

Thus, putting

ˇk D
�
0 if k is even or k 2 R n Z

4�2 if k is odd;

for all k 2 Z, and

% D %k;� D e�i�x1w1 C ei�x1w2 C w1w2; (5.25)
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we deduce from (5.14), (5.20) and (5.24) that

Z
Q0

.V1 � V2/e�i ..`Cˇkk/tC2�kx1Cx0��/dtdx D AC B C C; (5.26)

with

A D �
Z
Q0

.V2 � V1/%.t; x/e
�i ..`Cˇkk/tC2�kx1Cx0��/dtdx; (5.27)

B D
Z
˙ 0

�



�1
V2;�

��1
V1;�

�
.g1/u2 dtd	.x/; (5.28)

C D �i
Z
˝0



�2
V2;�

��2
V1;�

�
.g1/u2.T; �/ dx: (5.29)

Upon setting

V.t; x/ D
�
.V2 � V1/.t; x/ if .t; x/ 2 Q;

0 if .t; x/ 2 R
4 nQ; and �k.x1/ D ei2�kx1 ; x1 2 R; k 2 Z;

we may rewrite (5.26) as

Z
Q0

.V1 � V2/e�i ..`Cˇkk/tC2�kx1Cx0��/ dtdx D
D OV .`C ˇkk; �/; �k

E
L2.0;1/

; (5.30)

where OV stands for the partial Fourier transform of V with respect to t 2 R and
x0 2 R

2. Further, due to (5.15) and (5.25), we have k%kL1.Q0/ � c0.1 C jkj/2=r2,
where the constant c0 > 0 depends only on T , j!j andM . Since kV1�V2k1 � 2M ,
it follows from this and (5.27) (upon substituting c0 for 4Mc0) in the above estimate
that

jAj � kV1 � V2k1k%kL1.Q0/ � c0 .1C q.; k//

r2
; (5.31)

where q is defined in Lemma 5.3. Moreover, we have

jBj C jC j � C2k�1
V2;�

��1
V1;�

kB.X 0

0;� ;X
0

1 /
.1C q.; k//13

.1C r2/6

r2
e2j!jr ; r � r0;

(5.32)

from (5.28)–(5.29) and Lemma 5.3. Now, putting (5.26) and (5.30)–(5.32) together,
we end up getting that

ˇ̌
ˇ̌D OV .`C ˇkk; �/; �k

E
L2.0;1/

ˇ̌
ˇ̌ � c00

.1C q.; k//

r2

�
r C 
.1C q.; k//12.1C r2/6e2j!jr

�
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for r � r0, where 
 D k�V2;� � �V1;�kB.X 0

0;� ;X
0

1 /
and the constant c00 > 0 is

independent of k, r and  D .�; `/. From this and the Parseval–Plancherel theorem,
entailing

kV2 � V1k2L2.Q0/
D kV k2

L2.R�.0;1/�R2/
D
X
k2Z

Z
R3

jh OV .`; �/; �kiL2.0;1/j2d;

then follows the:

Theorem 5.2 Let M and Vj , j D 1; 2, be the same as in Theorem 5.1. Then we
may find two constants C > 0 and 
� > 0, depending on T , ! and M , such that
we have

kV2 � V1kL2.Q0/ � C

 
ln

 
1

k�V2;� ��V1;�kB.X 0

0 ;X
0

1 /

!!�1=5
;

for any � 2 Œ0; 2�/, provided 0 < k�V2;� ��V1;�kB.X 0

0;� ;X
0

1 //
< 
�.

Finally, putting (5.12) together with Theorem 5.2, we obtain Theorem 5.1.
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Chapter 6
A General Approach to Identification Problems

Angelo Favini, Alfredo Lorenzi, and Hiroki Tanabe

To the memory of Alfredo Lorenzi

Abstract Two approaches to a general form of identification problems are
described. Some applications to particular inverse problems are also given.

6.1 Introduction

At the beginning of this paper we want to remember Prof. Alfredo Lorenzi, who
passed away on November 9th, 2013. He will be greatly missed, both as a dear
friend and a brilliant researcher. His enthusiasm, integrity and passion will keep
inspiring us throughout our lives.

Very recently identification problems related to equations in a Banach space X
of the type

8̂
ˆ̂̂<
ˆ̂̂̂
:

dy

dt
D y0.t/ D Ay.t/C

nX
jD1

fj .t/zj C h.t/; t 2 Œ0; r�;

y.0/ D y0;

˚j Œy.t/� D gj .t/; j D 1; : : : ; n

(6.1)
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in the unknown functions .y; f1; : : : ; fn/ 2 C.Œ0; r�ID.A// � Qn
jD1 C.Œ0; r�IC/,

h 2 C.Œ0; r�IX/ have been studied under the assumptions that the closed linear
operator A in X satisfies the weak parabolic resolvent estimate

k.� � A/�1kL .X/ � C.1C j�j/�ˇ (6.2)

for every complex number � in the region

˙˛ WD f� 2 C W Re� � �C.1C jIm�j/˛g;

where C > 0, 0 < ˇ � ˛ � 1. Moreover, zj 2 X , y0 2 D.A/, ˚j 2 X�,
gj 2 C.Œ0; r�IC/; j D 1,. . . ,n (see [4]). In the paper in preparation, from Favini
et al. [6], the authors consider as A a multivalued linear operators and the equation
in (6.1) then reads as the inclusion

y0.t/ �
nX

jD1
fj .t/zj � h.t/ 2 Ay.t/: (6.3)

The main aim in this paper is to present a new approach taking as particular cases
some inverse problems discussed in literature. We also note that the approach given
in [6] inspired the second approach that we propose. Precisely, in a first step, we will
consider the problem to find a pair of functions u W Œ0; r� ! X , F W Œ0; r� ! F ,
X;F two Banach spaces, such that

8̂
<̂
ˆ̂:

u0.t/ D Au.t/CM.F.t/; Z/C g.t/; t 2 Œ0; r�;
u.0/ D u0;

˚Œu.t/� D H.t/; t 2 Œ0; r�;

whereM;Z; g; u0; ˚;H will be specified in a moment.
The approach is basically consisting in reducing this inverse problem to a direct

problem, following previous papers [4, 5] and [2]. See also [1] and [3].
Furthermore, the same general problem is faced in a direct way. In this sense it is

more classic, but it applies to the multivalued case

u0.t/ �M.F.t/; Z/ � g.t/ 2 Au.t/

allowing to handle very strong degeneracy in the equation.

6.2 A First Approach

Let X;F ;Z be three complex Banach spaces with norms k � k; k � kF ; k � kZ ,
respectively.
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We make the following assumptions:

(H1) A W D.A/ � X ! X is a linear closed operator whose resolvent

�.A/ contains the set ˙˛ WD f� 2 C W Re� � �C0.1C jIm�j/˛g; (6.4)

where C0; ˛ 2 .0; 1�;

(H2) k.� �A/�1kL .X/ � C0.1C j�j/�ˇ; (6.5)

where C0; ˇ 2 .0; ˛� and � 2 ˙˛;

(H3) M 2 B.F � Z IX/;
(6.6)

where B.F � Z IX/ denotes the Banach space of all bounded bilinear operators
from F � Z into X ;

(H4) ˚ 2 L .X IF /I (6.7)

(H5) for each fixed Z 2 Z and for all H 2 F ; the equation

˚ŒM.F;Z/� D H

is uniquely solvable in F and its solution can be represented by F D �ŒH;Z�;

where the (nonlinear) operator � W D.�/ � F � Z ! F is linear continuous as
a function of H i.e.

k�ŒH;Z�kF � C1.Z/kHkF for all H 2 F I

(H6) there exist Banach spaces X�
A and Z � embedded in X and Z , respectively,

with � > 1 � ˇ, such that

kM.F;Z/kX�A � C.�/kF kF kZkZ � :

X�
A is in fact the space

X�
A D fx 2 X I jxjX�A DW sup

t�t0
t �kA.t � A/�1xkX < 1g;

where t0 > 0 and 0 < � < 1. The norm of X�
A is defined by

kxkX�A D jxjX�A C kxkX :
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It is easy to show that D.A/ � X�
A for � � ˇ. The set D.A/ makes a Banach space

with norm k � kD.A/ D kA � kX . The interpolation space .X;D.A//�;1; 0 < � < 1,
is defined by

.X;D.A//�;1 D ˚
u D u0.t/C u1.t/ 8t 2 .0;1/I

sup
0<t<1

kt �u0.t/kX < 1; sup
0<t<1

kt ��1u1.t/kD.A/ < 1�
;

kuk.X;D.A//�;1 D inf
uDu0.t/Cu1.t/

˚
sup

0<t<1
kt �u0.t/kX C sup

0<t<1
kt ��1u1.t/kD.A/

�
:

The inclusion relation X�
A � .X;D.A//�;1 can be shown by decomposing u 2 X�

A

as

u D u0.t/C u1.t/; u0.t/ D �A.t �A/�1u; u1.t/ D t.t � A/�1u:

We then consider the following identification problem: find a pair of functions
u W Œ0; r� ! X and F W Œ0; r� ! F such that

8̂
<̂
ˆ̂:

u0.t/ D Au.t/CM.F.t/; Z/C g.t/; t 2 Œ0; r�;
u.0/ D u0;

˚Œu.t/� D H.t/; t 2 Œ0; r�;
(6.8)

where u0 2 D.A/, Z 2 Z , g 2 C.Œ0; r�IX/; H 2 C1.Œ0; r�IF /.
Apply operator ˚ to both sides of the differential equation in (6.8). Under

assumption (H4) we get the equation

H 0.t/ �˚ŒAu.t/� D ˚ŒM.F.t/; Z/�C ˚Œg.t/�; t 2 Œ0; r�: (6.9)

From assumptions (H3) and (H5) we deduce

F.t/ D �ŒH 0.t/; Z� � �Œ˚Œg.t/�; Z� � �Œ˚ŒAu.t/�; Z�; t 2 Œ0; r�: (6.10)

Inserting (6.10) into the differential equation of (6.8) we get that the identification
problem (6.8) is equivalent to the unusual Cauchy problem

8̂
<̂
ˆ̂:

u0.t/ � Au.t/CM.�Œ˚ŒAu.t/�; Z�;Z/

D M.�ŒH 0.t/; Z�;Z/ �M.�Œ˚Œg.t/�; Z�;Z/ C g.t/; t 2 Œ0; r�;
u.0/ D u0:

(6.11)

Introduce now the linear operator B defined by

D.B/ D D.A/; Bu WD �M.�Œ˚ŒAu�; Z�;Z/; u 2 D.B/: (6.12)
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From assumptions (H5) and (H6) we deduce the bounds

kBukX�A � C.�/k�Œ˚ŒAu�; Z�kF kZkZ �

� C.�/C1.Z/k˚ŒAu�kF kZkZ �

� C.�/C1.Z/k˚kL .X IF /kAukXkZkZ �

� C.�/C1.Z/k˚kL .X IF /kZkZ � kukD.A/:

(6.13)

We recall the following lemma, generalizing a well known result, see Lunardi
[7]. For the proof we refer the readers to Theorem 1 of [5].

Lemma 6.1 Let A satisfy (H1), (H2) and suppose B 2 L .D.A/;X�
A/, where

1 � ˇ < � < 1. Then A C B generates an infinitely differentiable semigroup in
X , too, and

k.� �A � B/�1kL .X/ � C.1C j�j/�ˇ

for all � 2 ˙˛ , j�j large enough.

Therefore, we can apply to (6.11) the uniqueness and existence results in [2, 4]
and [6]. See, in particular, the following proposition due to [6].

Proposition 6.1 Let A be a possibly multivalued linear operator satisfying (H1)
and (H2) with .˛; ˇ/ satisfying 2˛ C ˇ > 2. Suppose that 2˛ C ˇ C � > 3,
u0 2 D.A/, Au0\.X;D.A//�;1 ¤ ¿, f 2 C.Œ0; r�IX/\B.Œ0; r�I .X;D.A//�;1/.
Then the problem

u0.t/ � f .t/ 2 Au.t/; t 2 Œ0; r�;

u.0/ D u0;

admits a unique solution u such that u 2 C1.Œ0; r�IX/,

u0 � f 2 C 2˛Cˇ�3C�
˛ .Œ0; r�IX/ \ B.Œ0; r�IX

2˛Cˇ�3C�
˛

A /:

Remark 6.1 Since 3 � 2˛ � ˇ < 1 under our assumption there exists � 2 .0; 1/

such that 2˛ C ˇ C � > 3.

We need another lemma as follows.

Lemma 6.2 Let A;B be two operators satisfying assumptions of Lemma 6.1. Then
the following inclusions hold:

(i) X�C1�ˇ
ACB ,! X�

A, 0 < � < ˇ,

(ii) X�
A ,! X

�Cˇ�1
ACB , 1 � ˇ < � < 1,

(iii) X�C1�ˇ
A ,! X�

ACB , 0 < � < ˇ,

provided that 0 2 �.AC B/.



112 A. Favini et al.

Proof The first assertion follows from

A.t � A/�1 � .AC B/.t � A � B/�1
D A


.t �A/�1 � .t � A � B/�1� � B.t �A � B/�1

D �A.t � A/�1B.t �A � B/�1 � B.t � A� B/�1

D �A.t �A/�1 C I
�
B.t �A � B/�1

D �t.t � A/�1B.ACB/�1.AC B/.t �A � B/�1:

By replacingA andB byACB and �B respectively the second and third assertions
are obtained. ut
We can thus establish the following theorem (see [4]):

Theorem 6.1 Suppose that A satisfies (H1) and (H2) with .˛; ˇ/ such that ˛ C
ˇ C ˛ˇ > 2 and that M and ˚ satisfy (H3)–(H6). Let � > 3 � ˛ � ˇ � ˛ˇ,
u0 2 D.A/, Au0 2 .X;D.A//�;1, Z 2 Z � , g 2 C.Œ0; r�IX/ \ B.Œ0; r�IX�

A/,
H 2 C1.Œ0; r�IF /, ˚.u0/ D H.0/. Then there exists a unique solution .u; F / to
problem (6.8) such that

u 2 C1.Œ0; r�IX/; u0 2 B.Œ0; r�IX
˛CˇC˛ˇ�3C�

˛

A /; F 2 C.Œ0; r�IF /;

Au 2 C 2˛Cˇ��C3
˛ .Œ0; r�IX/ \ B.Œ0; r�IX

˛CˇC˛ˇ�3C�
˛

A /:

Notice that if ˛ D ˇ D 1 we obtain an optimal regularity result.

Remark 6.2 The assumption ˛ C ˇ C ˛ˇ > 2, which is stronger than 2˛ C ˇ > 2,
implies the existence of � 2 .0; 1/ satisfying � > 3 � ˛ � ˇ � ˛ˇ.

Proof Notice that our operatorACB is possibly non invertible. Thus we must apply
a change of variable u D ektv, where k is large enough so that A C B � k has a
bounded inverse. Then problem (6.11) reads

(
v0.t/ � .AC B � k/v.t/ D e�ktŒM.�ŒH 0.t/;Z�; Z/ �M.�Œ˚Œg.t/�;Z�; Z/C g.t/�

v.0/ D u0:

Denote by G.t/ the right hand side of the above equation. Noting that the
assumption � > 3 � ˛ � ˇ � ˛ˇ of the theorem implies 2˛ C ˇ C � > 3 we
apply Proposition 6.1 to this new problem

(
v0.t/ D .AC B � k/v.t/CG.t/; 0 � t � r;

v.0/ D u0:
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In view of Proposition 6.1 and Lemma 6.2 we deduce that if 2˛ C ˇ > 2,
2˛ C ˇ C � > 3, G 2 C.Œ0; r�IX/ \ B.Œ0; r�I .X;D.A//�;1/ and u0 2 D.A/,
Au0 2 .X;D.A//�;1, which implies .A C B/u0 2 .X;D.A//�;1 since Bu0 2
X�
A � .X;D.A//�;1, then such a problem admits a unique solution v such that

v 2 C1.Œ0; r�IX/,

v0 �G D .AC B � k/v 2 C 2˛Cˇ�3C�
˛ .Œ0; r�IX/ \ B.Œ0; r�; X

2˛Cˇ�3C�
˛

ACB�k /

	 C
2˛Cˇ�3C�

˛ .Œ0; r�IX/ \ B.Œ0; r�; X
˛CˇC˛ˇ�3C�

˛

A /
(6.14)

provided that � > 3�˛�ˇ�˛ˇ. It is easy to see that the hypotheses of the theorem
imply

G 2 C.Œ0; r�IX/ \ B.Œ0; r�IX�
A/: (6.15)

Since

� � .˛ C ˇ C ˛ˇ � 3C �/=˛ D Œ.1 � ˛/.1 � �/C 2 � ˇ � ˛ˇ�=˛ � 0;

one has

X�
A � X

˛CˇC˛ˇ�3C�
˛

A : (6.16)

Hence from (6.15) it follows that

G 2 C.Œ0; r�IX/\ B.Œ0; r�IX
˛CˇC˛ˇ�3C�

˛

A /:

This and (6.14) imply

v0 2 C.Œ0; r�IX/ \ B.Œ0; r�IX
˛CˇC˛ˇ�3C�

˛

A /: (6.17)

In view of (6.14) one has

Av D A.AC B � k/�1.AC B � k/v 2 C 2˛Cˇ�3C�
˛ .Œ0; r�IX/: (6.18)

Since .˛CˇC˛ˇ�3C�/=˛ < ˇ, one observesD.A/ � X
˛CˇC˛ˇ�3C�

˛

A . Therefore
it follows that

v 2 C 2˛Cˇ�3C�
˛ .Œ0; r�ID.A// � C.Œ0; r�IX

˛CˇC˛ˇ�3C�
˛

A / � B.Œ0; r�IX
˛CˇC˛ˇ�3C�

˛

A /:

(6.19)



114 A. Favini et al.

With the aid of (6.13) one observes

kBv.t/kX�A � C.�/C1.Z/k˚kL .X IF /kZkZ � kv.t/kD.A/:

This inequality, (6.18) and (6.16) yield

Bv 2 B.Œ0; r�IX�
A/ � B.Œ0; r�IX

˛CˇC˛ˇ�3C�
˛

A /: (6.20)

From (6.19), (6.20) and (6.14) it follows that

Av 2 B.Œ0; r�IX
˛CˇC˛ˇ�3C�

˛

A /: (6.21)

Returning to the original notation u D ektv and defining the function F by (6.10)
we complete the proof of the theorem. ut

6.3 Application 1

Let A be a linear operator with domainD.A/ on a Banach spaceX and satisfy (H1)
and (H2). Let F D R

N or CN , Z D XN D X � : : :�X ,N times,X�
A D fx 2 X W

supt>0.1Ct/�kA.t�A/�1xk < C1g;Z � D .X�
A/
N . LetF D .f1; : : : ; fN / 2 R

N ,
Z D .z1; : : : ; zN / 2 Z � , M.F;Z/ D PN

jD1 fj zj , ˚ D .˚1; : : : ; ˚N / 2 .X�/N
and let .˚kŒzj �/Nj;kD1 be an invertible matrix.

Denote by Q�.Z/ D . Q�j;k.Z//Nj;kD1 its inverse.

Observe that for all fixed Z 2 Z � D .X�
A/
N and H 2 R

N , equation
˚ŒM.F;Z/� D H admits the unique solution F D Q�.Z/H WD �ŒH;Z�.
Therefore,

M.�Œ˚ŒAu�; Z�;Z/ D
NX

j;kD1
Q�j;k.Z/˚kŒAu�zj

and

kM.F;Z/kX�A �
NX
jD1

jfj jkzj kX�A � kF kRN
0
@ NX
jD1

kzj k2
X�A

1
A

1
2

D kF kF kZkZ � ; .F;Z/ 2 R
N � Z � :

Moreover, the closed linear operator

QAu D Au �
NX

j;kD1
. Q�.Z//j;k˚kŒAu�zj ; u 2 D. QA/ D D.A/
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generates a C1� semigroup if ˇ 2 .0; ˛/ and � 2 .1 � ˇ; 1/ (respectively, an
analytic semigroup, if ˇ D 1 and � 2 .0; 1/.)

Then, it is easy to apply the theorem above.

6.4 Application 2

Let A be a linear operator with domainD.A/ on a Banach spaceX and satisfy (H1)
and (H2). Let F D l2.R/, Z D l2.X/, Z � D l2.X�

A/, F D ffj g1
jD1 2 l2.R/,

Z D fzj g1
jD1 2 Z � , M.F;Z/ D P1

jD1 fj zj . Let ˚ D f˚j g1
jD1 2 l2.X�/

such that
P1

j;kD1 j˚kŒzj �j2 < 1. Therefore, equation ˚ŒM.F;Z/� D H , with
H 2 l2.R/, means

˚

0
@ 1X
jD1

fj zj

1
A D

0
@ 1X
jD1

fj˚kŒzj �

1
A
k2N

D H:

Suppose that the infinite matrix


˚kŒzj �

�1
j;kD1 defines an invertible operator in

L .l2.R// the inverse of which is denoted by Q�.Z/, so that F D Q�.Z/H D
�ŒH;Z�. One has

M.�Œ˚ŒAu�; Z�;Z/ D
1X
jD1


 Q�.Z/˚ŒAu�
�
j

zj D
1X

j;kD1
Q�j;k.Z/˚kŒAu�zj :

Moreover,

kM.F;Z/kX�A �
1X
jD1

jfj jkzj kX�A � kF kl2.R/
0
@ 1X
jD1

kzj k2
X�A

1
A

1
2

D kF kl2.R/kZkZ � ; .F;Z/ 2 l2.R/ � Z � :

Therefore, all assumptions (H1)–(H6) are verified. Hence, the identification problem
above, i.e.

8̂
<̂
ˆ̂:

u0.t/ D Au.t/CP1
jD1 fj .t/zj ; t 2 Œ0; r�;

u.0/ D u0;

˚kŒu.t/� D gk.t/; k D 1; 2; ::

admits a unique solution .u; ffj gj2N/.
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6.5 Application 3

Here the identification problem reads: find .N C1/n functions u1; : : : ; un W Œ0; r� !
X and fjk W Œ0; r� ! C; j D 1; ::; n, k D 1; : : : ; N such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

u0

j .t/C Aj uj .t/C Bj .u1.t/; : : : ; un.t//

D PN
kD1 fj;k.t/zk C gj .t/; t 2 Œ0; r�; j D 1; : : : ; n;

uj .0/ D u0j ; j D 1; : : : ; n;

˚kŒuj .t/� D gjk.t/; t 2 Œ0; r�; j D 1; : : : ; n; k D 1; : : : ; N;

where Aj is an operator satisfying (H1), (H2) and Bj is a continuous multilinear
form from D.A1/ � : : : � D.An/ into X�

Aj
with 1 � ˇ < � < 1, j D 1; : : : ; n,

zk 2 Tn
jD1 X�

Aj
, k D 1; : : : ; N , gj 2 C.Œ0; r�IX�

Aj
/, j D 1; : : : ; n, ˚k 2 X�, k D

1; : : : ; N . It is easy to verify that if the data are sufficiently smooth and .˚kŒzl �/
N
l;kD1

is an invertible matrix, then all our hypotheses hold and the previous results apply.

6.6 A Second Approach

In this section we want to solve the identification problem (6.8) in a more direct way.
This is the idea. First, notice that here A is possibly multivalued and the problem is
expressed as

8̂
<̂
ˆ̂:
y0.t/ � g.t/ �M.F.t/; Z/ 2 Ay.t/; t 2 Œ0; r�;
y.0/ D y0 2 D.A/;
˚Œy.t/� D H.t/; t 2 Œ0; r�:

(6.22)

Theorem 6.2 Suppose that A is a possibly multivalued linear operator satisfying
(H1) and (H2) with .˛; ˇ/ satisfying 2˛ C ˇ > 2 and that M and ˚ satisfy (H3)-
(H6). Suppose also that 2˛ C ˇ C � > 3, Z 2 Z � , y0 2 D.A/, Ay0 \ X�

A ¤
¿; g 2 C.Œ0; r�IX/ \ B.Œ0; r�IX�

A/, H 2 C1.Œ0; r�IF /, ˚.y0/ D H.0/. Then,
problem (6.22) admits a unique solution .y; F / such that y 2 C1.Œ0; r�IX/, F 2
C.Œ0; r�IF / and

y0 �M.F.�/; Z/� g 2 C 2˛Cˇ�3C�
˛ .Œ0; r�IX/ \ B.Œ0; r�IX

2˛Cˇ�3C�
˛

A /:

Clearly, such a general result improves Theorem 6.1.
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Proof Necessarily a solution .y; F / to problem (6.22) satisfies

y.t/ D etAy0 C
Z t

0

e.t�s/AM.F.s/;Z/ds C
Z t

0

e.t�s/Ag.s/ds;

˚Œy.t/� D H.t/:

This yields

H.t/ D ˚ŒetAy0�C ˚
h Z t

0

e.t�s/AM.F.s/;Z/ds
i

C ˚
h Z t

0

e.t�s/Ag.s/ds
i
:

(6.23)

It is shown in [6] that

if ˛ C ˇ C � > 2; then lim
t!0

etA� ! � in X for � 2 .X;D.A//�;1; (6.24)

if g 2 C.Œ0; r�IX/\ B.Œ0; r�IX�
A/, the function t 7! R t

0
e.t�s/Ag.s/ds belongs

to C1.Œ0; r�IX/.
In case A is single valued these statements are established in [4].

If F 2C.Œ0; r�IF /, thenM.F.�/; Z/2C.Œ0; r�IX�
A/�C.Œ0; r�I .X;D.A//�;1/.

Therefore differentiating both members of (6.23), we get

H 0.t/ D ˚
h d

dt
etAy0

i
C˚ŒM.F.t/; Z/�C ˚

h Z t

0

@

@t
e.t�s/AM.F.s/;Z/ds

i

C d

dt
˚
h Z t

0

e.t�s/Ag.s/ds
i
:

From (H5) this reads to the following integral equation to be satisfied by F :

F.t/ D �ŒH 0.t/; Z� � �
h
˚
h d

dt
etAy0

i
; Z
i

� �
h
˚
h Z t

0

@

@t
e.t�s/AM.F.s/;Z/ds

i
; Z
i

� �
h d

dt
˚
h Z t

0

e.t�s/Ag.s/ds
i
; Z
i
:

(6.25)

By assumption there exists � 2 Ay0 \X�
A. Hence in view of (6.24)

d

dt
etAy0 D d

dt
etAA�1� D etA� ! � in X as t ! 0:

Therefore, using both (H4) and (H5) we observe that the known part of the integral
equation (6.25) belongs to C.Œ0; r�IF /.
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Let S be the operator in C.Œ0; r�IF / defined by

SF.t/ D ��
h
˚
h Z t

0

@

@t
e.t�s/AM.F.s/;Z/ds

i
; Z
i
:

Observe the estimate

kSF.t/kF � C1.Z/

����˚
h Z t

0

@

@t
e.t�s/AM.F.s/;Z/ds

i����
F

� C1.Z/

Z t

0

����˚
h @
@t
e.t�s/AM.F.s/;Z/

i����
F

ds

� C1.Z/k˚kL .X IF /

Z t

0

���� @@t e
.t�s/AM.F.s/;Z/

����
X

ds

� C1.Z/k˚kL .X IF /

Z t

0

���� @@t e
.t�s/A

����
L ..X;D.A//�;1;X/

� kM.F.s/;Z/k.X;D.A//�;1ds

� C 0.Z/
Z t

0

.t � s/
ˇ�2C�

˛ kM.F.s/;Z/kX�A ds

� C 0.Z/C.�/
Z t

0

.t � s/
ˇ�2C�

˛ kF.s/kF kZkZ � ds:

Therefore

kSF.t/kF � C 0.Z/C.�/kZkZ �

Z t

0

.t � s/�1C�0kF.s/kF ds;

where �0 WD ��.2�˛�ˇ/
˛

. Hence, repeating the arguments as in [4, Corollary 3.3],

kSnF.t/kF � ŒC 0.Z/C.�/kZkZ � �n
� .�0/

nt r�0

� .n�0/n�0
kF kC.Œ0;r�IF /I

since Œ� .n�0/�
1
n ! C1 as n ! C1, we conclude that the operator S has

spectral radius equals to 0. Consequently the integral equation (6.25) admits a
unique solution F 2 C.Œ0; r�IF /. It is evident that

M.F.�/; Z/ 2 C.Œ0; r�IX�
A/ � C.Œ0; r�IX/ \ B.Œ0; r�IX�

A/:

Therefore it only remains to apply Proposition 6.1 to conclude the proof of the
theorem. ut
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Example 6.1 Let L;M two linear operators. X;D.L/ 	 D.M/, 0 2 �.L/,
kM.�M � L/�1kL .X/ � C.1 C j�j/�ˇ for all number � 2 ˙˛ WD f� 2 C W
Re� � �C.1 C jIm�j/˛g: Then the operator A D LM�1 is a multivalued linear
operator withD.A/ D M.D.L// and satisfies the estimates described above. Then,
the identification problem: to find .y; f1.t/; : : : fn.t// such that

8̂
<̂
ˆ̂:

d
dt .My.y// D Ly.t/CPn

jD1 fj .t/zj ;
.My/.0/ D My0;

˚j ŒMy.t/� D gj .t/; 0 � t � r;

can be easily solved as in Application 1 if we takeA D LM�1; the trivial verification
is left to the reader.

Of course, we could extend all previous applications, too.
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Chapter 7
A Control Approach for an Identification
Problem Associated to a Strongly Degenerate
Parabolic System with Interior Degeneracy

Genni Fragnelli, Gabriela Marinoschi, Rosa Maria Mininni,
and Silvia Romanelli

In memory of Alfredo Lorenzi, distinguished and tireless
mathematician

Abstract We study an identification problem associated with a strongly degenerate
parabolic evolution equation of the type

yt � Ay D f .t; x/; .t; x/ 2 Q WD .0; T / � .0; L/

equipped with Dirichlet boundary conditions, where T > 0;L > 0; and f is in a
suitable L2 space. The operator A has the form A1y D .uyx/x , or A2y D uyxx, and
strong degeneracy means that the diffusion coefficient u 2 W 1;1.0; L/ satisfies
u.x/ > 0 except for an interior point of .0; L/ and 1

u 62 L1.0;L/. Since an
identification problem related to A1 was studied in Fragnelli et al. (J. Evol. Equ.,
2014), here we devote more attention to the identification problem of u when
A D A2. In this setting new weighted spaces of L2-type must be considered. Our
techniques are based on the minimization problem of a functional depending on u,
provided that some observations are known. Optimality conditions are also given.
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7.1 Introduction

The main aim of this paper is to study an identification problem of coefficients of a
parabolic evolution equation of the type

yt � Ay D f .t; x/; .t; x/ 2 Q WD .0; T / � .0; L/

where T > 0; L > 0, and f in a suitable L2 space, are given. Here A is a second
order differential operator of the type A1y D .uyx/x (divergence form), or A2y D
uyxx (nondivergence form) equipped with Dirichlet boundary conditions. Note that
in our setting the diffusion coefficient u vanishes at an interior point of the interval
.0; L/, according to the strongly degenerate case defined as follows.

Definition 7.1 The operators A1y D .uyx/x and A2y D uyxx are called strongly
degenerate if there exists x0 2 .0; L/ such that u.x0/ D 0; u > 0 on Œ0; L� n fx0g;
u 2 W 1;1.0; L/ and

1

u
… L1.0;L/:

A common example in the choice of u is given by taking u.x/ D jx � x0jk , with
0 < x0 < L and k � 1 fixed. The operators Ai , i D 1; 2, are assumed to have
suitable domains in Hilbert spaces of L2 type. In Sect. 7.2 the case of the operator
A1 is presented and a survey of results is given, based on [9]. This is a useful step
before to focus on the new results concerning the identification problem of u in the
case of the operatorA2 in nondivergence form treated in Sects. 7.3 and 7.4. In order
to face this identification problem which seems completely new, due to the presence
of an interior degeneracy of the coefficient u, we are forced to work in suitable
weighted spaces according to the generation results in [10]. Indeed, in [10] it was
proved that A2, with a suitable domain, is selfadjoint and nonpositive on L21

u
.0; L/.

Hence, inspired by the methods used in [9], we examine the minimization problem
of the functional

J.u/ D �1

2

�Z
Q

u.x/yu
x.t; x/ dxdt �Mf

�2
C �2

2

�Z L

0

yu.T; x/ dx �MT

�2

C �3

2

�Z
Q

yu.t; x/ dxdt �M

�2
: (7.1)

Note that we take into account the observation of the spatial mean MT of the state
at a final time T combined with the mean value M and the mean flux Mf overQ.

We point out that our results fit in a very recent literature devoted to identification
and controllability problems involving different types of degeneracy, e.g. [1–9],
motivated by very important applications to concrete models of the real life as
Budyko-Sellers models in climatology, Wright-Fisher and Fleming-Viot models in
genetics, Black-Merton-Scholes models in mathematical finance. In this framework
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Fig. 7.1

Fig. 7.2

it may be of interest for the applications to observe that the effects of the vanishing
diffusion coefficient upon the solution of the diffusion equation (concentration,
temperature, density) change according to the particular form of degeneracy of u.
This behavior is illustrated in the graphics realized with Comsol Multiphysics v.
3.5a (FLN License 1025226), e.g., for u.x/ D jx � x0jn ; x 2 Œ0; 1�; x0 D 0:5;

y0 D 1 and f D 0. Figure 7.1 represents the values of the solution y.t; x/ to the
parabolic problem (7.2) introduced in Sect. 7.2 along Ox; for t D 0I 0:5I 1I 1.5; 2;
for n D 2; and Fig. 7.2 shows the distribution of the values of the solution y.t; x/
along Ox at the same times for n D 4: We observe that if u has a zero of a higher
order of multiplicity (n D 4/ at x0, then the solution lies at high values in a larger
subset of .0; 1/.
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Fig. 7.3

Fig. 7.4

The solution to the parabolic problem in nondivergence case defined by system
(7.26) in Sect. 7.3, corresponding to the same data as before, is presented in Figs. 7.3
and 7.4.
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7.2 Identification of the Diffusion Coefficient in the Strongly
Degenerate Divergence Case

In this section we recall the main results in [9], where the aim is to identify the
diffusion coefficient u.x/ in the following degenerate parabolic problem written in
divergence form

8̂
ˆ̂̂<
ˆ̂̂̂
:

yt � .uyx/x D f .t; x/; .t; x/ 2 Q;

y.t; 0/ D y.t; L/ D 0 t 2 .0; T /;

y.0; x/ D y0.x/ x 2 .0; L/;

(7.2)

where Q WD .0; T / � .0; L/; T; L 2 .0;1/. The identification of u is done on
the basis of certain available observations, that is the spatial mean MT of the state
y at a final time T; the mean value M of y; or the mean flux Mf over Q, which
justifies the choice of the cost functional defined in (7.1). The diffusion coefficient
u is identified as a solution to the minimization problem

Min fJ.u/I u 2 U g (7.3)

subject to (7.2), where

U D fu 2 W 1;1.0; L/I um.x/ � u.x/ � uM.x/; u.0/ D u0; u.L/ D uL;

jux.x/j � u1 a.e. x 2 .0; L/g: (7.4)

In (7.4) we assume

x0 2 .0; L/; x0 fixed and known, u1 2 Œ0;1/;

um; uM 2 C Œ0;L�; uM.x/ � ˛.x/um.x/ for x 2 Œ0; L�; ˛ 2 C Œ0;L�; ˛ � 1;

(7.5)

0 < um.x/ < uM.x/ for x 2 Œ0; L�nfx0g; um.x0/ D uM.x0/ D 0;

Z L

0

1

uM.x/
dx D C1: (7.6)

We also assume that Mf 2 R; MT ; M; �1; �2; �3 � 0 and that there exists at least
one i 2 f1; 2; 3g such that �i > 0: The constants �i ; i D 1; 2; 3; are considered for
inducing a higher or lower importance to the terms in the functional. The notation
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yu indicates the solution to (7.2) corresponding to u: For simplicity, later we shall
drop the superscript u: We denote by the subscripts t and x the partial derivatives
with respect to t and x; respectively.

In [9], the identification of u from the observations previously mentioned was led
as a control problem in coefficients, the final goal being the optimality conditions,
that is the necessary conditions that u must satisfy, as a solution to (7.3). To this end,
the degenerate state system (7.2) was treated by the classical variational framework
and the solution existence was proved by the Lions’ Theorem (see [11]). Next, the
existence of at least one minimizer to (7.3) was proved and a generalized form of
the optimality conditions was deduced.

After specifying a few notation we recall the main results in [9], beginning with
the existence of the solution to the state system (Theorem 7.1 below), the existence
of an optimal pair (Theorem 7.2) and the optimality condition related to (7.3), in
Proposition 7.1.

Following [10] we define the weighted spaces

H1
u .0; L/ D fy 2 L2.0;L/I y locally absolutely continuous in Œ0; L�nfx0g;

p
uyx 2 L2.0;L/; y.0/ D y.L/ D 0g; (7.7)

H2
u .0; L/ D fy 2 H1

u .0; L/I uyx 2 H1.0;L/g (7.8)

and specify that H1
u .0; L/ is a Hilbert space and H1

u .0; L/ ,! L2.0;L/ ,!
.H1

u .0; L//
0; where .H1

u .0; L//
0 is the dual of H1

u .0; L/ and “,!” means a
continuous and dense embedding. We denote H D L2.0;L/; Vu D H1

u .0; L/;

V 0
u D .H1

u .0; L//
0:

Definition 7.2 Let y0 2 L2.0;L/; f 2 L2.0; T I .H1
u .0; L//

0/ and u with the
properties of Definition 7.1. We call a solution to (7.2) a function

y 2 C.Œ0; T �IL2.0;L//\ L2.0; T IH1
u .0; L// \W 1;2.Œ0; T �I .H1

u .0; L//
0/;

(7.9)

which satisfies the equation

Z T

0

�
dy

dt
.t/;  .t/

�
V 0

u ;Vu

dt C
Z
Q

uyx xdxdt D
Z T

0

hf .t/;  .t/iV 0

u ;Vu
dt; (7.10)

for any  2 L2.0; T IH1
u .0; L//; and the initial condition y.0/ D y0:

Theorem 7.1 If y0 2 L2.0;L/ and f 2 L2.0; T I .H1
u .0; L//

0/; then (7.2) has a
unique solution

y 2 C.Œ0; T �IL2.0;L//\ L2.0; T IH1
u .0; L// \W 1;2.Œ0; T �I .H1

u .0; L//
0/;
(7.11)
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satisfying the estimate

sup
t2Œ0;T �

ky.t/k2H C
Z T

0

ky.t/k2Vu
dt � CT .ky0k2H C kf k2L2.0;T IV 0

u /
/: (7.12)

If, in addition, y0 2 H1
u .0; L/ and f 2 L2.Q/ WD L2.0; T IL2.0;L//, then

y 2 W 1;2.Œ0; T �IL2.0;L//\L2.0; T IH2
u .0; L//\L1.0; T IH1

u .0; L// (7.13)

and it satisfies

sup
t2Œ0;T �

ky.t/k2Vu
C
Z T

0

 ����dy

dt
.t/

����
2

H

C k.uyx/x.t/k2H
!

dt

� CT

�
ky0k2Vu

C kf k2L2.Q/
�
; (7.14)

where CT denotes several positive constants.

Theorem 7.2 Let y0 2 L2.0;L/; y0 � 0 on .0; L/; f 2 L2.Q/; f � 0

a.e. on Q: Then, the minimization problem (7.3) has at least one solution u with
the corresponding state y belonging to the spaces mentioned in (7.11). If y0 2
H1

u .0; L/; then the state y is more regular, as in (7.13).

Now, let u� be a solution to (7.3) and let y� be the solution to (7.2) corresponding
to the coefficient u�: We introduce the system for the adjoint state p; by

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

@p

@t
C .u�px/x D ��1

�R
Q

u�y�
x dxdt �Mf

�
u�
x

C�3
�R

Q
y�dxdt �M

�
in Q,

p.T; x/ D ��2
�R L

0
y�.T; x/dx �MT

�
; in .0; L/,

p.t; 0/ D p.t; L/ D 0; in .0; T /,

(7.15)

and give the following result which describes the property of u�, as a minimizer
in (7.3). Before this, we specify that (7.15) has a unique solution p belonging to the
same spaces as y (see (7.11) and (7.13) in Theorem 7.1).

Proposition 7.1 Let .u�; y�/ be a solution to (7.3). Then u� satisfies the necessary
condition

Z
Q

.u� � u/y�
x

�
px C �1

�Z
Q

u�y�
x dxdt �Mf

��
dxdt � 0 (7.16)

for all u 2 U; where p is the solution to (7.15).
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Since y� and p do not belong toH1.0;L/ but toH1
u .0; L/; it is not clear whether

condition (7.16) can be further handled in order to deduce a more explicit form for
u�: However, an alternative way to characterize it is to compute u� as the limit of a
sequence of more regular solutions u�

" to an approximating minimization problem,
with a nondegenerate state system. Thus, we introduce the approximating problem

Min fJ.u/I u 2 U"g; (7.17)

� > 0, subject to the state system (7.2), where

U" D fu 2 W 1;1.0; L/I um.x/C " � u.x/� uM.x/C2"; u.0/D u"0; u.L/D u"L;

jux.x/j � u1 a.e. x 2 .0; L/g: (7.18)

For all u 2 U"; u.x/ � um.x/ C " � "; and so system (7.2) with u 2 U" is
nondegenerate, implying that its solution y" corresponding to u 2 U" belongs to the
space (see [11, p. 163])

C.Œ0; T �IL2.0;L// \ L2.0; T IH1
0 .0; L//\W 1;2.Œ0; T �IH�1.0; L//: (7.19)

Consequently, the control problem (7.17) has at least a solution .u"; y"/; with
u" 2 U" and y" (corresponding to u"/ satisfying (7.19). The next theorem proves
the connection between a solution to (7.3) and a solution to (7.17) and shows in
fact that a minimizer u� to the original problem can be retrieved as the limit of a
sequence of minimizers corresponding to the approximating problem (7.17).

Theorem 7.3 Let y0 2 L2.0;L/, f 2 L2.Q/; y0 � 0 a.e. on .0; L/; and
f � 0 a.e. on Q. Let .u�

" ; y
�
" /">0 be a sequence of solutions to (7.17). Then (on

subsequences), as " ! 0 we have

u�
" ! u� uniformly in Œ0; L�; u�

"x ! u�
x weak* in L1.0; L/; (7.20)

y�
" ! y� weakly in L2.0; T IH1

u�.0; L//\W 1;2.Œ0; T �I .H1
u� .0; L//

0/; (7.21)

y".T / ! y.T / weakly in L2.0;L/; (7.22)

where .u�; y�/ is a solution to (7.3). Moreover,

Z L

0

.u�
" � u"/.x/˚.x/dx � 0; for all u" 2 U"; (7.23)

where

˚.x/ WD �
Z T

0

y�
"x.t; x/

�
p"x.t; x/C �1

�Z
Q

u�
" y

�
"xdxdt �Mf

�	
dt: (7.24)

In (7.24) p" is the solution to (7.15) in which .u�; y�/ is replaced by .u�
" ; y

�
" /.

Due to the fact that the approximating minimizer is positive and y�
" belongs to
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the spaces mentioned in (7.19), relation (7.23) will further provide more clear
information about u�

" (see [9]).
Also a very explicit form of u� has been identified in [9] from a final observation

involving a state system with Dirichlet–Neumann boundary conditions.

7.3 Identification of the Diffusion Coefficient in the Strongly
Degenerate Nondivergence Case

In this section we consider the minimization problem in the nondivergence case,
that is

Min fJ.u/I u 2 U g (7.25)

subject to

8̂
ˆ̂̂<
ˆ̂̂̂
:

yt � uyxx D f .t; x/; .t; x/ 2 Q;

y.t; 0/ D y.t; L/ D 0 t 2 .0; T /;

y.0; x/ D y0.x/ x 2 .0; L/;

(7.26)

where J and U have been defined in (7.1) and (7.4)–(7.6), respectively.
We introduce the adapted functional framework, defining the following Hilbert

spaces:

L21
u
.0; L/ WD

�
y 2 L2.0;L/ j

Z L

0

y2

u
dx < 1

	
;

H 1
1
u
.0; L/ WD L21

u
.0; L/\H1

0 .0; L/;

and

H 2
1
u
.0; L/ WD

n
y 2 H 1

1
u
.0; L/ \W 2;1

loc .0; L/
ˇ̌

uyxx 2 L21
u
.0; L/

o
;

endowed with the associated norms

kyk2
L21

u
.0;L/

WD
Z L

0

y2

u
dx; y 2 L21

u
.0; L/;

kyk2
H 1

1
u
.0;L/

WD kyk2
L21

u
.0;L/

C kyxk2L2.0;L/; y 2 H 1
1
u
.0; L/;

kyk2
H 2

1
u
.0;L/

WD kyk2
H 1

1
u
.0;L/

C kuyxxk2L21
u
.0;L/

; y 2 H 2
1
u
.0; L/:
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We recall also the following Green’s formula:

Lemma 7.1 (See [10, Lemma 3.2]) For all .y; z/ 2 H 2
1
u
.0; L/ � H 1

1
u
.0; L/ one

has

Z L

0

yxxzdx D �
Z L

0

yxzxdx: (7.27)

We give the following definition:

Definition 7.3 Assume that y0 2 L21
u
.0; L/ and f 2 L21

u
.Q/ WD L2.0; T I

L21
u
.0; L//. A function y is said to be a solution to (7.26) if

y 2 C.Œ0; T �IL21
u
.0; L//\ L2.0; T IH 1

1
u
.0; L//

and satisfies

Z L

0

y.T / '.T /

u
dx �

Z L

0

y0 '.0/

u
dx �

Z
Q

y 't

u
dxdt

D �
Z
Q

yx'x dxdt C
Z
Q

f '

u
dxdt (7.28)

for all ' 2 V WD H1.0; T IL21
u
.0; L//\ L2.0; T IH 1

1
u
.0; L//.

Now, as in [10] we consider the strongly degenerate operator A2 defined by

A2y WD uyxx;

with domainD.A2/ D H 2
1
u
.0; L/. Here u satisfies the conditions of Definition 7.1.

Using the fact that the operator A2 W D.A2/ ! L21
u
.0; L/ is selfadjoint,

nonpositive on L21
u
.0; L/ and generates a positivity preserving semigroup (see [10,

Theorem 3.4]), one can prove the following existence result:

Theorem 7.4 (See [10, Theorem 4.3 and Remark 4.4]) For all f 2 L21
u
.Q/ and

y0 2 L21
u
.0; L/, there exists a unique (mild) solution

y 2 C 
Œ0; T �IL21
u
.0; L/

� \ L2


0; T IH 1

1
u
.0; L/

�
(7.29)

to (7.26) such that

sup
t2Œ0;T �

ky.t/k2
L21

u
.0;L/

C
Z T

0

ky.t/k2
H 1

1
u
.0;L/

dt � CT

�
ky0k2L21

u
.0;L/

C kf k2
L21

u
.Q/

�
:

(7.30)
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Moreover, if y0 2 H 1
1
u
.0; L/, then

y 2 H1


0; T IL21

u
.0; L/

� \L2
0; T IH 2
1
u
.0; L/

� \ C


Œ0; T �IH 1

1
u
.0; L/

�
(7.31)

such that

sup
t2Œ0;T �

�
ky.t/k2

H 1
1
u
.0;L/

�
C
Z T

0

�
kyt .t/k2L21

u
.0;L/

C kuyxx.t/k2L21
u
.0;L/

�
dt

� CT

�
ky0k2H 1

1
u
.0;L/

C kf k2
L21

u
.Q/

�
;

(7.32)

where CT denotes a positive constant.

It is clear that if y0 2 H 1
1
u
.0; L/; the strong solution to (7.26) satisfies the

equivalent relation

Z
Q

yt'

u
dxdt C

Z
Q

yx'x dxdt D
Z
Q

f '

u
dxdt; (7.33)

for all ' 2 L2.0; T IH 1
1
u
.0; L//:

Note that from (7.4) and (7.5) it clearly follows

ˇ̌
ˇ̌u.x/
v.x/

ˇ̌
ˇ̌ � k˛kL1.0;L/; a.e. in Œ0; L�; (7.34)

for all u, v 2 U .
Using the previous estimate, one can prove the following result:

Lemma 7.2 For all u; v 2 U , one has

L21
u
.0; L/ D L21

v
.0; L/;

H 1
1
u
.0; L/ D H 1

1
v
.0; L/;

H 2
1
u
.0; L/ D H 2

1
v
.0; L/:

Proof Let y 2 L21
u
.0; L/. Then it follows

Z L

0

y2

v
dx D

Z L

0

u

v

y2

u
dx � K

Z L

0

y2

u
dx;
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where K WD k˛kL1.0;L/. Hence y 2 L21
v
.0; L/. Analogously one can prove that

L21
v
.0; L/ � L21

u
.0; L/. As an immediate consequence, it follows

H 1
1
u
.0; L/ D H 1

1
v
.0; L/

for all u; v 2 U .
Now we prove that

H 2
1
u
.0; L/ D H 2

1
v
.0; L/:

Let y 2 H 2
1
u
.0; L/. Then, by definition of H 2

1
u
.0; L/, y 2 H 1

1
u
.0; L/ D H 1

1
v
.0; L/

and

Z L

0

.vyxx/
2

v
dx D

Z L

0

v.yxx/
2dx D

Z L

0

v

u
.yxx/

2udx � K

Z L

0

.yxx/
2udx:

Hence y 2 H 2
1
v
.0; L/. Analogously one can prove that H 2

1
v
.0; L/ � H 2

1
u
.0; L/. ut

Since by Theorem 7.4, in particular uyx; y 2 L2.Q/ and y.T / 2 L2.0;L/; it
follows that all terms in J.u/ are well defined, even in the nondivergence case.

In the next theorem we give the existence result for a minimizer to (7.25).

Theorem 7.5 Let us take v 2 U and y0 2 L21
v
.0; L/, f 2 L21

v
.Q/. Then,

the minimization problem (7.25) has at least one solution u. If y0 2 H 1
1
v
.0; L/;

then (7.25) has at least one solution with the corresponding state y being a strong
solution to (7.26).

Proof Let y0 2 L21
v
.0; L/ and f 2 L21

v
.Q/; with v 2 U: Then there exists a unique

(mild) solution yv to (7.26) and J.v/ � 0. Let us denote by d the infimum of J on
U . For simplicity, in the following, we shall drop the superscript u in yu.

Now, consider a minimizing sequence .un/n�1, un 2 U , such that

d � J.un/ W D �1

2

�Z
Q

un.x/ .yn/x.t; x/ dxdt �Mf

�2

C�2

2

�Z L

0

yn.T; x/ dx �MT

�2

C�3

2

�Z
Q

yn.t; x/ dxdt �M

�2
� d C 1

n
; (7.35)
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where yn is the mild solution to (7.26) corresponding to un; i.e.,

yn 2 C 
Œ0; T �IL21
u
.0; L/

� \ L2


0; T IH 1

1
u
.0; L/

�
;

equivalently written

Z L

0

yn.T / '.T /

un
dx �

Z L

0

y0 '.0/

un
dx �

Z
Q

yn 't

un
dxdt

D �
Z
Q

ynx'x dxdt C
Z
Q

f '

un
dxdt (7.36)

for all ' 2 V .
Moreover, yn satisfies (7.30).
Since .un/n�1 is equicontinuous and bounded, by the Arzelà Theorem, un

converges uniformly to u 2 C Œ0;L�, and up to subsequence, unx ! ux weak�
in L1.0; L/ as n ! C1. Clearly,

u.0/ D u0; u.L/ D uL; um.x/ � u.x/ � uM.x/; jux.x/j � u1 a.e. x 2 .0; L/:

Hence u 2 U .
By (7.30) and Lemma 7.2 we deduce that .yn/n is bounded in

L1.0; T IL21
u
.0; L// \ L2.0; T IH 1

1
u
.0; L//: Hence, there exists y 2 L1.0; T I

L21
u
.0; L// \ L2.0; T IH 1

1
u
.0; L// such that, up to a subsequence, as n ! 1

yn ! y weak* in L1.0; T IL21
u
.0; L//; (7.37)

yn ! y weak* in L1.0; T IL2.0;L//:

and

ynx ! yx weakly in L2.Q/;

i.e.

lim
n!C1

Z
Q

ynx.t; x/'x.t; x/ dxdt D
Z
Q

yx.t; x/'x.t; x/ dxdt (7.38)

for all ' 2 L2.0; T IH 1
1
u
.0; L//.

By (7.30) we also have that

�
ynp
un

�
n�1

is bounded in L1.0; T IL2.0;L// and

so, on a subsequence

ynp
un

!  weak* in L1.0; T IL2.0;L//:
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Let us denote n D ynp
un

a.e. on Q: Then, yn D p
unn a.e. on Q, which converges

to y D p
u; whence we deduce that  D yp

u
a.e. on Q:

Moreover,

lim
n!C1

Z
Q

f '

un
dxdt D

Z
Q

f '

u
dxdt; (7.39)

for all ' 2 L2.0; T IH 1
1
u
.0; L//. Indeed, setting gn WD f '

un
, it follows that .gn/n�1

converges almost everywhere to
f '

u
and, by (7.34),

Z
Q

jgnjdxdt D
Z
Q

ˇ̌
ˇ̌f '

u

u

un

ˇ̌
ˇ̌ dxdt � k˛kL1.0;L/

Z T

0

����f 'u .t/

����
L1.0;L/

dt:

Hence, (7.39) follows by the Lebesgue dominated convergence Theorem.
We show now that

lim
n!1

Z
Q

yn'

un
dxdt D

Z
Q

y'

u
dxdt (7.40)

for all ' 2 L2.0; T IL21
u
.0; L//:

To this aim, let us take ' 2 L21
u
.Q/ and note that

'p
un

converges almost

everywhere to
'p

u
in L2.Q/:Moreover, as before,

Z
Q

ˇ̌
ˇ̌ 'p

un

ˇ̌
ˇ̌ dxdt � k˛kL1.0;L/

Z T

0

����'.t/p
u

����
L1.0;L/

dt

and so, by the Lebesgue dominated convergence Theorem we get that

'p
un

! 'p
u

strongly in L2.Q/:

Since

ynp
un

! yp
u

weak* in L1.0; T IL2.0;L//

we get (7.40) as claimed.
Since A2 generates a C0-semigroup on L21

u
.0; L/ and yn is a mild solution

to (7.26), we can write

yn.t/ D eA2ty0 C
Z t

0

eA2.t�s/f .s/ds; for all t 2 Œ0; T �: (7.41)
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Then, according to Ball’s theorem (see e.g., [12, p. 258]), for every v� 2 D.A�
2 /;

(A�
2 being the adjoint ofA2/; the map t ! .y.t/; v�/L21

u
.0;L/ is absolutely continuous

on Œ0; T � and

d

dt
.yn.t/; v

�/L21
u
.0;L/ D .yn.t/; A

�

2 v�/L21
u
.0;L/ C .f .t/; v�/L21

u
.0;L/; for all t 2 Œ0; T �;

where .�; �/L21
u
.0;L/ denotes the inner product in L21

u
.0; L/. We also recall that A2 is

self-adjoint and so, integrating the previous equation with respect to t; we get

.yn.t/; v
�/L21

u
.0;L/ � .y0; v�/L21

u
.0;L/ D

Z t

0

.yn.s/; unv
�
xx/L21

u
.0;L/ ds

C
Z t

0

.f .s/; v�/L21
u
.0;L/ ds

for all t 2 Œ0; T �: Taking into account the previous convergences we get that

yn.t/ ! y.t/ weakly in L21
u
.0; L/; for all t 2 Œ0; T �

and in particular at t D T and t D 0:

Then, we get all ingredients to pass to the limit in (7.36) and get (7.28) which
shows that y is the solution to (7.26).

Finally, by passing to the limit in (7.35) on the basis of the weak lower
semicontinuity of the convex integrands we get

lim inf
n!1 J.un/ � J.u/;

and, hence, J.u/ D d , which asserts that u is a solution to (7.25).
Let now take y0 2 H 1

1
u
.0; L/: The proof is led as before, specifying that yn is in

this case the strong solution to (7.26), equivalently written

Z
Q

ynt'

un
dxdt C

Z
Q

ynx'xdxdt D
Z
Q

f '

un
dxdt; (7.42)

for all ' 2 L2.0; T IH 1
1
u
.0; L// and it satisfies estimate (7.32). It follows that, on a

subsequence

yntp
un

! � weakly in L2.Q/:
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Recalling (7.40) and since

�
ynp
un

�
t

converges in the sense of distributions to
�
yp

u

�
t

we get that � D yp
u

a.e. on Q:

Passing to the limit in (7.42), we obtain

Z
Q

yt'

u
dxdt C

Z
Q

yx'xdxdt D
Z
Q

f '

u
dxdt; (7.43)

for all ' 2 L2.0; T IH 1
1
u
.0; L//; so that y is a strong solution to (7.26). Then we

pass to the limit in (7.35) and obtain that u is a minimizer in (7.25), as claimed. ut

7.4 Optimality Conditions in the Nondivergence Case

In this section we assume hypotheses from Theorem 7.5, second part, and consider
.u�; y�/ be a solution to (7.25). We recall that y� is the strong solution to the state
system. Let us denote

If D
Z
Q

u�y�
x dxdt �Mf ; IT D

Z L

0

y�.T; x/ dx �MT ; IM D
Z
Q

y� dxdt �M
(7.44)

and let us introduce the dual system as

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@p

@t
C u�pxx D ��1If u�

xu� C �3IMu�; in Q,

p.T; x/ D ��2 IT u�; in .0; L/,

p.t; 0/ D p.t; L/ D 0; in .0; T /.

(7.45)

Theorem 7.6 Let .u�; y�/ be a solution to (7.25). Then, u� satisfies the necessary
condition

Z
Q

.u� � u/

�
y�

xxp

u� � �1If y�
x

�
dxdt � 0; (7.46)

for all u 2 U , where p is the solution to (7.45).

Proof Let � 2 .0; 1/ and denote

u�.x/ D u�.x/C �v.x/;
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where

v.x/ D u.x/ � u�.x/; with u 2 U: (7.47)

It is obvious that v 2 W 1;1.0; L/; v.x0/ D 0; um.x/ � uM.x/ � v.x/ � u.x/;
v.0/ D v.L/ D 0 and 1

v … L1.0;L/. We introduce the system

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

@Y

@t
� u�Yxx D vy�

xx; in Q;

Y.0; x/ D 0; in .0; L/;

Y.t; 0/ D Y.t; L/ D 0; in .0; T /.

(7.48)

Since y� is a strong solution to the state system (7.26), it follows that u�y�
xx 2

L21
u�

.Q/: Then, again by Theorem 7.4, system (7.48) has a unique solution

Y 2 H1.0; T IL21
u�

.0; L// \L2.0; T IH 1
1

u�

.0; L//; u�Yxx 2 L21
u�

.Q/:

Denoting by y�.t; x/ the solution to (7.26) corresponding to u�.x/; one can prove
by a direct computation that

Y.t; x/ D lim
�!0

y�.t; x/ � y�.t; x/
�

weakly in L21
u�

.Q/:

Since the term on the right-hand side in the equation of the dual system (7.45)
belongs to L21

u�

.Q/; system (7.45) has, still by the second part of Theorem 7.4, a

unique solution

p 2 H1.0; T IL21
u�

.0; L//\ L2.0; T IH 1
1

u�

.0; L//; p�Yxx 2 L21
u�

.Q/:

Now, we write that .u�; y�/ is a solution to (7.25), that is

J.u�/ � J.u/; for all u 2 U;

which is true, in particular, for u D u�. After some calculations, this inequality
yields the following relation

Z
Q

.��1If u�
x C �3IM /Ydxdt C

Z
Q

�1If vy�
xdxdt C �2IT

Z L

0

Y.T; x/dx � 0:

(7.49)
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We test the equation in the system (7.48) by p.t/ and integrate over .0; T /:We have

Z
Q

Ytp

u� dxdt C
Z
Q

Yxpx D
Z
Q

vy�
xxp

u� dxdt

whence, integrating by parts the first term on the left-hand side, and taking into
account the conditions in the system (7.45) we get

Z L

0

p.T /Y.T /

u� dx �
Z
Q

Ypt

u� dxdt C
Z
Q

Yxpx dxdt D
Z
Q

vy�
xxp

u� dxdt: (7.50)

Further, this yields

�
Z T

0



.pt C u�pxx/.t/; Y.t/

�
L21

u�

.0;L/
dt C .p.T /; Y.T //L2

1=u�
.0;L/

D
Z T

0



vy�

xx.t/; p.t/
�
L21

u�

.0;L/
dt:

From (7.45) we obtain

Z
Q

.��1If u�
x C�3IM /Ydxdt C�2IT

Z L

0

Y.T; x/dx D �
Z
Q

vy�
xxp

u� dxdt: (7.51)

Comparing with (7.49) it follows that

Z
Q

�1If vy�
xdxdt �

Z
Q

vy�
xxp

u� dxdt � 0

for all u 2 U; and this implies (7.46), as claimed. ut
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Chapter 8
On the Nature of the Instability of Radial Power
Equilibria of a Semilinear Parabolic Equation

Jerome A. Goldstein and Junqiang Han

Dedicated to the memory of Alfredo Lorenzi

Abstract The semilinear problem

@u

@t
D .�1/mC1�mu C up .x 2 R

N ; t � 0/

has positive equilibria of the form

u.x; t/ D C jxj�a

for many values of .N; p/. Of concern is getting more information on exactly how
stable or unstable these solutions are. When m D 1, the results have a qualitatively
different nature for the two cases N � 10 and N � 11.

8.1 Introduction

The semilinear parabolic equation

@u

@t
D .�1/mC1�mu C up .t � 0; x 2 R

N ;m 2 N/ (8.1)
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has positive time independent solutions of the form

u.x; t/ D v .r/ D Cr�a (8.2)

where p > 1, r D jxj, and C; a > 0. At issue is the stability or instability of these
solutions.

The simplest case is that ofm D 1, in which case the Maximum Principle holds;
it fails for m � 2. Some stability/instability results for the positive solutions (8.2)
of (8.1) when m D 1 were obtained by Gui et al. [5, 6] and further refined by
Polacik and Yanagida [9]. These are deep and subtle results. These seem to be no
known analogous results for m � 2.

We shall approach the stability issue from the (specialized) perspective of
linearized stability. For m D 1, this has been considered already by Mizoguchi
[8] in the unstable case, but, as before, nothing seems to have been done form � 2.

A simple calculation shows that, formally, the linearization of (8.1) about v
(using (8.1) and (8.2)) is

@w

@t
D .�1/mC1 �mw C .pvp�1/w

D .�1/mC1 �mw C c

jxj2mw (8.3)

where

c D c.p;m;N /:

The operator

.�1/m�m � c

jxj2m

on L2.RN / is formally symmetric and is nonnegative iff

.�1/m h�m ; i � c

�
1

jxj2m  ; 
�
; (8.4)

i.e.,

Z
RN

ˇ̌
ˇ.��/m2  .x/

ˇ̌
ˇ2 dx � c

Z
RN

j .x/j2
jxj2m dx (8.5)

holds for enough choices of  . When m D 1, (8.5) reduces to Hardy’s inequality

Z
RN

jr j2dx � c

Z
RN

j .x/j2
jxj2 dx:
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This holds for all  2 C1
c



R
N nf0g� iff c � 


N�2
2

�2
. For m D 2, the analogous

result is due to Rellich [10], and for m � 3, the equality was shown for sufficiently
large N by Galaktionov and Kamotski [4]. The corresponding linear PDE has
very interesting unusual behavior. Let C.N;m/ be the best constant for the Hardy
inequality (8.4) (or (8.5)). When c > C.N;m/, (8.3) has no positive solutions at
all. This was shown for m D 1 by Baras and Goldstein [2], who also established
“instantaneous blowup”. For m � 2 the absence of positive solutions was shown by
Galaktionov and Kamotski [4] (but without instantaneous blowup, which is based
on the Maximum Principle).

The standard versions of the Principle of Linearized Stability/Instability do not
apply to (8.1), (8.2). A discussion of failures and hopes of this approach is given
in Sect. 8.2. Section 8.3 deals with the equilibrium (8.2) of Eq. (8.1) when m D 1.
Detailed calculations are given and lead to the main theorem, stated near the end
of Sect. 8.3. Some concluding results follow. The case of m � 2 will be treated in
detail in a future paper. Section 8.4 discusses a better formulation of the Principle
of Linearized Stability/Instability.

8.2 The Principle of Linearized Stability

Consider a “semilinear” equation of the form

dv

dt
D Lv CN.v/ (8.6)

where L is linear and N is nonlinear. (Of course, L could be zero, so the
equation could be fully nonlinear.) The usual context is: X is a Banach space,
v W RC D Œ0;1/ ! X and L generates a strongly continuous (or (C0)) semigroup˚
etL W t � 0

�
of bounded linear operators onX . Also,N is a nonlinear operator from

its domain D.N / � X to X . Typically N is assumed to be locally Lipschitzian
from D.N / � Y to X , where Y is densely and continuously embedded in X
(For instance, in the quasilinear Navier–Stokes system, X is the Hilbert space of
divergence free vector fields in


L2.˝/

�3
for ˝ a domain in R

3, L is the negative
selfadjoint Stokes operator, and Y D D ..�L/˛/ where 3

4
< ˛ < 1.) By a global

mild solution of (8.6) satisfying v.0/ D v0 is meant a continuous solution of the
integral equation

u .t/ D etLv0 C
Z t

0

e.t�s/LN.v.s//ds

for all t � 0. Local (in t) mild solutions exists and are unique by an application of
the Banach Fixed Point Theorem. If .0; �max .v1// is the maximal time interval of
existence for the unique (local) mild solution v of

dv

dt
D Lv CN.v/; v.0/ D v1; (8.7)



144 J.A. Goldstein and J. Han

then either �max .v1/ D 1 and v is a global solution, or else �max .v1/ < 1, in which
case we have the blow up result

lim
t!�max.v1/

�

kv.t/k D 1:

An equilibrium is a constant solution. Thus v .t/ � v0 2 X is an equilibrium if and
only if

Lv0 CN .v0/ D 0:

Typically L is a partial differential equation satisfying some boundary or other
conditions and it can be extended by ignoring the latter. LetL0 be such an extension,
and similarly let N0 be a “natural” extension of N . Suppose

v.t/ �  0

is a solution of

L0 0 CN0 . 0/ D 0:

We can work in the Banach space

Y D span . 0/˚X

(direct sum or product), or, better, in the associated affine space

 0 ˚X DW X0:

Let u be a solution of (8.7) satisfying u.0/ D v0. Then we say that the equilibrium
 satisfies

(1) v is X0 unstable if given � > 0, there exist a ı > 0 such that if v0 2 X0 and

0 < kv0 �  0kX < �;

then

ku.t/ �  0kX � ı

for sufficiently large t .
(2) v is X0 asymptotically stable if there exist � > 0 such that if v0 2 X0 and

kv0 �  0kX < �;

then

ku.t/ �  0kX ! 0 as t ! 1:
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Let  0 be an equilibrium, and suppose N is differentiable at  0 in some sense.
Let B0 be the linear operator

B0 D LCN 0 . 0/ :

Suppose the closure B of B0 generates a semigroup S D ˚
etB W t � 0

�
of linear

operators on X . If etB is unbounded on X for each t > 0, it seems natural to call
 0 strongly linearly unstable. So suppose S is a .C0/ semigroup. (For semigroups,
see, for instance, [4].) We classify the stability types of S using the properties (Pi)
defined below. S is called

(P1) asymptotically exponentially stable if

��etB
�� � Me�at

holds for all t > 0 and some positive constantsM and a;
(P2) exponentially asymptotically unstable if

��etB
�� � M0e

ta0

holds for all t > 0 and some positive constantsM0 and a0;
(P3) stable if

sup
t>0

��etB
�� < 1I

(P4) asymptotically stable if

��etBf
�� ! 0

as t ! 1 for all f 2 X ;
(P5) unstable if

lim
t!1

��etB
�� D 1:

The equilibrium  0 of (8.6) is called linearly asymptotically stable [resp.
linearly unstable] if (P1) holds [resp., if (P2) holds].

If the equilibrium  0 is linearly asymptotically stable, then we may hope that
there is an � > 0 such that if kv1 �  0kZ < �, where the Banach space Z embeds
continuously and densely into Y , then there is a unique global mild solution v
of (8.7) and

v .t/ � v0 ! 0 (8.8)

in X as t ! 1. If the equilibrium is linearly unstable, then we may expect that
there exist � > 0, ı > 0 such that if v is the unique global mild solution of (8.7) and
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if 0 < kv1 � v0kZ < �, then there is a T > 0 such that

kv.t/ � v0k � ı (8.9)

for all t > T .
The above paragraph is a generalized version of the Principle of Linearized

Stability/Instability and it requires the asserted existence results. If (P3) or (P4)
holds, then either of (8.8), (8.9) could hold for solutions of (8.7) with v1 close to v0.
So the equilibrium may be unstable if (P3) or (P4) holds. But it is “closer to being
stable” than in the case of when (P2) holds. We want to give a name to this case.
“Almost Stable” fits, in that “almost everywhere” is not everywhere and “almost
uniform convergence” is not uniform convergence. Thus almost stability need not
be stability. But since v0 could be unstable in this case, it seems more prudent to
use the term borderline instability or borderline linearly unstable to refer to the
equilibrium v0 when (P3) or (P4) holds. Typically there could be a “stable manifold”,
that is, initial values v1 for solutions of (8.7) on certain curves passing through v0
for which the corresponding solution v satisfies (8.8).

There is an enormous literature on the Principle of Linearized Stability in special
cases (see, for example, [3,11]). But a unifying general form of the theorem has not
yet been found. This is discussed further in Sect. 20.4.

8.3 The Case of (8.1)

The popular Eq. (8.1) is studied as a partial differential equation rather than an
ordinary differential equation in some particular Banach space X . Indeed, there is
not a natural space X associated with (8.1).

So let

u .x; t / D v0 .x/ D Cr�a

be a solution of (8.1) with r D jxj and C; a > 0. Then, for x 2 R
N ,

�ut C�u D �v0 D .v0/rr C N � 1

r
.v0/r D �.v0/p

implies

C .a .a C 1/� a.N � 1// r�a�2 D �Cpr�ap:

It follows that

a C 2 D ap
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or

a D 2

p � 1
: (8.10)

Next,

� a2 C .N � 2/ a D Cp�1 > 0: (8.11)

(8.10) and (8.11) imply

N > 2

�
1C 1

p � 1

�
:

Thus we take N � 3 and

p >
N

N � 2
; (8.12)

and we calculate

C D
"
2.N � 2/

p � 1
�
�

2

p � 1
�2# 1

p�1

: (8.13)

Then we have, by (8.10)–(8.13), a unique equilibrium of (8.1) of the form (8.2)
for N � 3 and p > N

N�2 . (There are no such solutions if N < 3 or if N D 3 and
1 < p � 3.)

What about the stability of this equilibrium v0? This v0 does not belong to any
of the usual Lq



R
N
�

spaces or any Sobolev space. It does belong to a unique weak
Lq


R
N
�

space (or Marcinkiewicz space), but this space is not “natural” for (8.1).
So let us avoid choosing X momentarily and consider v0 as a solution of (8.6) with
L D � and N.v/ D vp. Formally,

N 0 .v0/ D pvp�1
0 � pCp�1r�a.p�1/ D pCp�1r�2 DW c

jxj2 :

This defines c. The operator

A D �C c

jxj2

on L2


R
N
�

with domain C1
c .R

N / is, for N � 3, symmetric. Let Ac be the
Friedrichs extension if A is semibounded, and any selfadjoint extension of A is
not semibounded; in all cases, A has a selfadjoint extension, Ac . Then

Ac D A�
c � 0
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if c � 

N�2
2

�2
, while

	 .Ac/ D R

if c >


N�2
2

�2
. Moreover,



N�2
2

�2
is the best constant in the Hardy inequality

�
N � 2

2

�2 Z
RN

ju.x/j2
jxj2 dx �

Z
RN

jru.x/j2dx

for all u 2 C1
c .R

N /. Note that the Hardy inequality also holds for N D 1; 2 for all
u 2 C1

c .R
N n f0g/. For N D 1 we usually consider only u 2 C1

c .0;1/. See [7].

Remark 8.1 Recall

Ac D �C c

jxj2

(with suitable domain) generates a .C0/ contraction semigroup on L2


R
N
�

iff

c �
�
N � 2

2

�2

and etAc is unbounded for all t ¤ 0 if c >


N�2
2

�2
. Similarly [1],

Acq D �C c

jxj2

(with suitable domain) generates a .C0/ contraction semigroup on Lq


R
N
�

for 1 <
q < 1 iff

c �
�
N � 2

2

�2 �
4

qq0

�
DW QC .N; q/ �W QC 
N; q0�

where 1
q

C 1
q0

D 1. The constant QC .N; q/ for N � 3 is a linear increasing function

of 1
q

as 1
q

goes from 0 to 1
2
. Thus to find a space X (or X0) so that  0 C X has the

best chance to give linearized stability, it seems prudent to take q D 2, i.e., to take
X D L2



R
N
�
, at least if one restricts to consideringLq



R
N
�

spaces.

In our case,

c D pCp�1 D p


.N � 2/ a � a2� : (8.14)

Let

M WD N � 2 2 N; q D p � 1 > 0:



8 On the Nature of the Instability of Radial Power Equilibria 149

We want to view c D cM .q/ as a function of q with parameter M , and compare
c D cM .q/ with the optimal Hardy inequality constant. Then q > 2

M
and

c D cM .q/ D .q C 1/

�
2M

q
� 4

q2

�
D 2M C 2M � 4

q
� 4

q2
; (8.15)

dcM.q/

dq
D 4 � 2M

q2
C 8

q3
D 2

q2

�
2 �M C 4

q

�
: (8.16)

dcM .q/
dq > 0 for all q > 0 and M D 1; 2. For M � 3,

(
dcM .q/

dq > 0 for q < q�
M ;

dc.q/
dq < 0 for q > q�

M ;
(8.17)

where

q�
M D 4

M � 2 forM � 3:

Thus cM .q/ is maximized at q�
M . We want to know whether

cM .q/ � M2

4
or cM .q/ >

M2

4
;

where

M2

4
D
�
N � 2
2

�2

is the Hardy constant.
For M D 1 [resp. M D 2], M

2

4
D 1

4
[resp. 1] and

c1.q/ D 2 � 2

q
� 4

q2

[resp. c2.q/ D 4 � 4

q2
]

increases from 0 at q D 2 to 2 at q D 1 [resp. from 0 at q D 1 to 4 at q D 1].
Since p > N

N�2 implies q > 2
M

(D 2 or 1, according to M D 1 or 2), we have

cM .q/ >
M2

4
; (8.18)
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and for M D 1,

c1 .q/ >
1

4

iff

2 � 2

q
� 4

q2
>
1

4

iff

q >
4C 8

p
2

7
I

while if M D 2, (8.18) holds iff

4 � 4

q2
> 1;

iff

q >
2p
3
:

Furthermore, when M D 1,

c � M2

4
D 1

4

iff

2

M
D 2 < q � 4C 8

p
2

7
(which exceeds 2),

and when M D 2,

c � M2

4
D 1

iff

2

M
D 1 < q � 2p

3
(which exceeds 1).
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For M � 3 (or N � 5), by (8.15),

max
q
cM .q/ D cM .q

�
M/ D cM

�
4

M � 2

�

D 2M C .M � 2/2
2

� .M � 2/2

4

D 2M C .M � 2/2
4

D
�
M C 2

2

�2
D N2

4
:

This exceeds M2

4
, the Hardy constant. Fix M and let

SM WD
�
q >

2

M
W cM .q/ � M2

4

	
; TM WD

�
q >

2

M
W cM .q/ > M2

4

	
:

(8.19)

Since cM is increasing up to q D q�
M and decreasing thereafter, it follows that TM

is an interval whose endpoints (except possibly for 2
M

) are the roots of

cM .q/� M2

4
;

i.e., by (8.15),

2M C 2M � 4

q
� 4

q2
� M2

4
D 0

iff

�
2M � M2

4

�
q2 C .2M � 4/q � 4 D 0;

iff (forM ¤ 8)

q D q˙ D
4 � 2M ˙

r
.2M � 4/2 C 16

�
2M � M2

4

�

4M � M2

2

D 4 � 2M ˙ 4
p
M C 1

4M � M2

2

:

(8.20)

For 3 � M � 7, we have

4 � 2M < 0
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Table 8.1 M 3 4 5 6 7

cqM 4
5

p

5�1

2

8
p

6�12

15

2
p

7�4

3

16
p

2�20

17

and

4M � M2

2
D M

2
.8 �M/ > 0:

Hence

q� < 0 < qC;

In this case, therefore

cM .q/ >
M2

4
for 3 � M � 7

iff

q 2 .cqM ;1/

where cqM is the qC, given by (8.20) (Table 8.1).
In each case, for 3 � M � 7,

inf q D 2

M
< cqM

and so (see (8.19))

SM D
�
q W q > 2

M
; cM .q/ � M2

4

	
D
�
2

M
;cqM

�
:

For M D 8, by (8.15),

max c8 .q/ D c8


q�
8

� D c8

�
2

3

�

D 16C 12
2
3

� 4

2
3

�2 D 16C 18� 9

D 25 >
82

4
D 16;

thus

q 2 T8 D
�
q >

1

4
W c8 .q/ > 16
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iff q > 1
4

and

c8 .q/ D 16C 12

q
� 4

q2
> 16

iff

q >
1

3
:

So

S8 D
�
1

4
;
1

3

�
; T8 D

�
1

3
;1

�
:

Now let M � 9. By (8.20), cM .q/ D M2

4
iff q satisfies

�
2M � M2

4

�
q2 C .2M � 4/q � 4 D 0:

Here is why. For M � 9,

cM .q/ � M2

4
D 2M C 2M � 4

q
� 4

q2
� M2

4
D 0

iff

�
2M � M2

4

�
q2 C .2M � 4/q � 4 D 0:

This equation has two roots,

q� D 4

�2CM � 2p1CM

�
�8M CM2

; qC D 4

�2CM C 2

p
1CM

�
�8M CM2

;

which satisfy 0 < 2
M
< q� < q�

M < qC.

q 2 SM D
�
q >

2

M
W cM .q/ � M2

4

	

iff q > 2
M

and

cM .q/ D 2M C 2M � 4
q

� 4

q2
� M2

4
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iff

2

M
< q � q� D 4


�2CM � 2p1CM
�

�8M CM2
or q � qC

D 4

�2CM C 2

p
1CM

�
�8M CM2

:

So

SM D
 
2

M
;
4

�2CM � 2p1CM

�
�8M CM2

#
[
"
4

�2CM C 2

p
1CM

�
�8M CM2

;C1
!
;

i.e.,

p 2
 
2CM

M
;
4

�2 �M � 2

p
1CM

�CM2

�8M CM2

#
[

�
"
4

�2 �M C 2

p
1CM

�CM2

�8M CM2
;C1

!
: (8.21)

On the other hand,

q 2
�
q >

2

M
W cM .q/ > M2

4

	

iff q > 2
M

and

cM .q/ D 2M C 2M � 4
q

� 4

q2
>
M2

4

iff

q� D 4

�2CM � 2

p
1CM

�
�8M CM2

< q < qC D 4

�2CM C 2

p
1CM

�
�8M CM2

:

So

q 2
 
4

�2CM � 2p1CM

�
�8M CM2

;
4

�2CM C 2

p
1CM

�
�8M CM2

!
;

i.e.,

p 2
 
4

�2 �M � 2p1CM

�CM2

�8M CM2
;
4

�2 �M C 2

p
1CM

�CM2

�8M CM2

!
:
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We call the equilibrium v0 strongly linearly unstable in case c >


N�2
2

�2
,

in which case the linearized semigroup consists of unbounded operators. We

have the borderline unstable case when c � 

N�2
2

�2
, which corresponds to the

linearized semigroup satisfying the stability condition (P3) or the asymptotical
stability condition (P4), which it does in this case.

We summarize these results in the following theorem.

Theorem 8.1 Let v0.x/ D Cr�a be the unique radial positive equilibrium
solution of

@u

@t
D �u C up

for x 2 R
N , r D jxj, N � 3 and p > N

N�2 .
For 3 � N � 10, v0 is strongly linearly unstable if

N D 3 and p 2
 
3; p�

3 D 11C 8
p
2

7

!
;

N D 4 and p 2
 
2; p�

4 D 3C 2
p
3

3

!
;

N D 5 and p 2
�
1
2

3
; p�

5 D 1
4

5

�
;

N D 6 and p 2
 
1
1

2
; p�

6 D
p
5C 1

2

!
;

N D 7 and p 2
 
1
2

5
; p�

7 D 3C 8
p
6

15

!
;

N D 8 and p 2
 
1
1

3
; p�

8 D 2
p
7 � 1
4

!
;

N D 9 and p 2
 
1
2

7
; p�

9 D 16
p
2 � 13

7

!
;

N D 10 and p 2
�
1
1

4
; p�

10 D 1
1

3

�
:

For N � 10, v0 is borderline linearly unstable for p � p�
N . For N � 11, let

p��.N / D 4

�2 �M � 2p1CM

�CM2

�8M CM2
;

p�C.N / D 4

�2 �M C 2

p
1CM

�CM2

�8M CM2
:
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Then

2

N � 2
< p�� .N / < p�C .N / < 1

and v0 is strongly linearly unstable iff

p 2 
p�� .N / ; p�C.N /
�
;

and v0 is borderline linearly unstable iff

p 2
�

2

N � 2
; p�� .N /

�
[ p�C .N / ;1

�
:

Thus there is a change in the nature of the linearized instability of the power
equilibrium v0 to the nonlinear heat equation when N increases from 10 to 11.
For each N � 11, there are three nonempty pairwise disjoint intervals with union


2
N�2 ;1

�
, namely

�
2

N � 2 ; p
�� .N /

�
;



p�� .N / ; p�C.N /

�
;


p�C .N / ;1

�
;

such that v0 is strongly linearly unstable in the second interval, but v0 is borderline
linearly unstable in the first and third interval.

We remark that in the borderline linearly unstable case, v0 is not only stable in
the sense of (P3), it is in fact asymptotically stable in the sense of (P4). Here is a
proof.

As before, let A
 be the Friedrichs extension of A D � C 


jxj2 on L2


R
N
�

(or

L2.0;1/ if N D 1) if 
 � 

N�2
2

�2
, and any selfadjoint extension if 
 >



N�2
2

�2
;

selfadjoint extensions of �C 


jxj2 always exists.

Lemma 8.1 If 
 � 

N�2
2

�2
, then

ketA
 f k ! 0

as t ! 1 for all f 2 L2 
RN � (or L2.0;1/ if N D 1).

Proof By the spectral theorem and the associated functional calculus,A
 is unitarily
equivalent to a multiplication operator. There is a measure space .˝;˙; �/ and a
˙-measurable function

m W ˝ ! R
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(with m W ˝ ! .�1; 0/ if 
 � 

N�2
2

�2
such that A
 is unitarily equivalent (via a

unitary operatorU ) to multiplication bym. Thus for all f 2 L2 
RN �/ (orL2.0;1/

if N D 1) and for Of 2 L2 .˝;˙; �/ the corresponding function (i.e., Of D Uf ),

��etA
 f ��2 D
Z
˝

e2tm.!/
ˇ̌
ˇ Of .!/

ˇ̌
ˇ2�.d!/ ! 0

as t ! 1 by Lebesgue’s Dominated Theorem, since m.!/ < 0 a.e.. ut
Consequently (P4) holds with 
 � 


N�2
2

�2
.

Often when studying (8.1), one makes use of the maximum principle or,
equivalently, the fact that f .x/ � 0 for x 2 R

N implies


et�f

�
.x/ � 0 for a.e.

x 2 R
N and t > 0 (provided et�f exists). But our proof did not make use of this.

Thus one can consider extending our results to

@u

@t
D �.��/mu C up

for t > 0, x 2 R
N and m D 2; 3; � � � . We will present such results in a future paper.

8.4 In Search of a Better Principle of Linearized
Stability/Instability

Consider the partial differential equation

@u

@t
D F.u/; (8.22)

whereF is given its maximal possible domain. LetX � Y be Banach spaces and let
G be a suitable restriction of F to Y so that the corresponding initial value problem
(possibly with boundary conditions) can be written as

du

dt
D G.u/; u.0/ D u0: (8.23)

This problem is wellposed in Y if one has the usual existence, uniqueness and
continuous dependence. We call (8.23) wellposed if it is wellposed in some space Y .

Similarly, an equilibrium solution of (8.22) is asymptotically stable in X (even
if  0 is not in X ) if f 2 X , u satisfies (8.23) in Y D span . 0/ � X with u0 D
 0 C f and u.t/ !  0 as ! 1, provided kf kX is small enough. Similarly for
stable, unstable, etc. Thus proving stability involves finding a space, perhaps “the
right space”, in which the equilibrium becomes stable. From another perspective,
we study stability and instability in the affine subspace  0 �X of Y .
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These definitions can be extended to linearized stability of equilibria. Let
F . 0/ D 0 so that  0 is an equilibrium of (8.22). One may speak of  0 as being
asymptotically stable in X even if  0 is not in X . Namely,  0 is asymptotically
stable in the affine space  0 � X if f 2 X , (8.22) holds with u0 D  0 C f , and
kf kX is small enough implies

ku.t/ �  0kX ! 0 as t ! 1:

Similarly for stable, unstable, etc.
Gui et al., in an interesting series of papers [5, 6, 12], discussed the stability of

v0.x/ D Cr�a

as an equilibrium of (8.1). Their results are as follows. One says that v0 is “unstable
in any reasonable sense” if 3 � N � 10 or if N � 11 and

p < p�C.N /

(see our Theorem of Sect. 8.3 for the definition of p�C.N /). However, they showed
that v0 is stable in certain weighted sup norm spaces and certain weightedLp spaces
if p > p�C.N / and N � 11.

But in the unstable cases, one could possibly have stability if one perturbed v0
by a small vector in, say, a suitable subset of L2



R
N
�
, a sort of a stable manifold.

This seems a possibility whenever v0 is borderline linearly unstable. This remains
to be explored, especially for 3 � N � 10. Furthermore, in casem � 2, no stability
results are known (although we have some borderline linearly unstable results in
some cases).

Acknowledgements We thank Peter Polacik for very interesting comments and suggestions which
inspired this research. We also thank Gisèle Goldstein for her valuable help in the early stages
of this research. This research was finished while the second author was visiting Professor J. A.
Goldstein in The University of Memphis. The second author acknowledges partial financial support
from Nature Science Fund of Shaanxi Province, No. 2012JM1014.

References

1. Arendt, G., Ruiz Goldstein, G., Goldstein, J.A.: Outgrowths of Hardy’s inequality, recent
advances in differential equations and mathematical physics. Contemp. Math. 412, 51–68
(2006)

2. Baras, P., Goldstein, J.A.: The heat equation with a singular potential. Trans. Am. Math. Soc.
284, 121–139 (1984)

3. Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups. Lecture Notes in
Mathematics, vol. 1223, pp. 61–73. Springer, Berlin (1986)

4. Galaktionov, V.A., Kamotski, I.V.: On nonexistence of Baras-Goldstein type for higher-order
parabolic equations with singular potentials. Trans. Am. Math. Soc. 362, 4117–4136 (2010)



8 On the Nature of the Instability of Radial Power Equilibria 159

5. Gui, C., Ni, W.N., Wang, X.: On the stability and instability of positive steady states of a
semilinear heat equation in R

n. Commun. Pure Appl. Math. 45, 1153–1181 (1992)
6. Gui, C., Ni, W.N., Wang, X.: Further study on a nonlinear heat equation. J. Differ. Equ. 169,

588–613 (2001)
7. Kalf, H., Schmincke, U.W., Walter, J., Wüst, R.: On the Spectral Theory of Schrödinger and

Dirac Operators with Strongly Singular Potentials. Lecture Notes in Mathematics, vol. 448,
pp. 182–226. Springer, Berlin (1975)

8. Mizoguchi, N.: Rate of type II blowup for a semilinear heat equation. Math. Ann. 339, 839–877
(2007)

9. Polacik, P., Yanagida, E.: On bounded and unbounded global solutions of a supercritical
semilinear heat equation. Math. Ann. 327, 745–771 (2003)

10. Rellich, F.: Perturbation Theory of Eigenvalue Problems. New York University Lecture Notes,
vol. 1954. Reprinted by Gordon and Breach, New York/London (1969)

11. Ruess, W.M.: Linearized stability for nonlinear evolution equation. J. Evol. Equ. 3, 361–373
(2003)

12. Wang, X.: On the Cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc.
337, 549–589 (1993)



Chapter 9
Abstract Elliptic Problems Depending
on a Parameter and Parabolic Problems
with Dynamic Boundary Conditions

Davide Guidetti

Dedicated to the memory of Alfredo Lorenzi

Abstract We study abstract elliptic problems depending on a complex parameter.
Such parameter appears also in the boundary conditions. Next, we consider abstract
parabolic systems with dynamic boundary conditions. Applications are given to
parameter elliptic boundary value problems and to concrete parabolic problems.

9.1 Introduction

The aim of this paper is twofold. First, we want to study abstract elliptic problems
of the form

�
�u.x/� u00.x/C Au.x/ D f .x/; x > 0;

�u.0/� 
u0.0/C Bu.0/ D h;
(9.1)

depending on the complex parameter �. The assumptions that we shall make,
concerning (9.1), are modeled on the concrete situation that A is a second order
strongly elliptic operator in the variable y 2 R

n�1, so that D2
x C A may be thought

as a second order strongly elliptic operator in the variables .x; y/, u and f are
functions of x 2 R

C, with values in a space of mappings with domain R
n�1, so

that they depend, in fact, on .x; y/ 2 R
C � R

n�1. In this order of ideas, u.0/
and u0.0/ represent, respectively, the trace and the normal derivative of u on the
subspace x D 0, while B is a (usually) unbounded operator defined in a space
of functions with domain R

n�1 and 
 2 R
C. In applications, B may be a first

order differential operator in the variable y, so that (9.1) may be thought as a
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nonhomogeneous boundary value problem, with the complex parameter� appearing
also in the boundary condition.

The precise abstract assumptions concerning (9.1) are denominated .B1/� .B2/
and are explicitly written in Sect. 9.3. The concrete inspiring model, which we have
briefly described, is treated in more detail in Sect. 9.5 and is used as a basis to
study more complicated situations. Concrete elliptic boundary value problems with
a complex parameter in the boundary conditions of the form

�
�u.�/ �A.�;D�/u.�/ D f .�/; � 2 ˝;
�u.� 0/C B.� 0;Dx/u.� 0// D h.� 0/; � 0 2 @˝ (9.2)

are studied in [16] and [10], with ˝ domain in R
n with smooth boundary @˝ ,

A.�;D�/ strongly elliptic of the second order and B.� 0;D�/ appropriate first order
operator. From our point of view, the main result of these researches seems to be
the following (see [10, Theorem 2] and [16]): let p 2 .1;1/ and let us consider the
operator

8<
:

A W f.u; g/ 2 W 2;p.˝/ �W 2�1=p;p.@˝/ W g D uj@˝g
! Lp.˝/ �W 1�1=p;p.@˝/;

A .u; g/ D .A.�;D�/u;�B.�;D�/uj@˝/:
(9.3)

Then, under suitable assumptions (which we are going to mention in the sequel) A
is the infinitesimal generator of an analytic semigroup in Lp.˝/ �W 1�1=p;p.@˝/.

We pass to consider abstract elliptic systems with a structure which is close to
that of (9.1) and compare it with the corresponding results in this paper. We quote
[2, 3], where systems of the form

8<
:
�u.x/ � u00.x/C Au.x/ D f .x/; 0 < x < 1;

�u.0/� ˛u0.0/ D f1;

�u.1/C ˇu0.1/ D f2

(9.4)

are considered. Here A is a selfadjoint, positive operator in the Hilbert space H , ˛
and ˇ are complex numbers belonging to appropriate sectors, f 2 Lp..0; 1/IH/
(1 < p < 1), for each k 2 f1; 2g fk belongs to the real interpolation space .H;
D.A//1�mk=2�1=.2p/;p , withmk D 0 if ˛ D 0 (boundary condition of Dirichlet type),
mk D 1 if ˛ ¤ 0 (boundary condition of Robin type). It is proved that, if � belongs
to an appropriate sector and j�j is sufficiently large, (9.4) has a unique solution u in
W 2;p..0; 1/IH/\ Lp..0; 1/ID.A//. Moreover, an estimate of the type

j�jkukLp..0;1/IH/ C ku00kLp..0;1/IH/ C kAukLp..0;1/IH/
� C Œj�jmaxfmkgkf kLp..0;1/IH/ CP2

kD1 j�j�1Cmk.kfkkH;D.A//1�mk=2�1=.2p/;p
Cj�j1�mk=2�1=.2p/kfkkH/�

(9.5)
holds. Perturbations of the abstract boundary conditions are also treated.
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Concerning system (9.1), we assume that A is an operator in a UMD Banach
space E , such that, for some �A 2 Œ0; �/,

˙�A WD f� 2 C n f0g W jArg.�/j � �Ag [ f0g 	 �.�A/:

Moreover, f�.� C A/�1 W � 2 ˙�Ag is R-bounded in L .E/, 
 2 R
C, �B

is the infinitesimal generator of a strongly continuous (not necessarily analytic)
semigroup in E , commuting with A in the sense of the resolvent and such that
its domain D.B/ contains D.A1=2/. Under these conditions, we are able to show
that, if p 2 .1;1/ and � 2 ˙minf�A;�=2g, there exist !;M in R

C such that, if
j�j � !, f 2 Lp.RCIE/, h 2 .E;D.A//1=2�1=.2p/;p , (9.1) has a unique solution u
in W 2;p.RCIE/\Lp.RCID.A//; moreover an estimate of the form

j�jkukLp.RCIH/ C ku00kLp.RCIH/ C kAukLp.RCIH/
� M.kf kLp.RCIE/ C khk.E;D.A//1=2�1=.2p/;p /

(9.6)

holds (Theorem 9.5). Differently from [2], we have chosen to work in R
C instead

of Œ0; 1�. Employing our results, it is not difficult to obtain a theorem which is
analogous to Theorem 9.5, in Œ0; 1� (see, for this kind of arguments, [11]): for (9.4),
in case ˛ ¤ 0 and ˇ ¤ 0, we can obtain existence and uniqueness, together with an
estimate in the form

j�jkukLp..0;1/IH/ C ku00kLp..0;1/IH/ C kAukLp..0;1/IH/
� M.kf kLp..0;1/IE/ C kf1k.E;D.A//1=2�1=.2p/;p C kf2k.E;D.A//1=2�1=.2p/;p /;

which is better than (9.5).
So Theorem 9.5 seems to extend the quoted result of [2], in case m1 D m2 D 1,

in many directions: we may replace a Hilbert space with a UMD space and we can
afford an operatorB in the second equation which is not covered by the perturbation
result of [2]. Moreover estimate (9.6) seems better that (9.5) (in casem1 D m2 D 1),
and it allows to prove the following fact, that, as we shall see in the applications, may
be thought as an abstract generalization of the result already discussed, concerning
A in (9.3): assume that �A � �

2
; let G be defined as follows:

8<
:
D.G/ WD f.u; g/ 2 ŒW 2;p.RCIE/\ Lp.RCID.A//� � .E;D.A//1�1=.2p/;p W

u.0/ D gg;
G.u; g/ WD .D2

xu � Au; 
Dxu.0/� Bu.0// D .D2
xu � Au; 
Dxu.0/� Bg/:

(9.7)

Then G is the infinitesimal generator of an analytic semigroup in Lp.RCIE/ �
.E;D.A//1=2�1=.2p/;p (Corollary 9.3).
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The second main subject of the paper is the abstract parabolic problem

8<
:
Dtu.t; x/�D2

xu.t; x/C Au.t; x/ D f .t; x/; t 2 .0; T /; x 2 R
C;

Dtu.t; 0/� 
Dxu.t; 0/C Bu.t; 0/ D h.t/; t 2 .0; T /;
u.0; x/ D u0.x/; x 2 R

C:
(9.8)

The assumptions that we employ, concerning A, 
 , B , are the same as in the
elliptic case, with the supplementary condition �A � �

2
. Of course, we can already

get some information using the fact that G is the infinitesimal generator of an
analytic semigroup and, moreover, we are able to find necessary and sufficient
conditions in order that (9.8) have solutions u in Lp..0; T / � R

CIE/, with Dtu,
D2
xu, Au in the same class and ujxD0 in W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/ \

Lp..0; T /I .E;D.A//1�1=.2p/;p//, for every p 2 .1;1/ n f 3
2
g. We remark that, in

case p < 3
2
, we have not uniqueness, because we are able to prescribe ujxD0 at the

initial time t D 0 (see Theorem 9.6).
This result has some connections with the work of J. Prüss [20]. In this paper

the author considers, among other things, a problem which is similar to (9.8)
(see Theorem 4.3). The main differences are the following: first of all, the main
assumption (in Prüss’ work), concerning A and B , is that they have equibounded
purely imaginary powers, with power angles less than �

2
. This implies, in particular

(see [9, Corollary 2.9]), that, at least in case � � 1; 0� 	 �.B/, the spectrum 	.B/

of B is contained in the set of complex numbers z such that jArg.z/j � �0, for
some �0 < �

2
, which does not necessarily happen, in case if �B is the infinitesimal

generator of a strongly continuous semigroup. In particular, it does not seem to hold
for the application in Sect. 9.5. On the other hand, in [20] it is not assumed that
D.A1=2/ 	 D.B/ and the solution is searched in a more restricted class than ours.

Concerning work of other authors, we want to mention also the paper [18],
where the author studies a system, in a Hilbert space setting, which has some
connections with (9.8) and has applications to networks with coupled dynamic
boundary conditions.

Now we describe, more in detail, how the paper is organized. It consists of five
sections, with this introduction.

Section 9.2 treats preliminary technical material, concerning fractional powers
of operators, interpolation theory, abstract Sobolev spaces, R-boundedness, which
is employed throughout the paper.

Sections 9.3 and 9.4 are dedicated to the aforementioned abstract elliptic and
parabolic systems (9.1) and (9.8).

Section 9.5 is dedicated to applications. We have avoided to apply (as it would
be possible) the abstract results to elliptic and parabolic problems in cylindrical
space domains (see, for example, [11, 26]). After some simple applications to
elliptic and parabolic problems with constant coefficients in half-spaces, we employ
them to give a different proof of the already mentioned generation result in [10].
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In this paper it was treated the case of second order strongly elliptic systems
in variational form, with conormal derivative as operator B . We treat the case
of a scalar second order equation in non variational form, with B general first
order operator such that the boundary is not characteristic (see Theorem 9.9 and
Corollary 9.8). Moreover, we are able to precise necessary and sufficient conditions
so that it has solutions in W 1;p..0; T /ILp.˝// \ Lp..0; T /IW 2;p.˝//, with uj@˝
in W 1;p..0; T /IW 1�1=p;p.@˝//\Lp..0; T /IW 2�1=p;p.@˝// (Theorem 9.10). The
main tool is the abstract parabolic maximal regularity result in Theorem 9.6. This
final achievement should be new.

The final section is an appendix, with some results, concerning traces, which are,
in essence, known, but we were not able to find in this generality in mathematical
literature.

9.2 Preliminaries

We introduce some notations and some preliminary results, which will be useful in
the sequel.

We shall indicate with N and N0 the sets of positive and nonnegative integers,
respectively, with R

C the set of positive real numbers. 
 will be used to indicate the
convolution in the one dimensional time variable t in .0; T / (0 < T � 1).

If ˝ is an open subset of Rn, we shall indicate with D.˝/ the space of elements
of C1.˝/, with compact support. S .Rn/ will indicate the space of elements of
C1.Rn/ rapidly decaying, with all their derivatives. F will be used to indicate the
Fourier transform.

The letter C will indicate a positive constant, which will be allowed to be
different from time to time. In a sequence of inequalities, in order to stress the fact
that the constants may change, we shall write C0; C1; : : : . If we want to stress the
dependence of C on ˛, ˇ, we shall write C.˛; ˇ; : : : /.

Let E and F be complex Banach spaces. We shall indicate with L .E; F / the
Banach space of bounded linear operators from E to F . In case E D F , we
shall simply write L .E/. The notation E ,! F will mean that the space E is
continuously embedded into the space F .

Customarily we shall work in a fixed Banach space E , with a norm k � k, without
specifying this every time.

If A W D.A/ ! E is linear, with D.A/ linear subspace of E , we shall say that
A is an operator in E . We shall indicate with �.A/ its resolvent set. If A is a closed
linear operator in E , its domain D.A/ becomes a Banach space if we equip it with
the norm

kxkD.A/ WD kxkE C kAxk; x 2 D.A/:
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We introduce the following

Definition 9.1 Let A and B be linear operators in E . We shall say that they
commute in the sense of the resolvent if, 8� 2 �.A/, 8� 2 �.B/,

.� � A/�1.� � B/�1 D .� � B/�1.� � A/�1:

Remark 9.1 It is well known that, in order that A and B commute in the sense of
resolvents, it suffices that there exist �0 2 �.A/, �0 2 �.B/, such that .�0 � A/�1
and .�0 � B/�1 commute.

Lemma 9.1 Let A and B be linear operators in E , commuting in the sense of the
resolvent. Then:

(I) if x 2 D.B/ and � 2 �.A/, .� � A/�1x 2 D.B/. Moreover, B.� � A/�1x D
.� � A/�1Bx;

(II) if �A and �B are infinitesimal generators of strongly continuous semigroups
.e�tA/t�0 and .e�tB/t�0, 8t; s 2 Œ0;1/,

e�tAe�sB D e�sBe�tA:

Moreover, .e�tAe�tB/t�0 is a strongly continuous semigroup in E .

Proof It is elementary. We observe only that (II) follows from Hille’s construction
of e�tA (see [23, Chapter 3]), showing that e�tA coincides with lim

n!1.1C n�1A/�n

in a strong sense. ut
Definition 9.2 Let E be a Banach space, let A be a densely defined linear operator
in E and � 2 Œ0; �/. We shall say that A 2 O.�/ if

˙� WD f� 2 C n f0g W jArg.�/j � �g [ f0g 	 �.�A/;

and f�.�C A/�1 W � 2 ˙�g is bounded in L .E/.
Clearly, if 0 � �1 � �2 < � , O.�2/ 	 O.�1/. If A 2 O.0/, we shall say that it

is positive.

Remark 9.2 If A 2 O.�/, with � 2 Œ0; �/, then it is of type .� � �;M/, for
some M � 1, in the sense of Definition 2.3.1 in [23]. We observe also that, as a
consequence of a simple perturbation argument, if A 2 O.�/, there exists � 2 RC,
such that A 2 O.� C �/. Finally, it is easily seen that, if A 2 O.�/ for some
� 2 Œ0; �/, � 2 C n f0g and jArg.�/j � �, �C A is positive.

If A is a positive operator in the Banach spaceE , its factional powersA˛ (˛ � 0)
are well defined (see, for example, [23, Chapter 2]). If 0 � ˛ � ˇ,D.Aˇ/ 	 D.A˛/.
Moreover, there exists C.˛; ˇ/ in R

C, such that, if f 2 D.Aˇ/,

kA˛f k � C.˛; ˇ/kf k1�˛=ˇkAˇf k˛=ˇ: (9.9)
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It is known that, if A 2 O.�/ (0 � � < �) and ˛ 2 .0; 1/, A˛ 2 O..1 �
˛/� C ˛�/ (see [23, Proposition 2.3.2]). In particular, if ˛ � 1

2
, A˛ 2 O. / for

some  � �
2

, implying that �A˛ is the infinitesimal generator of an exponentially
decaying analytic semigroup .e�tA˛ /t�0.

We shall employ the following

Theorem 9.1 Let A 2 O.�/, for some � 2 Œ0; �/, in the Banach space E and let
˛ 2 .0; 1�. Then, 8� 2 ˙� , D..� C A/˛/ D D.A˛/. Moreover, .� C A/˛ � A˛

can be extended to an element of L .E/, which we indicate with the same notation.
Finally, there is C 2 R

C, such that 8� 2 ˙�

k.�C A/˛ �A˛kL .E/ � C j�j˛:

For a proof, see [23, Lemma 2.3.5].
If E0 and E1 are compatible Banach spaces, 0 < � < 1, p 2 Œ1;1�, we

shall indicate with .E0;E1/�;p the corresponding real interpolation space (see, for
example, [5, 24]). We shall freely use the main properties of these interpolation
functors, for which we refer to (for example) [5, 12, 24]. In some cases these
interpolation spaces can be characterized quite precisely. We examine some results
in this direction.

If E is a Banach space, we shall indicate with Lp�.RCIE/ the standard vector
valued Lp space, with respect to the measure � such that d� D 1

t
dt.

Theorem 9.2 Let E , F be Banach spaces, with F ,! E and let A be a positive
operator in E , � 2 .0; 1�, p 2 Œ1;1�. Then

.E;D.A//�;p D fx 2 E W t ! t �A.t CA/�1x 2 Lp�.RCIE/g:

Moreover, an equivalent norm in .E;D.A//�;p is

x ! kxk C kt �A.t C A/�1xkLp
�
.RCIE/I

(II) assume that 8t 2 R
C .t C A/�1.F / 	 F and there exists C 2 R

C, such
that k.t C A/�1jF kL .F / � Ct�1. Then

.E;D.A/ \ F /�;p D .E;D.A//�;p \ .E; F /�;p:

For a proof, see [24, Subsection 1.14.2] for (I), [14, Theorem 5] for (II).
A simple consequence of Theorem 9.2 is the following

Proposition 9.1 Let A be a positive operator in the complex Banach space E and
let ˝ be a measure space. Then, if p 2 .1;1/, � 2 .0; 1/,

.Lp.˝IE/ILp.˝ID.A///�;p D Lp.˝I .E;D.A//�;p/;

with equivalent norms.
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Proof It follows easily from Theorem 9.2 and the theorem of Fubini, thinking of
Lp.˝ID.A// as the domain of the positive operator in Lp.˝IE/ A .u/.!/ WD
AŒu.!/�. ut

We shall employ also the connection between real interpolation spaces and trace
spaces:

Theorem 9.3 Let E0, E1 be compatible Banach spaces, 1 < p < 1, 0 � j < m,
with j;m 2 Z. Then

fu.j /.0/ W u 2 Lp.RCIE1/; u.m/ 2 Lp.RCIE0/g D .E0;E1/m�p�1
�j

m ;p
:

Proof See [14, Theorem 2] or [12, Chapter II]. ut
In the following lemma we collect some well known facts, concerning fractional

powers and interpolation theory:

Lemma 9.2 Let A be a positive operator in the Banach space E . Then:

(I) 8˛ 2 .0; 1/,

.E;D.A//˛;1 ,! D.A˛/ ,! .E;D.A//˛;1I

(II) if 0 � ˛ < ˇ � 1, � 2 .0; 1/, p 2 Œ1;1�,

.D.A˛/;D.Aˇ//�;p D .E;D.A//.1��/˛C�ˇ;p;

with equivalent norms;
(III) if ˛; ˇ 2 R

C, A˛ and Aˇ commute in the sense of resolvents.
Let ˛; ˇ 2 Œ0; 1/, with ˛ C ˇ < 1, 1 � p � 1. Then:

(IV) A˛ maps continuously D.A˛Cˇ/ onto D.Aˇ/, and .E;D.A//˛Cˇ;p onto
.E;D.A//ˇ;p;

(V) in particular, if ˛ � 1
2

and p < 1, the part of A˛ in .E;D.A//ˇ;p ,
with domain .E;D.A//˛Cˇ;p , is the infinitesimal generator of an analytic
exponentially decreasing semigroup in .E;D.A//ˇ;p .

Proof (I) is proved in [24, Section 1.15.2];
(II) follows from (I) and the reiteration theorem;

(III) follows from the fact that

.A˛/�1.Aˇ/�1 D A�˛A�ˇ D A�˛�ˇ D .Aˇ/�1.A˛/�1

(see [23, Subsection 2.3.1]), and Remark 9.1;
(IV) follows immediately from the definition of fractional powers (see [23, Sub-

section 2.3.1]), (II) and the interpolation property, employing also the fact that
A�˛ mapsD.Aˇ/ intoD.A˛Cˇ/;
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(V) first of all, we observe that, as p < 1 andD.A/ is dense in E ,D.A/ is dense
in .E;D.A//ˇ;p (see [5, Theorem 3.4.2]). We deduce that .E;D.A//˛Cˇ;p
is dense in .E;D.A//ˇ;p . Moreover, by (III), it is easily seen that e�sA˛ and
.AC s/�1 commute. So, if f 2 .E;D.A//ˇ;p , in case ke�sA˛kL .E/ � Me��s
(for certain M;� 2 R

C, 8s � 0),

R1
0

ktˇA.t C A/�1e�sA˛f kp dt
t

D R1
0

ke�sA˛ ŒtˇA.t CA/�1f �kp dt
t

� .Me��s/p
R1
0 kŒtˇA.t C A/�1f �kp dt

t
;

implying, as an application of Theorem 9.2, that, for each s � 0, e�sA˛ maps
.E; D.A//ˇ;p into itself and the norm of its part in this space is exponentially
decreasing. The strong continuity is a consequence of the fact that

lim
s!0

Z 1

0

ktˇA.t C A/�1.e�sA˛ f � f /kp dt

t
D 0;

by the dominated convergence theorem. ut
Let I be an open interval in R and let E be a Banach space. If m 2 N0, we shall

indicate withW m;p.I IE/ the space of elements ofLp.I IE/whose derivatives u.j /,
with j � m, in the sense of E�valued distributions, belong to Lp.I IE/, equipped
with the norm

kf kW m;p.I IE/ WD
mX
jD0

kf .j /kLp.I IE/: (9.10)

We refer, for these spaces, to [12] and [4].
We shall need the following version of Da Prato-Grisvard’s theory:

Theorem 9.4 Let B andG be linear operators in the Banach space E . Assume the
following:

(I) B 2 O.�B/, G 2 O.�G/, for some �B , �G in Œ0; �/, such that �B C �G > �;
(II) B and G commute in the sense of the resolvent.

Then:

I) G C B (with domainD.B/ \D.G/) is closable;
(II) there exists a linear operatorP , which is an extension of the closure ofGCB ,

such that P is positive;
(III) if y 2 .E;D.G//ˇ;p , for some ˇ 2 .0; 1/ and p 2 Œ1;1� and � 2 Œ0;1/,

.�C P/�1y 2 D.G/ \D.B/ and G.�C P/�1y and B.�C P/�1y belong
to .E;D.G//ˇ;p;
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(IV) there exists M 2 R
C, such that, if � 2 Œ0;1/, y 2 .E;D.G//ˇ;p ,

.1C �/k.�C P/�1yk.E;D.G//ˇ;p C kG.�C P/�1yk.E;D.G//ˇ;p
CkB.�C P/�1yk.E;D.G//ˇ;p � M kyk.E;D.G//ˇ;p :

For a proof, see [6], and also [7, Theorem 2.2].
A well known application of Theorem 9.4 is the following

Proposition 9.2 Let �A be the infinitesimal generator of an analytic semigroup in
the complex Banach space E . Let T 2 R

C, p 2 Œ1;1/, � 2 .0; 1/ and consider the
mild solution

u.t/ WD
Z t

0

e�.t�s/Af .s/ds; t 2 .0; T /

of the Cauchy problem

�
u0.t/C Au.t/ D f .t/; t 2 .0; T /;
u.0/ D 0:

(9.11)

Then, if f 2 Lp..0; T /I .E;D.A//�;p/, u 2 W 1;p..0; T /I .E;D.A//�;p/, u.t/ 2
D.A/ for almost every t , Au 2 Lp..0; T /I .E;D.A//�;p/ and (9.11) holds almost
everywhere.

Proof See [6, Theorem 4.7]. ut
We shall employ complex valued Sobolev spaces W s;p.˝/, Besov spaces

Bs
p;p.˝/, Bessel potential spaces Hs;p.˝/ of several real variables with ˝ open

subset of R
n. We recall only some basic facts referring to [1] and [24] for more

detailed presentations.
Let ˝ be an open subset of Rn, with suitably smooth boundary @˝ , or˝ D R

n,
and let p 2 .1;1/. If m 2 N0, we indicate with W m;p.˝/ the standard Sobolev
space. If ˛ 2 .0; 1/ and .�; �/˛ stands for the complex interpolation functor, we have

.Lp.˝/;W m;p.˝//˛ D .Lp.˝/;Hm;p.˝//˛ D Hm˛;p.˝/; (9.12)

while

.Lp.˝/;W m;p.˝//˛;p D Bm˛
p;p.˝/: (9.13)

It is also known that Hm˛;p.˝/ D W m˛;p.˝/ if m˛ 2 N, while Bm˛
p;p.˝/ D

W m˛;p.˝/ if 2˛ 62 N. In the particular case p D 2, we have

W m˛;2.˝/ D Hm˛;2.˝/ D Bm˛
2;2 .˝/ 8˛ 2 .0; 1/:
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These facts can be extended to corresponding spaces in differential manifolds. It is
also of interest to treat vector valued spaces (see, in particular, [4]). In particular, if
I is an open interval in R andE is a Banach space, it is still true that, in case ˛ 62 N,
W ˛;p.I IE/ coincides with the Besov space B˛

p;p.I IE/ (see [12, 22, 24]).
If I is an interval in R and m 2 N0 we shall indicate with BUCm.I IE/ the

Banach space of functions f W I ! E , which are uniformly continuous and
bounded, with their derivatives or order less or equal to m, equipped with a natural
norm.

The following facts hold and will be used in the sequel:

Proposition 9.3 (I) If 0 � ˛0 < ˛1, � 2 .0; 1/, p 2 Œ1;1�,

.W ˛0;p.I IE/;W ˛1;p.I IE//�;p D B.1��/˛0C�˛1
p;p .I IE/;

with equivalent norms;
(II) if ˛ > mC 1

p
with m 2 N, B˛

p;p.I IE/ ,! BUCm.I IE/.
Proof Concerning (I), see [13, Proposition 5.9]; for (II), see [22, Corollary 26]. ut

In the following we shall employ the notions of UMD Banach space with
property .˛/ and of R-boundedness. We introduce the elements of this theory that
we shall need. The main reference is [17].

In the following we shall indicate with .rn/n2N the Rademacher sequence in
Œ0; 1�.

Definition 9.3 Let E0, E1 be Banach spaces, B 	 L .E0;E1/. We shall say
that B is R-bounded in L .E0;E1/ if there exists C 2 R

C such that, 8n 2 N,
8T1; : : : ; Tn 2 B, 8f1; : : : ; fn 2 E0,

k
nX

kD1
rkTkfkkL2..0;1/IE1/ � Ck

nX
kD1

rkfkkL2..0;1/IE0/:

Remark 9.3 If B is R-bounded, it is bounded, but the converse does not in general
hold, except in the case that E0 and E1 are Hilbert spaces.

Definition 9.4 The complex Banach space E has property .˛/ if there exists C 2
R

C, such that, 8n 2 N, 8˛ij 2 C within j˛ijj � 1, 8fij 2 E .1 � i; j � n/,

Z
Œ0;1��Œ0;1�

k
nX

iD1

nX
jD1

ri .u/rj .v/˛ijfijkdudv � C

Z
Œ0;1��Œ0;1�

k
nX

iD1

nX
jD1

ri .u/rj .v/fijkdudv:

Definition 9.5 A complex Banach space E is UMD if the Hilbert transform is
a linear bounded operator in Lp.RIE/ for some (or, equivalently, for any) p 2
.1;1/.
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Remark 9.4 Prototypes of UMD spaces with property .˛/ are spaces Lp.˝;�/,
with 1 < p < 1 and � 	-finite measure (see [17, Sections 3.14 and 4.10]).

The following fact holds (see [11, Lemma 1.4]):

Lemma 9.3 Let E be a UMD Banach space and let A be a positive operator in
E , such that f�.� C A/�1 W � � 0g is R-bounded in L .E/. Then, if I is an
interval in R with nonempty interior, p 2 .1;1/, m 2 N, u 2 Lp.I ID.A// and
u.m/ 2 Lp.I IE/, for each k 2 f1; : : : ; m�1g u.k/ 2 Lp.I ID.A1�k=m//. Moreover,
there exists C in R

C, such that

ku.k/kLp.I ID.A1�k=m// � C.kukLp.I ID.A// C ku.m/kLp.I IE//;

with C independent of u.

9.3 Abstract Elliptic Problem Depending on a Complex
Parameter

In this section we study some abstract elliptic problems depending on the complex
parameter �. We start with the following:

�
�u.x/� u00.x/C Au.x/ D f .x/; x > 0;

u.0/ D g
(9.14)

with � 2 C and the assumptions:

(A1) E is a UMD Banach space with property .˛/;
(A2) A is a closed, densely defined operator in E . Moreover, for some �A 2 Œ0; �/,

A 2 O.�A/ and f�.�CA/�1 W � 2 ˙�Ag is R� bounded in L .E/.

We start by considering the case g D 0. To this aim, we introduce the following
operator A , with p 2 .1;1/:

�
A W fu 2 W 2;p.RCIE/\ Lp.RCID.A// W u.0/ D 0g ! Lp.RCIE/;
A u D �u00 C Au:

(9.15)

Proposition 9.4 Assume that (A1)–(A2) hold. Let p 2 .1;1/. Then:

(I) W 2;p.RCIE/\ Lp.RCID.A// 	 W 1;p.RCID.A1=2//;
(II) A , as operator in Lp.RCIE/, belongs to O.�A/. Moreover f�.� C A /�1 W

� 2 ˙�Ag is R-bounded in L .Lp.RCIE//; more precisely, if i; j; k are
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nonnegative integers, such that i C j C k D 2, fj�ji=2Aj=2Dk
x .� C A /�1 W

� 2 ˙�Ag is R-bounded in L .Lp.RCIE//;
(III) in case �A � �

2
, �A is the infinitesimal generator of an analytic semigroup

in Lp.RCIE/.
Proof (I) follows from Lemma 9.3.

Concerning (II), the case �A D �
2

is treated in Step 2 of the proof of Theorem 2.3
in [11]. The general case can be obtained analogously, with simple modifications of
the previous Lemma 2.4 and Theorem 2 in [11] (replacing �

2
with �A). ut

We consider (9.14), in case f � 0, and observe that, by virtue of Theorem 9.3,
a necessary condition, in order that there exist a solution u in W 2;p.RCIE/ \
Lp.RCID.A//, is g 2 .E;D.A//1�1=.2p/;p . The following result holds:

Proposition 9.5 Let E be a Banach space and let A be an operator in E , A 2
O.�A/, for some �A 2 Œ0; �/. Then, 8� 2 ˙�A , 8g 2 .E;D.A//1�1=.2p/;p , the
system

�
�u.x/� u00.x/C Au.x/ D 0; x > 0;

u.0/ D g

has a unique solution u in W 2;p.RCIE/\ Lp.RCID.A//. Precisely,

u.x/ D e�x.�CA/1=2g; x 2 R
C:

Moreover, there exists C 2 R
C, independent of � and g, such that, if i; j; k 2 N0

and i C j C k D 2,

j�ji=2kDj
xA

k=2ukLp.RCIE/ � C.kgk.E;D.A//1�1=.2p/;p C j�j1�1=.2p/kgk/:

Proof The first statement follows from (for example) [11, Lemma 2.2]. Moreover,
by Theorem 5.4.2/1 in [26],

k.�C A/ukLp.RCIE/ � C.kgk.E;D.A//1�1=.2p/;p C j�j1�1=.2p/kgk/;

which implies the case i D k D 0; j D 2. From the inequality j�jkuk C kAuk �
Ck.� C A/ujj, we obtain the cases i D 2; j D k D 0 and i D j D 0, k D 2.
The other cases follow from the foregoing, the identity u0.x/ D �.�C A/1=2u.x/,
Theorem 9.1 and (9.9). ut
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Corollary 9.1 Assume that (A1)–(A2) hold. Consider system (9.14). Let p 2
.1;1/. Then, if � 2 ˙�A , if f 2 Lp.RCIE/ and g 2 .E;D.A//1�1=.2p/;p , (9.14)
has a unique solution u in W 2;p.RCIE/ \ Lp.RCID.A//. Moreover, there exists
C 2 R

C, such that, if i; j; k 2 N0 and i C j C k D 2,

kj�ji=2Dj
xA

k=2ukLp.RC
IE/ � C.kf kLp.RC

IE/ C kgk.E;D.A//1�1=.2p/;p C j�j1�1=.2p/kgk/:

Proof It follows immediately from Propositions 9.4 and 9.5. ut
We introduce the following notations: if � 2 ˙�A , f 2 Lp.RCIE/ and g 2

.E;D.A//1�1=.2p/;p , we indicate with

S.�; f; g/ (9.16)

the solution in W 2;p.RCIE/\ Lp.RCID.A// of (9.14).
Now we want to study the abstract elliptic problem depending on the parameter

� (9.1), with the following assumptions:

(B1) (A1)–(A2) hold, 
 2 R
C;

(B2) �B is the infinitesimal generator of a strongly continuous semigroup in E , A
and B commute in the sense of the resolvent andD.A1=2/ 	 D.B/.

We start by considering the case f � 0. Looking for solutions u in
W 2;p.RCIE/ \ Lp.RCID.A//, we are reduced, by Proposition 9.5, to search
for g in the space .E; D.A//1�1=.2p/;p such that

Œ�C 
.�C A/1=2 C B�g D h: (9.17)

We shall solve (20.4) thinking of it as a perturbation to the following

.�C 
A1=2 C B/g D h: (9.18)

We recall that, as A is positive, �
A1=2 is the infinitesimal generator of an
exponentially decreasing analytic semigroup. So we shall employ the following

Lemma 9.4 Let B and G be closed densely defined operators in the Banach space
E . Assume the following:

(a) �B is the infinitesimal generator of a strongly continuous semigroup in E;
(b) �G is the infinitesimal generator of an analytic semigroup in E;
(c) B and G commute in the sense of the resolvent;
(d) D.G/ 	 D.B/.
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Let ˇ 2 .0; 1/ and p 2 Œ1;1/. Then:

(I) B maps .E;D.G//1Cˇ;p WD fx 2 D.G/ W Gx 2 .E;D.G//ˇ;pg into
.E;D.G//ˇ;p; as a consequence, the following operator

�
F W .E;D.G//1Cˇ;p ! .E;D.G//ˇ;p;

F x WD �Bx � Gx

is well defined;
(II) F is the infinitesimal generator of an analytic semigroup in .E;D.G//ˇ;p .

Proof (I) Let t 2 �.�G/. Then B.t C G/�1 2 L .E/. It maps also D.G/ into
itself, as, in case g 2 D.G/, B.t C G/�1g D .t C G/�1Bg (see Lemma 9.1
(I)). So, by interpolation, it maps .E;D.G//ˇ;p into itself. Assume that g 2
.E;D.G//1Cˇ;p . Then Bg D B.t C G/�1.t C G/g 2 .E;D.G//ˇ;p , as .t C
G/g 2 .E;D.G//ˇ;p .

(II) We set

T0.t/ WD e�tBe�tG D e�tGe�tB; t � 0: (9.19)

Then, by Lemma 9.1(II), .T0.t//t�0 is a strongly continuous semigroup in E .
Arguing as in the proof of Lemma 9.2(V) (replacingA withGC t0, with t0 2 R

such that t0 C G is positive, and e�sA˛ with T0.s/), we can show that 8t � 0,
T0.t/ maps .E;D.G//ˇ;p into itself. Moreover, if we indicate with T .t/ the
restriction of T0.t/ to .E;D.G//ˇ;p , we obtain that T .t/ 2 L ..E;D.G//ˇ;p/

and .T .t//t�0 is a strongly continuous semigroup in .E;D.G//ˇ;p . We observe
that the same happens also for .e�tB/t�0: the restrictions of these operators to
.E;D.G//ˇ;p give rise to a strongly continuous semigroup in the same space.

We show that the infinitesimal generator of .T .t//t�0 is F .
Let g 2 .E;D.G//1Cˇ;p . Then, if s > 0,

T .s/g � g D e�sB.e�sG � 1/g C .e�sB � 1/g
D �e�sB

R s
0
e�	GGgd	 � R s

0
e�	BBgd	:

As Gg and Bg belong to .E;D.G//ˇ;p , the functions s ! e�	GGg and s ! e�	BBg
are continuous with values in .E;D.G//ˇ;p . We deduce that

T .s/g � g

s
D �e�sB 1

s

Z s

0

e�	GGgd	 � 1

s

Z s

0

e�	BBgd	 ! �Gg � Bg .s ! 0/

in .E;D.G//ˇ;p . So, if we indicate with F 0 the infinitesimal generator of .T .t//t�0,
we can say that F 0 is an extension of F . To show the inverse, it suffices to observe
that, by Theorem 9.4, �.F / contains Œt0;1/, for some t0 2 R.
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It remains to show that .T .t//t�0 is analytic. To this aim, we can try to show that,
if t > 0, T .t/ maps .E;D.G//ˇ;p into .E;D.G//1Cˇ;p , and there exists M 2 R

C,
such that

kFT.t/kL ..E;D.G//ˇ;p/ � Mt�1

for t 2 .0; 1� (see [19, Theorem 5.2 in Chapter 2]). We start by recalling
that .e�tG/t�0 is analytic. It is clear that this holds even for its restriction to
.E;D.G//ˇ;p . We deduce that, for t > 0, e�tG maps .E;D.G//ˇ;p into the domain
of the part of G in .E;D.G//ˇ;p , which is .E;D.G//1Cˇ;p . Moreover, for some
M0 2 R

C,

kGe�tGkL ..E;D.G//ˇ;p/ � M0t
�1; t 2 .0; 1�:

So, it is clear that, 8t 2 R
C, T .t/ maps .E;D.G//ˇ;p into .E;D.G//1Cˇ;p .

Moreover, if t 2 .0; 1�, and f 2 .E;D.G//ˇ;p , for certain positive constants
C0; C1; C2 2 R

C, as G C B 2 L ..E;D.G//1Cˇ;p; .E;D.G//ˇ;p/,

k.G C B/T .t/f k.E;D.G//ˇ;p � C0.kT .t/f k.E;D.G//ˇ;p C kGe�tGe�tBf k.E;D.G//ˇ;p /
� C1.kf k.E;D.G//ˇ;p C t�1ke�tBf k.E;D.G//ˇ;p / � C2t

�1kf k.E;D.G//ˇ;p :

The proof is complete. ut
Corollary 9.2 Let ˇ 2 .0; 1

2
/, p 2 Œ1;1/. Then:

(I) consider Eq. (9.18); there exists !;C in R
C such that, if � 2 ˙�=2, j�j � !

and h 2 .E;D.A//ˇ;p , (9.18) has a unique solution g in .E;D.A//ˇC1=2;p .
Moreover,

j�jkgk.E;D.A//ˇ;p C kgk.E;D.A//1=2Cˇ;p
� Ckhk.E;D.A//ˇ;p : (9.20)

(II) Consider Eq. (9.17). Then there exist !0; C 0 in R
C such that, if � 2

˙minf�A;�=2g, j�j � ! and h 2 .E;D.A//ˇ;p , (9.18) has a unique solution
g in .E; D.A//ˇC1=2;p . Moreover an estimate like (9.20) holds.

Proof (I) We set G WD 
A1=2. From the explicit expression of .� � A1=2/�1
(see [23, Proposition 2.3.2]), we deduce that G and B commute in the
sense of the resolvent. Moreover, .E;D.A//ˇ;p D .E;D.G//2ˇ;p and, by
Lemma 9.2 (IV), .E;D.G//1C2ˇ;p D .E;D.A//ˇC1=2;p . So the conclusion
follows from Lemma 9.4 and Theorem 5.2 in [19] (characterizing the resolvent
of infinitesimal generators of analytic semigroups).

(II) We consider (9.17), with � 2 ˙minf�A;�=2g, j�j � !, and h 2 .E;D.A//ˇ;p . We
write it in the form

.�C 
A1=2 C B/g D hC 
ŒA1=2 � .AC �/1=2�g:
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Setting

v WD .�C 
A1=2 C B/g;

we obtain that v should solve

v D 
ŒA1=2 � .�C A/1=2�.�C 
A1=2 C B/�1v C h: (9.21)

Applying Theorem 9.1 to the part of A in .EID.A//ˇ;p , we obtain, from (I),

k
ŒA1=2 � .�C A/1=2�.�C 
A1=2 C B/�1kL ..EID.A//ˇ;p/
� C0j�j1=2k.�C 
A1=2 C B/�1kL ..EID.A//ˇ;p/ � C1j�j�1=2: (9.22)

We deduce that, if j�j is sufficiently large, (9.21) has a unique solution v in
.EID.A//ˇ;p and, for some C2 independent of � and h,

kvk.EID.A//ˇ;p � C2khk.EID.A//ˇ;p :

We conclude that (9.17) has the unique solution

g D .�C 
A1=2 C B/�1v;

so that, by (I),

j�jkgk.EID.A//ˇ;p C kgk.EID.A//1=2Cˇ;p
� C3kvk.EID.A//ˇ;p � C4khk.EID.A//ˇ;p :

ut
Now we are able to study (9.1).

Theorem 9.5 Assume that (B1)–(B2) are satisfied. Let p 2 .1;1/, � 2
˙minf�A;�=2g. Then there exist !;M in R

C such that:

(I) if j�j � !, f 2 Lp.RCIE/, h 2 .E;D.A//1=2�1=.2p/;p , (9.1) has a unique
solution u in W 2;p.RCIE/ \Lp.RCID.A//;

(II) if i; j; k are nonnegative integers, such that i C j C k D 2,

j�ji=2kAj=2Dk
xukLp.RCIE/ � M.kf kLp.RCIE/ C khk.E;D.A//1=2�1=.2p/;p /:

Proof As a first step, we consider the case f � 0. Then, by Proposition 9.5 and
Corollary 9.2 (taking ˇ D 1

2
� 1

2p
), we have that, if j�j � !, (9.1) has the unique

solution

u.x/ D e�x.�CA/1=2 Œ�C 
.�C A/1=2 C B��1h:
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We deduce

j�ji=2kAj=2Dk
xukLp.RCIE/ � C.kŒ�C 
.�C A/1=2 C B��1hk.E;D.A//1�1=.2p/;p

Cj�j1�1=.2p/kŒ�C 
.�C A/1=2 CB��1hk/
� C.kŒ�C 
.�C A/1=2 C B��1hk.E;D.A//1�1=.2p/;p

Cj�j1�1=.2p/kŒ�C 
.�C A/1=2 CB��1hkE;D.A//1=2�1=.2p/;p /
� C1khk.E;D.A//1=2�1=.2p/;p :

Now let us consider the general case. Let u1 be the unique solution in
W 2;p.RCIE/\ Lp.RCID.A// of

�
�u1.x/ � u00

1 .x/C Au1.x/ D f .x/; x 2 R
C;

u1.0/ D 0;
(9.23)

existing by Corollary 9.1. We consider the system

�
�u2.x/ � u00

2.x/C Au2.x/ D 0; x > 0;

�u2.0/� 
u0
2.0/C Bu2.0/ D h� Œ�u1.0/� 
u0

1.0/C Bu1.0/� D hC 
u0
1.0/:
(9.24)

We observe that, by Theorem 9.3, u0
1.0/ 2 .E;D.A//1=2�1=.2p/;p . Then, applying

what we have seen in the first step, in case j�j � !, (9.24) has a unique solution
in W 2;p.RCIE/ \ Lp.RCID.A// and it is clear that (9.1) has the only solution
u WD u1Cu2. It remains to estimate u. By Corollary 9.1, if i; j; k 2 N0, iCjCk D 2,

j�ji=2kAj=2Dk
xu1kLp.RCIE/ � C1kf kLp.RCIE/: (9.25)

Employing what we have seen in the first step, we deduce, owing to Theorem 9.3
and (again) Corollary 9.1,

j�ji=2kAj=2Dk
xu2kLp.RCIE/ � C2.khk.E;D.A//1=2�1=.2p/;p C ku0

1.0/k.E;D.A//1=2�1=.2p/;p /
� C3.khk.E;D.A//1=2�1=.2p/;p C ku1kLp.RCID.A// C kD2

xu1kLp.RCIE//
� C4.kf kLp.RCIE/ C khk.E;D.A//1=2�1=.2p/;p /:

The proof is complete. ut
Remark 9.5 By inspection of the previous proof, recalling the notation (9.16), we
can see that the solution u of (9.1) can be represented in the form

u D S.�; f; g/;

with

g D Œ�C 
.�C A/1=2 C B��1Œ
DxS.�; f; 0/.0/C h�:
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Corollary 9.3 Assume that (B1)–(B2) hold, with �A � �
2

. Let G be the operator
defined in (9.7). Then G is the infinitesimal generator of an analytic semigroup in
Lp.RCIE/ � .E;D.A//1=2�1=.2p/;p .

Proof By Theorems 9.5 and 9.3, �.G/ contains f� 2 C W j�j � R;Re.�/ � 0g, for
some R in R

C. Observe that we have also, in case .u; g/ D .� �G/�1.f; h/,

kgk.E;D.A//1�1=.2p/;p D ku.0/k.E;D.A//1�1=.2p/;p
� C0.kD2

xukLp.RCIE/ C kukLp.RCID.A///
� C1.kf kLp.RCIE/ C khk.E;D.A//1=2�1=.2p/;p /;

and

kukLp.RCIE/ C kgk.E;D.A//1=2�1=.2p/;p
� j�j�1.kD2

xukLp.RCIE/ C kAukLp.RCIE/ C kf kLp.RCIE/
C
kDxu.0/k.E;D.A//1=2�1=.2p/;p C kBu.0/kE;D.A//1=2�1=.2p/;p C khkE;D.A//1=2�1=.2p/;p /

� C0j�j�1.kf kLp.RCIE/ C khkE;D.A//1=2�1=.2p/;p /:

It remains to show thatD.G/ is dense in Lp.RCIE/ � .E;D.A//1=2�1=.2p/;p .
To this aim, we start by observing that

fu 2 W 2;p.RCIE/\Lp.RCID.A// W u.0/ D 0g

is dense in Lp.RCIE/. In fact, as D.A/ is dense in E , it is easily seen that
Lp.RCID.A// is dense in Lp.RCIE/. Given z in Lp.RCID.A//, we indicate
with Qz its trivial extension to R. Pick ! in C1

0 .R
C/, such that

R
R
!.y/dy D 1

and set, for k 2 N, !k.y/ WD k!.ky/. Then it is a standard fact that !k 
 Qz
belongs to W 2;p.RID.A// and converges to Qz in Lp.RID.A// as k ! 1.
We deduce that W 2;p.RCIE/ \ Lp.RCID.A// is dense in Lp.RCIE/. Let z 2
W 2;p.RCIE/ \ Lp.RCID.A//. We fix � in C1.Œ0;1//, such that �.y/ D 1 if
y � 2, �.y/ D 0 if 0 � y � 1, Set, for k 2 N, �k.y/ WD �.ky/. Then, 8k 2 N,
�kz 2 W 2;p.RCIE/ \ Lp.RCID.A/, �k.0/z.0/ D 0 and .�kz/k2N converges to z
in Lp.RCIE/ as k ! 1. We conclude that fu 2 W 2;p.RCIE/\Lp.RCID.A// W
u.0/ D 0g is dense in Lp.RCIE/.

Let now .f; h/ 2 Lp.RCIE/� .E;D.A//1=2�1=.2p/;p . As .E; D.A//1�1=.2p/;p is
dense in .E; D.A// 1

2� 1
2p ;p

(see [5, Theorem 3.4.2]), we take a sequence .gk/k2N in

.E;D.A//1�1=.2p/;p , such that

kgk � hk.E;D.A//1=2�1=.2p/;p ! 0 .k ! 1/:

For each k, we take vk in W 2;p.RCIE/ \ Lp.RCID.A//, such that vk.0/ D gk .
As fu 2 W 2;p.RCIE/ \ Lp.RCID.A// W u.0/ D 0g is dense in Lp.RCIE/,
we may choose wk in W 2;p.RCIE/ \ Lp.RCID.A//, such that wk.0/ D 0 and
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kf � vk � wkkLp.RCIE/ ! 0 (k ! 1). We set uk WD vk C wk . Then uk 2
W 2;p.RCIE/\ Lp.RCID.A// and

kuk � f kLp.RCIE/ C kuk.0/� hk.E;D.A//1=2�1=.2p/;p ! 0 .k ! 1/: ut

9.4 Abstract Parabolic Problems

In this section we are going to study the abstract parabolic problem (9.8), with the
following assumptions:

(C) E is a UMD Banach space with property .˛/. A is a closed, densely defined
operator in E belonging to the class O.�

2
/ and f�.� C A/�1 W � 2 ˙�

2
g is

R-bounded in L .E/. �B is the infinitesimal generator of a strongly continuous
semigroup in E , A and B commute in the sense of the resolvent and D.A1=2/ 	
D.B/. 
 2 R

C.
In order to study system (9.8), we shall need to study even the system

8<
:
Dtu.t; x/ �D2

xu.t; x/C Au.t; x/ D f .t; x/; t 2 .0; T /; x 2 R
C;

u.t; 0/ D g.t/; t 2 .0; T /;
u.0; x/ D u0.x/; x 2 R

C
(9.26)

considered also in [20], under slightly different assumptions. We shall look for
solutions u in the class W 1;2;A

p ..0; T / � R
CIE/, defined as follows: if p 2 Œ1;1�,

W 1;2;A
p ..0; T / � R

CIE/
WD fu 2 Lp..0; T / � R

CID.A// W Dtu;Dxu;D2
xu 2 Lp..0; T / � R

CIE/g:
(9.27)

W 1;2;A
p ..0; T / � R

CIE/ will be equipped with the natural norm

kuk
W
1;2;A
p ..0;T /�RCIE/

WD kukLp..0;T /�RCID.A// C kDtukLp..0;T /�RCIE/ CP2
kD1 kDk

xukLp..0;T /�RCIE/:
(9.28)

We observe that, as a consequence of Lemma 9.3, if u 2 W 1;2;A
p ..0; T / � R

CIE/,
Dxu 2 Lp..0; T / � R

CID.A1=2//.
If u 2 W 1;2;A

p ..0; T / � R
CIE/, we set

�u WD ujxD0: (9.29)
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Now we are going to characterize the functions of the form u.�; 0/, u.0; �/,
Dxu.�; 0/, with u 2 W 1;2;A

p ..0; T / � R
CIE/.

Proposition 9.6 Let p 2 .1;1/ and letA 2 O.�A/, for some �A 2 .0; �/. Then:

(I)

fu.0; �/ W u 2 W 1;2;A
p ..0; T / � R

CIE/g
D B

2�2=p
p;p .RCIE/\Lp.RCI .E;D.A//1�1=p;p/I

(II) if p ¤ 3
2
,

fu.0; �/ W u 2 W 1;2;A
p ..0; T / � R

CIE/; u.�; 0/ � 0g

D

8̂
ˆ̂<
ˆ̂̂:

B
2�2=p
p;p .RCIE/\ Lp.RCI .E;D.A//1�1=p;p/

if 1 < p < 3
2
;

fu0 2 B2�2=p
p;p .RCIE/\ Lp.RCI .E;D.A//1�1=p;p/

W u0.0/ D 0g; if 3
2
< p < 1I

(III)

fu.�; 0/ W u 2 W 1;2;A
p ..0; T / � R

CIE/g
D B

1�1=.2p/
p;p ..0; T /IE/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/:

Let p 2 .1;1/ n f 3
2
g, u0 2 B2�2=p

p;p .RCIE/ \ Lp.RCI .E;D.A//1�1=p;p/,
g 2 B1�1=.2p/

p;p ..0; T /IE/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/; then:

(IV) if p < 3
2
, there exists u 2 W 1;2;A

p ..0; T / � R
CIE/ such that u.0; �/ D u0 and

u.�; 0/ D g;
(V) if p > 3

2
, there exists u 2 W 1;2;A

p ..0; T / � R
CIE/ such that u.0; �/ D u0 and

u.�; 0/ D g if and only if u0.0/ D g.0/;
(VI) fDxu.�; 0/ W u 2 W 1;2;A

p ..0; T / � R
CIE/g

D W 1=2�1=.2p/;p..0; T /IE/\ Lp..0; T /I .E;D.A//1=2�1=.2p/;p/:

Proof We postpone the proof to Sect. 9.6. ut
Remark 9.6 One should preliminarily observe (see the proof of Proposition 9.6 in
Sect. 9.6) that, if u 2 W 1;2;A

p ..0; T / � R
CIE/ and p > 3

2
,

u 2 C.Œ0; T �I .Lp.RCIE/;W 2;p.RCIE/\ Lp.RCID.A///1�1=p;p/
,! C.Œ0; T �IB2�2=p.RCIE//:

So u.0; �/ 2 B2�2=p.RCIE// ,! BC.Œ0;1/IE/, while u.�; 0/ 2 B
1�1=.2p/
p;p ..0; T /I

E/ ,! C.Œ0; T �IE/.
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Corollary 9.4 We assume that (A1)–(A2) hold, with �A � �
2

, and consider system
(9.26). Let p 2 .1;1/ n f 3

2
g. Then, the following conditions are necessary and

sufficient, in order that (9.26) have a unique solution u inW 1;2;A
p ..0; T /�R

CIE/:
(I) f 2 Lp..0; T / � R

CIE/;
(II) g 2 W 1�1=.2p/;p..0; T /IE/\Lp..0; T /I .E;D.A//1�1=.2p/;p/;

(III) u0 2 B2�2=p
p;p .RCIE/\ Lp.RCI .E;D.A//1�1=p;p/;

(IV) in case p > 3
2
, g.0/ D u0.0/.

Proof It follows from Proposition 9.6 that the conditions (I)–(IV) are necessary.
In order to show that they are sufficient, we start by observing that the case

g � 0 was essentially treated, in more general form, in [11, Theorem 3.2 and
Proposition 3.1], replacing R

C with .0; 1/ . So, we obtain that, in case g � 0, we
have a unique solution u inW 1;2;A

p ..0; T /�R
CIE// if and only if f 2 Lp..0; T /�

R
CIE/, u0 2 B2�2=p

p;p .RCIE/\Lp.RCI .E;D.A//1�1=p;p/ and u0.0/ D 0 if p > 3
2
.

In general, applying again Proposition 9.6, we may pick v 2 W 1;2;A
p ..0; T /�RCI

E/, such that v.0; �/ D u0 and v.�; 0/ D g. Taking as new unknown u � v, we are
reduced to the case u0 D 0 and g D 0, replacing f with f � Dtv C D2

xv � Av 2
Lp..0; T / � R

CIE/. ut
Remark 9.7 A result quite similar to Corollary 9.4 (with slightly different assump-
tions) was proved in [20, Theorem 4.1].

Now we study (9.8). We shall employ the following simple general fact:

Lemma 9.5 Let G be the infinitesimal generator of the strongly continuous
semigroup .etG/t�0 in the Banach space E and let u 2 W 1;1..0; T /IE/ \
L1..0; T /ID.G//. Then:

u.t/ D etGu.0/C
Z t

0

e.t�s/G.u0.s/� Gu.s//ds

almost everywhere in .0; T /.

Proof See [19, Section 4.2]. ut
Now we consider the operator G defined in (9.7). By Remark 9.5, if h 2 .E;

D.A//1=2�1=.2p/;p , the second component g of .��G/�1.0; h/ coincides with Œ�C

.�CA/1=2 CB��1h. So the second component of etG.0; g/ coincides withK.t/g,
with

K.t/ D 1

2�i

Z
�

e�t Œ�C 
.�C A/1=2 C B��1d�; (9.30)
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with � piecewise regular path, contained in the resolvent of G, connecting
1e�i�0 to 1ei�0 , for some �0 2 .�

2
; �/. K is analytic from R

C to
L ..E;D.A//1=2�1=.2p/;p I .E; D.A//1�1=.2p/;p/, and, if 0 < t � T ,

tkK.t/kL ..E;D.A//1=2�1=.2p/;p;.E;D.A//1�1=.2p/;p/ C kK.t/kL ..E;D.A//1=2�1=.2p/;p � C.T /:

Corollary 9.5 Assume that (C) holds.

(I) Let u 2 W 1;2;A
p ..0; T / � R

CIE/ be such that �u D u.�; 0/ 2 W 1;p..0; T /I
.E;D.A//1=2�1=.2p/;p/ \ Lp..0; T /I .E;D.A//1�1=.2p/;p/, for some p 2
.1;1/. We set

h.t/ WD Dtu.t; 0/� 
Dxu.t; 0/C Bu.t; 0/; t 2 .0; T /:

Then, if u.0; �/ D 0, �u.0/ D 0 and Dtu � D2
xu C Au � 0 in .0; T / � R

C, u
coincides with the solution in W 1;2;A

p ..0; T /IE/ of (9.26) with f � 0, u0 D 0

and

g.t/ D
Z t

0

K.t � s/h.s/ds: (9.31)

(II) If h 2 Lp..0; T /I .E;D.A//1=2�1=.2p/;p/ is such that g (defined in
(9.31)), belongs to W 1;p..0; T /I .E; D.A//1=2�1=.2p/;p/ \ Lp..0; T /I .E;
D.A//1�1=.2p/;p/, and u is the solution in W 1;2;A

p ..0; T /IE/ of (9.26), with
f � 0 and u0 D 0, then u solves also (9.8), again with f � 0 and u0 D 0.

Proof (I) This follows from the fact that, by Lemma 9.5, u.t; 0/ coincides
with (9.31).

(II) We fix a sequence .!k/k2N in D..0; T //, such that
R T
0
!k.s/ds D 1 8k 2 N

and !k.t/ D 0 if t � k�1, and set hk WD !k 
 h. Then

hk 2 C1.Œ0; T �I .E;D.A//1=2�1=.2p/;p/:

We consider the system (9.8) taking f � 0, u0 D 0 and replacing h with hk .
Then, by Corollary 9.3 and well known properties of analytic semigroups, there
is a unique solution uk in C1.Œ0; T �ILp.RCIE// \ C.Œ0; T �IW 2;p.RCIE/ \
Lp.RCID.A///, with �uk 2 C1.Œ0; T �I .E;D.A//1=2�1=.2p/;p/ \ C.Œ0; T �I
.E;D.A//1�1=.2p/;p/. Moreover,

gk.t/ WD uk.t; 0/ D
Z t

0

K.t � s/hk.s/ds; t 2 Œ0; T �:

Obviously, uk is also the solution of (9.26), taking f � 0, u0 D 0 and replacing
g with gk . Now, we observe that gk D K 
 hk D K 
 .!k 
 h/ D !k 
 g, and
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Dtgk D !k
Dtg, because g.0/ D 0. We deduce that .gk/k2N converges to g in
W 1;p..0; T /I .E; D.A//1=2�1=.2p/;p/\Lp..0; T /I .E;D.A//1�1=.2p/;p/, so that,
by Corollary 9.4, the sequence .uk/k2N converges to u inW 1;2;A

p ..0; T /IE/. So,
employing Proposition 9.6(VI), we obtain

hk D Dtuk.�; 0/� 
Dxuk.�; 0/C Buk.�; 0/
D Dtgk � 
Dxuk.�; 0/C Bgk ! Dtg � 
Dxu.�; 0/C Bg

D Dtu.�; 0/� 
Dxu.�; 0/C Bu.�; 0/ .k ! 1/

in Lp..0; T /I .E;D.A//1=2�1=.2p/;p/. But, as hk ! h .k ! 1/ in the same
space, we deduce

Dtu.�; 0/� 
Dxu.�; 0/C Bu.�; 0/ � h: ut

Lemma 9.6 Assume that (C) is satisfied. Let p 2 Œ1;1/, � 2 .0; 1
2
/ and

let g be defined as in (9.31). Then, if h 2 Lp..0; T /I .E;D.A//�;p/, g 2
W 1;p..0; T /I .E;D.A//�;p/\ Lp..0; T /I .E;D.A//�C1=2;p/,

Proof We start by considering the problem

�
Dtw.t/C .A1=2 C B/w.t/ D h.t/; t 2 .0; T /;
w.0/ D 0:

(9.32)

By Corollary 9.2, for every ˇ 2 .0; 1
2
/, the part of �.
A1=2 C B/ in .E;D.A//ˇ;p ,

with domain .E; D.A//1=2Cˇ;p , is the infinitesimal generator of an analytic
semigroup in .E;D.A//ˇ;p . By the reiteration theorem, if 0 < ˇ < � < 1

2
,

.E;D.A//�;p D ..E;D.A//ˇ;p; .E;D.A//ˇC1=2;p/2.��ˇ/;p;

So, by Proposition 9.2, if h 2 Lp..0; T /I .E;D.A//�;p/, (9.32) has a unique
solution w in W 1;p..0; T /I .E; D.A//�;p/ \ Lp..0; T /I .E;D.A//1=2C�;p/, which
can be represented in the form

w.t/ D
Z t

0

K2.t � s/h.s/ds;

with

K2.t/ D 1

2�i

Z
�

e�t .�C 
A1=2 C B/�1d�:
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Now we observe that

Œ�C 
.�C A/1=2 C B��1
D .�C 
A1=2 C B/�1.�C 
A1=2 C B/Œ�C 
.�C A/1=2 C B��1

D .�C 
A1=2 C B/�1 C .�C 
A1=2 C B/�1
�
ŒA1=2 � .�CA/1=2�Œ�C 
.�C A/1=2 CB��1:

(9.33)

We set

K3.t/ WD 1

2�i

Z
�

e�t
ŒA1=2 � .�C A/1=2�Œ�C 
.�C A/1=2 C B��1d�:

From

k
ŒA1=2 � .�CA/1=2�Œ�C 
.�C A/1=2 CB��1kL ..E;D.A//�;p � C j�j�1=2

we obtain, for t 2 .0; T /,

kK3.t/kL ..E;D.A//�;p/ � Ct�1=2;

and K3 2 L1..0; T /IL ..E;D.A//�;p/. We immediately deduce that the convolu-
tion operator h ! K3 
 h maps Lp..0; T /I .E;D.A//�;p/ into itself. By (9.33), we
have

g.t/ D
Z t

0

K2.t � s/h.s/ds C
Z t

0

K2.t � s/.K3 
 h/.s/ds;

which implies the statement. ut
Now we are able to prove the following

Theorem 9.6 We consider the Cauchy problem (9.8), with assumption (C). Let p 2
.1;1/ n f 3

2
g. Then:

(I) the following conditions are necessary and sufficient in order that (9.8) have
a solution u in W 1;2;A

p ..0; T / � R
CIE/, with

u.�; 0/ 2 W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/\Lp..0; T /I .E;D.A//1�1=.2p/;p/ W

(a) f 2 Lp..0; T / � R
CIE/;

(b) h 2 Lp..0; T /I .E;D.A//1=2�1=.2p/;p/;
(c) u0 2 B

2�2=p
p;p .RCIE/ \ Lp.RCI .E;D.A//1�1=p;p/, and, in case p > 3

2
,

u0.0/ 2 .E;D.A//1�1=p;p .
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(II) If p > 3
2

the solution is unique;
(III) in case 1 < p < 3

2
, the solution is not unique: more precisely, for each g0 in

.E;D.A//1�1=p;p , (9.8) has a unique solution u such that �u.0/ D g0.

Proof We begin with uniqueness. We start by observing that, owing to Corollary 9.3
and Lemma 9.5, if f � 0, g � 0, u0 � 0, the only solution u with the
declared regularity such that u.�; 0/.0/ D 0 is the trivial one. In case p > 3

2
, by

Proposition 9.6 (V), if u0 � 0, u.�; 0/.0/ D 0, so that we have uniqueness in a full
sense.

Concerning the existence, the necessity of conditions (a)-(b) and of the belonging
of u0 toB2�2=p;p.RCIE/\Lp.RCI .E;D.A//1�1=p;p/ follow from Proposition 9.6.
Assume p > 3

2
. If a solution u with the prescribed regularity exists, we set g WD �u.

As g 2 W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/ \ Lp..0; T /I .E; D.A//1�1=.2p/;p/, by
Theorem 9.2 g.0/ belongs to

..E;D.A//1=2�1=.2p/;p ; .E;D.A//1�1=.2p/;p/1�1=p;p D .E;D.A//1�1=p;p:

So the belonging of u0.0/ to .E;D.A//1�1=p;p follows from Proposition 9.6 (V).
Now we assume that (a)–(c) are satisfied. In case p > 3

2
, we set g0 WD u0.0/,

while, if 1 < p < 3
2
, we fix it arbitrarily in .E;D.A//1�1=p;p . We shall show

there there exists a solution of (9.8), such that u.�; 0/.0/ D g0. We start by fixing v
inW 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/\Lp..0; T /I .E;D.A//1�1=.2p/;p/, such that
v.0/ D g0. As

W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/
,! W 1�1=.2p/;p..0; T /IE/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/;

we can say that, in force of Corollary 9.4, the problem

8<
:
DtU.t; x/ �D2

xU.t; x/C AU.t; x/ D f .t; x/; t 2 .0; T /; x 2 R
C;

U.t; 0/ D v.t/; t 2 .0; T /;
U.0; x/ D u0.x/; x 2 R

C
(9.34)

has a unique solution U in W 1;2;A
p ..0; T / � R

CIE/. Taking z WD u � U as new
unknown, we are reduced to the problem

8<
:
Dt z.t; x/ �D2

xz.t; x/C Az.t; x/ D 0; t 2 .0; T /; x 2 R
C;

Dt z.t; 0/ � 
Dxz.t; 0/C Bz.t; 0/ D h0.t/; t 2 .0; T /;
z.0; x/ D 0; x 2 R

C;
(9.35)

with

h0.t/ WD h.t/ �Dtv.t/C 
DxU.t; 0/� Bv.t/:
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We set

g.t/ WD
Z t

0

K.t � s/h0.s/ds:

Then, by Lemma 9.6,

g 2 W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/:

So, by Corollary 9.5(II), if we indicate with z the solution in W 1;2;A
p ..0; T /IE/

of (9.26), with f � 0 and u0 D 0, we can say that z is a solution to (9.35). ut
Remark 9.8 In case p < 3

2
, if u 2 W 1;2;A

p ..0; T / � R
CIE/, u.0; 0/ is usually not

defined. However, if we assume that u.�; 0/ 2 W 1;p..0; T /I .E;D.A//1=2�1=.2p/;p/\
Lp..0; T /I .E;D.A//1�1=.2p/;p/, u.�; 0/.0/ is certainly defined. So in this case of
relatively low regularity, we are able to prescribe the initial values of the solution
and of its trace in independent way.

9.5 Examples and Applications

We begin by considering simple problems of the form

8<
:
�u.x; y/�D2

xu.x; y/C A.Dy/u.x; y/ D f .x; y/;

.x; y/ 2 R
C � R

n�1;
�u.0; y/� 
Dxu.0; y/C B.Dy/u.0; y/ D h.y/; y 2 R

n�1;
(9.36)

and

8̂
<̂
ˆ̂:

Dtu.t; x; y/ �D2
xu.t; x; y/CA.Dy/u.t; x; y/ D f .t; x; y/;

.t; x; y/ 2 .0; T / � R
C � R

n�1;

Dtu.t; 0; y/ � 
Dxu.t; 0; y/C B.Dy/u.t; 0; y/ D h.t; y/; t 2 .0; T /; y 2 R
n�1;

u.0; x; y/ D u0.x; y/; .x; y/ 2 R
C � R

n�1:

(9.37)

We assume that the following conditions hold:

(E1) m 2 N; A.Dy/ D P
j˛j�2m a˛D˛

y ; B.Dy/ D P
j˛j�m b˛D˛

y ;

(E2) RefPj˛jD2m a˛.i�/˛g > 0, 8� 2 R
n n f0g;

(E3) for some p 2 .1;1/, we set D.B0/ WD fg 2 Lp.Rn�1/ W B.Dy/g 2
Lp.Rn�1/g, B0g WD B.Dy/g (in the sense of distributions). Then �B0 is
the infinitesimal generator of a strongly continuous semigroup in Lp.Rn�1/.
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Remark 9.9 Examples of differential operators satisfying (E3) are first order differ-
ential operatorB.Dy/ D v � ry , with v 2 R

n�1. In this case �B generates the group
of translations .e�tB/t�0 with e�tBg D g.� � tv/.

Other examples are strongly elliptic operators in the form B.Dy/ DP
jˇj�k bˇD

ˇ
y , with k � m, RefPjˇjDk bˇ.i�/ˇg > 0, 8� 2 R

n�1 n f0g. In

this case, D.B/ D W k;p.Rn�1/ and the semigroup is analytic.
Finally, it is not difficult to see that, if B1.Dy/ and B2.Dy/ satisfies (E3), the

same holds for B.Dy/ D B1.Dy/C B2.Dy/ and e�tB D e�tB1e�tB2 , 8t � 0.

We set

E WD Lp.Rn�1/; (9.38)

and introduce the following operator A0:

�
D.A0/ WD W 2m;p.Rn�1/;

A0u.y/ WD A.Dy/u.y/; y 2 R
n�1:

(9.39)

It is known (see, for example, [23, Chapter 3.7]) that there exists �0 � 0, such that,
if we set

A WD A0 C �0; (9.40)

˙�=2 	 �.�A/; moreover, f�.�C A/�1 W � 2 ˙�=2g is R-bounded in L .E/ (see
[8, Chapter II]). Moreover, by Proposition 13.11 in [17], A has equibounded purely
imaginary powers. This implies (see [24, Section 1.15.3]) that, for each ˛ 2 .0; 1/,
D.A˛/ coincides with the complex interpolation space ŒE;D.A0/�˛ . So

D.A1=2/ D Hm;p.Rn�1/ D W m;p.Rn�1/: (9.41)

Therefore, replacing � with � � �0, A.Dy/ with A.Dy/ C �0, B.Dy/ with
B.Dy/C�0 and applying Theorems 9.5 and 9.6, we are able to prove the following
Theorems 9.7 and 9.8:

Theorem 9.7 Consider problem (9.36), with the assumptions (E1)-(E3); let p 2
.1;1/. Then, there exist M;! in R

C, such that, if Re.�/ � 0 and j�j � !, f 2
Lp.RC � R

n�1/, h 2 Bm.1� 1
p /

p;p .Rn�1/, (9.36) has a unique solution u in W 2;p.RCI
Lp .Rn�1//\ Lp.RCIW 2m;p.Rn�1//.
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u belongs also to W 1;p.RCIW m;p.Rn�1//; moreover, if i; j; k are nonnegative
integers, such that i C j C k D 2,

j�ji=2kDk
xukLp.RCIW jm;p.Rn�1// � M.kf kLp.RC�Rn�1/ C khk

B
m.1� 1

p /

p;p .Rn�1/

/:

Theorem 9.8 Consider problem (9.37), with the assumptions (E1)–(E3), and p 2
.1;1/ n f 3

2
g. Then

(I) the following conditions are necessary and sufficient, in order that (9.37) have a
solution u inW 1;p..0; T /ILp.RC �R

n�1//\Lp..0; T /IW 2;p.RCILp.Rn�1//
\Lp..0; T /�R

CIW 2m;p.Rn�1//, with ujxD0 D �u 2 W 1;p..0; T /I Bm.1�1=p/
p;p

.Rn�1// \Lp..0; T /IBm.2�1=p/
p;p .Rn�1//:

(a) f 2 Lp..0; T / � R
C � R

n�1/;
(b) h 2 Lp..0; T /IBm.1�1=p/

p;p .Rn�1//;
(c) u0 2 B

2�2=p
p;p .RCILp.Rn�1// \ Lp.RCIB2m.1�1=p/

p;p .Rn�1// and, in case

p > 3
2
, u0jxD0 2 B2m.1�1=p/

p;p .Rn�1/.

(II) If p > 3
2
, the solution with the declared regularity is unique;

(II) in case p < 3
2
, the solution is not unique: 8g0 2 B2m.1�1=p/

p;p .Rn�1/ there exists
a unique solution such that �u.0/ D g0.

Remark 9.10 The belonging of u to W 1;p..0; T /ILp.RC � R
n�1// \ Lp..0; T /I

W 2;p .RCILp.Rn�1// \ Lp..0; T / � R
CIW 2m;p.Rn�1// is equivalent to the fact

that u, together, with Dtu, D˛
xu (˛ � 2), Dˇ

y u (jˇj � 2m), belongs to Lp..0; T / �
R

C � R
n�1/.

In particular, we get the following

Corollary 9.6 Consider the problem

8<
:
�u.x; y/�D2

xu.x; y/ ��yu.x; y/CA1.Dx;Dy/u.x; y/D f .x; y/;

.x; y/ 2 R
C � R

n�1;
�u.0; y/� 
Dxu.0; y/C v � ryu.0; y/C c0u.0; y/ D g.y/; y 2 R

n�1
(9.42)

with 
 2 R
C, v 2 R

n�1, A1.Dx;Dy/ first order differential operator with constant
coefficients, c0 2 C; let p 2 .1;1/. Then, there exist M;! in R

C, such that,

if Re.�/ � 0 and j�j � !, f 2 Lp.RC � R
n�1/, g 2 B

1� 1
p

p;p .R
n�1/, (9.42) has a

unique solution u inW 2;p.RC �R
n�1/. Moreover, if i; j; k are nonnegative integers,

such that i C j C k D 2,

j�ji=2kDk
xukW j;p.RC�Rn�1/ � M.kf kLp.RC�Rn�1/ C khk

B
1� 1

p
p;p .Rn�1/

/:
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This is a particular case of the estimates in a half-space contained in [16]. Moreover,
we have:

Corollary 9.7 Consider the system

8̂
<̂
ˆ̂:

Dtu.t; x; y/ �D2
xu.t; x; y/ ��yu.t; x; y/C A1.Dx;Dy/u.t; x; y/ D f .t; x; y/;

.t; x; y/ 2 .0; T / � R
C � R

n�1;

Dtu.t; 0; y/ � 
Dxu.t; 0; y/C v � ryu.t; 0; y/ D g.t; y/; .t; y/ 2 .0; T / � R
n�1;

u.0; x; y/ D u0.x; y/; .x; y/ 2 R
C � R

n�1:

(9.43)

Let p 2 .1;1/ n f 3
2
g. Then

(I) the following conditions are necessary and sufficient, in order that (9.43) have
a solution u in

W 1;p..0; T /ILp.RC � R
n�1//\ Lp..0; T /IW 2;p.RCILp.RC � R

n�1//;

with ujxD0 2 W 1;p..0; T /I B1�1=p
p;p .Rn�1//\Lp..0; T /IB2�1=p

p;p .Rn�1//:

(a) f 2 Lp..0; T / � R
C � R

n�1/;
(b) h 2 Lp..0; T /IW 1�1=p;p.Rn�1//;
(c) u0 2 B2�2=p

p;p .RC � R
n�1// and, in case p > 3

2
, u0jxD0 2 B2�2=p

p;p .Rn�1/.

(II) If p > 3
2
, the solution with the declared regularity is unique;

(II) in case p < 3
2
, the solution is not unique: 8g0 2 B

2�2=p
p;p .Rn�1/ there exists a

unique solution such that �u.0; �/ D g0.

Proof Applying Theorem 9.8, we have only to show that

B2�2=p
p;p .RCILp.Rn�1//\Lp.RC; B2�2=p

p;p .Rn�1// D B2�2=p
p;p .RC � R

n�1/:

In fact, employing Proposition 9.1, Theorem 9.2, Proposition 9.3 and the follow-
ing (9.59),

B
2�2=p
p;p .RCILp.Rn�1// \Lp.RC; B2�2=p

p;p .Rn�1//
D .Lp.RCIE/;W 2;p.RCIE//1�1=p;p \ .Lp.RCIE/;Lp.RC;D.A///1�1=p;p

D .Lp.RCIE/;W 2;p.RCIE/\ Lp.RC;D.A///1�1=p;p:

As a consequence of Lemma 9.3, we haveW 2;p.RC; Lp.Rn�1//\Lp.RCID.A// D
W 2;p.RC � R

n�1/. So

.Lp.RCIE/;W 2;p.RCIE/\ Lp.RC;D.A///1�1=p;p
D .Lp.RC � R

n�1/;W 2;p.RC � R
n�1//1�1=p;p

D B
2�2=p
p;p .RC � R

n�1/:

ut
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Corollaries 9.6 and 9.7 admit the following generalization:

Proposition 9.7 Let A.Dx;Dy/ D P
j˛j�2 a˛D˛1

x D
˛2
y , with a˛ 2 R for every ˛ D

.˛1; ˛2/ 2 N0 � N
n�1
0 with j˛j D 2 and

P
j˛jD2 a˛�˛ > 0 8� 2 R

n n f0g. Let
B.Dx;Dy/ WD �
Dx C v � ry C c0, with 
 2 R

C, v 2 R
n�1, c0 2 C.

(I) Consider the system

�
�u.x; y/ � A.Dx;Dy/u.x; y/ D f .x; y/; .x; y/ 2 R

C � R
n�1;

�u.0; y/C B.Dx/u.0; y/ D g.y/; y 2 R
n�1: (9.44)

Let p 2 .1;1/. Then, there exist M;! in R
C, such that, if Re.�/ � 0 and

j�j � !, f 2 Lp.RC � R
n�1/, g 2 B1� 1

p
p;p .Rn�1/, (9.44) has a unique solution

u inW 2;p.RC �R
n�1//. Moreover, if i; j; k are nonnegative integers, such that

i C j C k D 2,

j�ji=2kDk
xukW j;p.RC�Rn�1/ � M.kf kLp.RC�Rn�1/ C khk

B
1� 1

p
p;p .Rn�1/

/:

(II) Consider the system

8̂
<
:̂
Dtu.t; x; y/� A.Dx;Dy/u.t; x; y/ D f .t; x; y/; .t; x; y/ 2 .0; T / � R

C � R
n�1;

Dtu.t; 0; y/C B.Dx;Dy/u.t; 0; y/ D g.t; y/; .t; y/ 2 .0; T / � R
n�1;

u.0; x; y/ D u0.x; y/; .x; y/ 2 R
C � R

n�1:
(9.45)

Let p 2 .1;1/ n f 3
2
g. Then the following conditions are necessary and

sufficient, in order that (9.45) have a solution u in

W 1;p..0; T /ILp.RC � R
n�1//\ Lp..0; T /IW 2;p.RCILp.RC � R

n�1//;

with ujxD0 2 W 1;p..0; T /I B1�1=p
p;p .Rn�1//\Lp..0; T /IB2�1=p

p;p .Rn�1//:

(a) f 2 Lp..0; T / � R
C � R

n�1/;
(b) h 2 Lp..0; T /IW 1�1=p;p.Rn�1//;
(c) u0 2 B2�2=p

p;p .RC � R
n�1// and, in case p > 3

2
, u0jxD0 2 B2�2=p

p;p .Rn�1/.

If p > 3
2
, the solution with the declared regularity is unique; in case p < 3

2
,

the solution is not unique: 8g0 2 B2�2=p
p;p .Rn�1/ there exists a unique solution

such that, if �u D ujxD0, �u.0; �/ D g0.

Proof By [15, Section 4], there exists a linear automorphism H of R
n mapping

RC � R
n�1 into itself and such that ŒA.Dx;Dy/u�ŒH.�; �/� D ��;�.u ı H/.�; �/,

8.�; �/ 2 R
C � R

n�1. Employing this change of variables, we are reduced to
problems in the forms (9.42) and (9.43) and we can prove (I)–(II). ut
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We pass to consider the elliptic problem depending on the complex parameter �

�
�u.�/ �A.�;D�/u.�/ D f .�/; � 2 ˝;
�u.� 0/C B.� 0;D�/u.� 0/ D g.� 0/; � 0 2 @˝; (9.46)

with the following conditions:

(D1) ˝ is an open bounded subset of Rn, lying on one side of its boundary @˝ ,
which is a submanifold of class C2 of Rn;

(D2) A.�;D�/ D P
j˛j�2 a˛.�/D˛

� , a˛ 2 C.˝/ 8˛ with j˛j � 2; if j˛j D 2, a˛
is real valued and

P
j˛jD2 a˛.�/�˛ � N j�j2 for some N 2 R

C, 8� 2 ˝ ,
8� 2 R

n;
(D3) B.� 0;D�/ D P

j˛j�1 b˛.� 0/D˛
� , b˛ 2 C1.@˝/ 8˛ with j˛j � 1; if j˛j D 1,

b˛ is real valued and
P

j˛jD1 b˛.� 0/�.� 0/˛ < 0 8� 0 2 @˝ , where we have
indicated with �.� 0/ the unit normal vector to @˝ in � 0 pointing inside ˝ .

The following result holds:

Theorem 9.9 Assume that (D1)–(D3) hold. Let p 2 .1;1/. Then there exists R 2
R

C, such that, 8� 2 C with j�j � R and jArg.�/j � �
2

, 8f 2 Lp.˝/, 8g 2
W 1�1=p;p.@˝/, (9.46) has a unique solution in W 2;p.˝/. Moreover, there exists
C 2 R

C, such that

j�jkukLp.˝/ C kukW 2;p.˝/ � C.kf kLp.˝/ C kgkW 1�1=p;p.@˝//: (9.47)

Proof We start with an a priori estimate. Assume that u solves (9.46) and vanishes
outsides the neighborhood U of the point �0 2 ˝. Employing a suitable change of
variable � and setting v WD uı�, we are locally reduced to estimate v inW 2;p.RC �
R
n�1/ such that

8<
:
�v.x; y/� A.Dx;Dy/v.x; y/ D A].x; y;Dx;y/v.x; y/C f ].x; y/;

.x; y/ 2 R
C � R

n�1;

�v.0; y/� 
Dxv.0; y/C v � ryv.0; y/ D B].0; y;Dx;Dy/v.x; 0/C g].y/; y 2 R
n�1;

with A.Dx;Dy/ as in the statement of 
 2 R
C, A].x; y;Dx;y / D P

j˛j�2 a
]
˛.x; y/

D˛
x;y , B].x; y;Dx;y/ D P

j˛j�1 b
]
˛.x; y/D

˛
x;y , f ] D f ı �, g] D g ı �.0; �/,

X
j˛jD2

ka]˛kL1.RC�Rn�1/ C
X

j˛jD1
kb]˛kL1.Rn�1/ � �;

with � 2 R
C. We shall use the following simple inequality: if f 2 W ˛;p.Rn�1/,

with 0 < ˛ < 1,

kaf kW ˛;p.Rn�1/ � kakL1.Rn�1//kf kW ˛;p.Rn�1/

CC.kakL1.Rn�1// C krakL1.Rn�1//kf kLp.Rn�1/;



9 Abstract Problems with Dynamic Boundary Conditions 193

for some C 2 R
C, independent of a and f (for inequalities of this type, see [21,

Chapter 5.3.7]).
Employing Proposition 9.7 (I) and standard interpolation inequalities and trace

theorems, if j�j is sufficiently large, we obtain, 8	 2 .0; 2/,
P2

jD0 j�j 2�j2 kvkW j;p.RC�Rn�1/ C j�j 2�	2 kvkW 	;p.RC�Rn�1/

� C0Œ.kf ]kLp.RC�Rn�1/ C kg]kW 1�1=p;p.Rn�1/

CkA].�; �;Dx;y/vkLp.RC�Rn�1/ C kB].0; �;Dx;y/v.0; �/kW 1�1=p;p.Rn�1//

� C1Œkf ]kLp.RC�Rn�1/ C kg]kW 1�1=p;p.Rn�1/

C�.kvkW 2;p.RC�Rn�1/ C kDxv.0; �/kW 1�1=p;p.Rn�1/

CPn�1
jD1 kDyj v.0; �/kW 1�1=p;p.Rn�1//C kDxv.0; �/kLp.Rn�1/

CPn�1
jD1 kDyj v.0; �/kLp.Rn�1/ C kvkW 1;p.RC�Rn�1/�

� C2Œkf ]kLp.RC�Rn�1/ C kg]kW 1�1=p;p.Rn�1/

C�kvkW 2;p.RC�Rn�1/ C kvkW 	;p.RC�Rn�1/�

(9.48)

for some 	 < 2. If we take U so small that C2� � 1
2
, and j�j sufficiently large,

from (9.48) we deduce

2X
jD0

j�j 2�j2 kvkW j;p.RC�Rn�1/ � C1Œ.kf ]kLp.RC�Rn�1/ C kg]kW 1�1=p;p.Rn�1//

and so

2X
jD0

j�j 2�j2 kukW j;p.˝/ � C1Œ.kf kLp.˝/ C kgkW 1�1=p;p.@˝/: (9.49)

More generally, we fix a suitable partition of unity f�k W k 2 f1; : : : ; N gg in ˝ , in
such a way that (9.49) is applicable to �ku for each k 2 f1; : : : ; N g. �ku is such that

�
�.�ku/.�/� A.�;D�/.�ku/.�/ D �k.�/f .�/C Ak.�;D�/u.�/; � 2 ˝;
�.�ku/.� 0/C B.� 0;D�/.�ku/.� 0/ D �k.�

0/g.� 0/C ck.�
0/u.� 0/; � 0 2 @˝;

with Ak.�;D�/ differential operator of order one. From (9.49) we deduce

P2
jD0 j�j 2�j2 kukW j;p.˝/ � P2

jD0
PN

kD1 j�j 2�j2 k�kukW j;p.˝/

� C0.kf kLp.˝/ C kgkW 1�1=p;p.@˝/ C kukW 1;p.˝//;

which implies that (9.49) is valid without restrictions on the support, if j�j is
sufficiently large.
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It remains to show the existence of a solution to (9.46). First of all, it is well
known that there exists �0 2 C, such that the problem

�
�0u.�/ � A.�;D�/u.�/ D f .�/; � 2 ˝;
B.� 0;D�/u.� 0/ D g.� 0/; � 0 2 @˝ (9.50)

has a unique solution u inW 2;p.˝/ for every .f; g/ 2 Lp.˝/�W 1�1=p;p.@˝/ (see
[23, Chapter 3.7]). We set K.f; g/ WD .u; uj@˝/. We think of K as a linear bounded
operator fromLp.˝/�W 1�1=p;p.@˝/ into itself. As it is an element of L .Lp.˝/�
W 1�1=p;p.@˝/;W 2;p.˝/ � W 2�1=p;p.@˝// and ˝ is bounded, K is a compact
operator. Consider the following operatorK� in L .Lp.˝/�W 1�1=p;p.@˝//:

K�.�; / WD .�;  / �K..�0 � �/�;�� /:

Then, if � is such that (9.47) holds, K� is a linear and topological isomorphism of
Lp.˝/ � W 1�1=p;p.@˝/ into itself: to show this, it suffices to prove, thanks to the
compactness, that, Ker.K�/ D f.0; 0/g. In fact, if K�.�; / D .0; 0/, .�;  / 2
W 2;p.˝/ � W 2�1=p;p.@˝/ and  D �j@˝ . Moreover, � solves (9.46) with f D 0

and g D 0. So � D 0 and  D 0 by the a priori-estimate. We deduce that the
equation

K�.�; / D K.f; g/

has a unique solution .�;  / in Lp.˝/ �W 1�1=p;p.@˝/ and it is easy to show that
� 2 W 2;p.˝/,  D �j@˝ and � solves (9.46). ut

As a consequence, we obtain the following variation of Theorem 2 in [10]:

Corollary 9.8 Assume that (D1)–(D3) hold. Let

8<
:
D.G/ WD f.u; g/ 2 W 2;p.˝/ �W 2�1=p;p.@˝/uj@˝ D gg

! Lp.˝/ �W 1�1=p;p.@˝/;
G.u; g/ WD .A.�;D�/u;�B.�;D�/uj@˝/:

(9.51)

ThenG is the infinitesimal generator of an analytic semigroup inLp.˝/�W 1�1=p;p
.@˝/.

Proof This follows from Theorem 9.9. The density of D.G/ in Lp.˝/�W 1�1=p;p
.@˝/ can be shown slightly modifying the argument in the proof of Corollary 9.3.

ut
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We conclude with the following maximal regularity result, which seems to
be new:

Theorem 9.10 Consider the system

8<
:
Dtu.t; �/� A.�;D�/u.t; �/ D f .t; �/; t 2 .0; T /; � 2 ˝;
Dtu.t; � 0/C B.� 0;D�/u.t; � 0/ D h.t; � 0/; t 2 .0; T /; � 0 2 @˝;
u.0; �/ D u0.�/; � 2 ˝

(9.52)

with the assumptions (D1)–(D3). Let p 2 .1;1/ n f 3
2
g. Then the following

conditions are necessary and sufficient, in order that there exists a solution u in
W 1;p..0; T /ILp.˝// \Lp..0; T /IW 2;p.˝//, such that

uj.0;T /�@˝ 2 W 1;p..0; T /IW 1�1=p;p.@˝//\Lp..0; T /IW 2�1=p;p.@˝/ W

(a) f 2 Lp..0; T / �˝/;
(b) h 2 Lp..0; T /IW 1�1=p;p.@˝//;
(c) u0 2 B2�2=p

p;p .˝/ and, in case p > 3
2
, u0j@˝ 2 B2�2=p

p;p .˝/.

In case p > 3
2
, the solution is unique. If p < 3

2
, the solution is not unique: for every

g0 2 B
2�2=p
p;p .@˝/, there exists a unique solution u such that, if �u D uj.0;T /�@˝ ,

�u.0; �/ D g0. u and uj.0;T /�@˝ can be represented in the form

.u.t; �/; u.t; �/j@˝/ D etG.u0; g0/C
Z t

0

e.t�s/G.f .s; �/; h.s; �//ds; (9.53)

with G as in (9.51).

Proof We begin with the necessity of (a)–(c). (a) and (b) are clear, by
classical trace results. Moreover, by Theorem 9.3, u0 should belong to
.Lp.˝/;W 2;p.˝//1�1=p;p D B

2�2=p
p;p .˝/ and g0 WD �u.0; �/ should be in

.W 1�1=p;p.@˝/;W 2�1=p;p.@˝//1�1=p;p D B2�2=p
p;p .@˝/:

In case p > 3
2
, u0 admits a trace on @˝ , which is necessarily g0.

We prove the sufficiency in some steps. We assume that g0 2 B
2�2=p
p;p .@˝/ and,

in case p > 3
2
, g0 D u0j@˝ .
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Step 1 We have already seen (Lemma 9.5) that, if a solution with the declared
properties exists, it can be represented in the form (9.53). As a consequence we
immediately obtain the following a priori-estimate:

kukLp..0;T /�˝/ C kuj.0;T /�@˝kLp..0;T /IW 1�1=p;p.@˝/

� C.kf kLp..0;T /�˝/ C khkLp..0;T /IW 1�1=p;p.@˝// C ku0kLp.˝/ C kg0kW 1�1=p;p.@˝//:
(9.54)

Step 2 Now we prove the main a priori estimate: assume that u and uj.0;T /�@˝
have the declared regularity. We suppose also that u is a solution to (9.52), and f ,
h, u0, g0 satisfy .a/–.d/. Moreover, we suppose that u vanishes outsides Œ0; T ��U ,
with U as in the proof of Theorem 9.9. Employing a suitable change of variable
� and setting v.t; x; y/ D u.t; �.x; y//, we are locally reduced to estimate v in
Lp..0; T /IW 2;p.RC � R

n�1// \ W 1;p..0; T /ILp.RC � R
n�1// and v.�; 0; �/ in

W 1;p..0; T /IW 1�1=p;p.Rn�1//\Lp..0; T /IW 2�1=p;p.Rn�1//. v satisfies the system

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

Dtv.t; x; y/ � A.Dx;Dy/v.t; x; y/ D A].x; y;Dx;y/v.t; x; y/C f ].t; x; y/;

.t; x; y/ 2 .0; T / � R
C � R

n�1;
Dtv.t; 0; y/� 
Dxv.t; 0; y/C v � ryv.t; 0; y/DB].y;Dx;y/v.t; x; 0/C h].t; y/;

y 2 R
n�1;

v.0; x; y/ D u]0.x; y/; .x; y/ 2 R
C � R

n�1;
v.�; 0; �/jtD0 D g

]
0;

with 
 2 R
C, A].x; y;Dx;y / D P

j˛j�2 a
]
˛.x; y/D

˛
x;y , B].y;Dx;y/ DP

j˛j�1 b
]
˛.y/D

˛
x;y , f ].t; x; y/ D f .t; �.x; y//, h].t; y/ D h.t; �.0; y//,

u]0.x; y/ D u0.�.x; y//, g
]
0.y/ D g0.�.0; y//,

X
j˛jD2

ka]˛kL1.RC�Rn�1/ C
X

j˛jD1
kb]˛kL1.Rn�1/ � �;

with � 2 R
C. We observe that, in case p > 3

2
, u]0.0; �/ D g

]
0. Then, from

Proposition 9.7 we deduce the estimate

kvkW 1;p..0;T /ILp.RC�Rn�1// C kvkLp..0;T /IW 2;p.RC�Rn�1//

Ckv.�; 0; �/kW 1;p..0;T /IW 1�1=p;p.Rn�1// C kv.�; 0; �/kLp..0;T /IW 2�1=p;p.Rn�1//

� C0.kf ]kLp..0;T /�RC�Rn�1/ C kh]kLp..0;T /IW 1�1=p;p.@˝// C ku]0kB2�2=pp;p .RC�Rn�1/

Ckg]0kB2�2=pp;p .Rn�1/
C kA].x; y;Dx;y/vkLp..0;T /�RC�Rn�1/

CkB].y;Dx;y/vkLp..0;T /IW 1�1=p;p.Rn�1///

� C1.kf ]kLp..0;T /�RC�Rn�1/ C kh]kLp..0;T /IW 1�1=p;p.Rn�1// C ku]0kB2�2=pp;p .RC�Rn�1/

Ckg]0kB2�2=pp;p .Rn�1/
C �kvkLp..0;T /IW 2;p.RC�Rn�1// C kvkLp..0;T /IW 	;p.RC�Rn�1///;

(9.55)
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for some 	 < 2. If U is suitably small, we may assume that C1� � 1
2
, so that,

from (9.55) we deduce

kvkW 1;p..0;T /ILp.RC�Rn�1// C kvkLp..0;T /IW 2;p.RC�Rn�1//

Ckv.�; 0; �/kW 1;p..0;T /IW 1�1=p;p.Rn�1// C kv.�; 0; �/kLp..0;T /IW 2�1=p;p.Rn�1//

� C2.kf ]kLp..0;T /�RC�Rn�1/ C kh]kLp..0;T /IW 1�1=p;p.Rn�1//

Cku]0kB2�2=pp;p .RC�Rn�1/
C kg]0kB2�2=pp;p .Rn�1/

CkvkLp..0;T /IW 	;p.RC�Rn�1///:

Applying a suitable partition of unity, as in the proof of Theorem 9.9, we deduce the
a priori estimate:

kukW 1;p..0;T /ILp.˝// C kukLp..0;T /IW 2;p.˝//

Ckuj.0;T /�@˝kW 1;p..0;T /IW 1�1=p;p.@˝// C kuj.0;T /�@˝kLp..0;T /IW 2�1=p;p.@˝//

� C.kf kLp..0;T /�˝/ C khkLp..0;T /IW 1�1=p;p.@˝// C ku0kB2�2=pp;p .˝/

Ckg0kB2�2=pp;p .@˝/
C kukLp..0;T /IW 	;p.˝///;

(9.56)

for some 	 < 2. Now, for every � 2 R
C there exists C.�/ 2 R

C, such that

kukLp..0;T /IW 	;p.˝// � �kukLp..0;T /IW 2;p.˝// C C.�/kukLp..0;T /�˝//:

So (9.56) and (9.54) imply the a priori estimate

kukW 1;p..0;T /ILp.˝// C kukLp..0;T /IW 2;p.˝//

Ckuj.0;T /�@˝kW 1;p..0;T /IW 1�1=p;p.@˝// C kuj.0;T /�@˝kLp..0;T /IW 2�1=p;p.@˝//

� C.kf kLp..0;T /�˝/ C khkLp..0;T /IW 1�1=p;p.@˝//

Cku0kB2�2=pp;p .˝/
C kg0kB2�2=pp;p .@˝/

/:

(9.57)

Step 3 Now we show that, if (a)–(d) hold, a solution with the declared regularity
really exists. We fix .fk/k2N in C1.Œ0; T �ILp.˝//, such that kfk�f kLp..0;T /�˝/ !
0; .hk/k2N in C1.Œ0; T �I W 1�1=p;p.@˝//, such that khk � hkLp..0;T /IW 1�1=p;p.@˝// !
0, .v0k/k2N in W 2;p.˝//, such that kv0k � u0kB2�2=pp;p .˝/

! 0, .g0k/k2N in W 2�1=p;p

.@˝//, such that kg0k � g0kB2�2=pp;p .@˝/
! 0.

We assume first that p < 3
2
. Then, as 2 � 2

p
< 1

p
, D.˝/ is dense in B2�2=p

p;p .˝/

(see [24, Section 4.3.2]). So fv 2 W 2;p.˝/ W vj@˝ D 0g is dense in B2�2=p
p;p .˝/. By

translation, 8z 2 W 2�1=p;p.@˝/ fv 2 W 2;p.˝/ W vj@˝ D zg is dense in B2�2=p
p;p .˝/.

As a consequence, we can construct a sequence .z0k/k2N in W 2;p.˝/ such that
z0kj@˝ D g0;k � v0kj@˝ and kz0kkB2�2=pp;p .˝/

! 0 (k ! 1). So, if we set u0k WD
v0k C z0k , we have that ku0k � u0kB2�2=pp;p .˝/

! 0 and ku0kj@˝ � g0kB2�2=pp;p .@˝/
! 0

(k ! 1).
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We consider now the case p > 3
2
. In this case we take a linear bounded operator

P W B2�3=p
p;p .@˝/ ! B

2�2=p
p;p .˝/ such that .Pz/j@˝ D z 8z 2 B

2�3=p
p;p .@˝/, whose

restriction toW 2�1=p;p.@˝/ belongs to L .W 2�1=p;p.@˝/;W 2;p.˝// (see [25, Sec-
tion I.2.7.2]). Then, we set z0k WD P.g0k �v0kj@˝/. As kg0k �v0kj@˝k

B
2�3=p
p;p .@˝/

! 0

.k ! 1/ (because uj@˝ D g0), we have that z0k 2 W 2;p.˝/ and kz0kkB2�2=pp;p .˝/
!

0 (k ! 1). So, if we set u0k WD v0k C z0k , u0k 2 W 2;p.˝/, u0kj@˝ D g0k and
ku0k � u0kB2�2=pp;p .˝/

! 0 (k ! 1).

Now, for every k 2 N, we consider the solution uk of (9.52), replacing f
with fk , h with hk , u0 with u0k . By Corollary 9.8 and well known properties of
regularity of solutions in case of analytic semigroups, uk 2 C1.Œ0; T �ILp.˝// \
C.Œ0; T �IW 2;p.˝///, ukjŒ0;T ��@˝ 2 C1.Œ0; T �IW 1�1=p;p.@˝//\C.Œ0; T �IW 1�1=p;p
.@˝//. Moreover, by the a priori estimate (9.57), .uk/k2N is a Cauchy sequence in

W 1;p..0; T /ILp.˝//\Lp..0; T /IW 2;p.˝//;

.ukj.0;T /�@˝//k2N is a Cauchy sequence in

W 1;p..0; T /IW 1�1=p;p.@˝//\ Lp..0; T /IW 2�1=p;p.˝//:

It is clear that the limit u of .uk/k2N inW 1;p..0; T /ILp.˝//\Lp..0; T /IW 2;p.˝//

is the solution of (9.52). ut

9.6 Appendix

This appendix is dedicated to the proof of Proposition 9.6. We shall employ the
following result, which, in case, E D C, is well known. In case E is a UMD space,
with property .˛/, it can be deduced from [4, Theorem 4.9.1].

Lemma 9.7 (I) Let E be a Banach space, p 2 .1;1/ and let � 2 .0; 1/ n f 1
2p

g. We
set

S WD fu 2 W 2;p.RCIE/ W u.0/ D 0g: (9.58)

Then

.Lp.RCIE/; S/�;p D
(
B2�
p;p.R

CIE/ if � < 1
2p
;

fv 2 B2�
p;p.R

CIE/ W v.0/ D 0g if � > 1
2p
:
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Proof By Proposition 9.3 (I), for every � in .0; 1/, .Lp.RCIE/; S/�;p is continu-
ously embedded into B2�

p;p.R
CIE/. On the other hand, if we set

S0 WD fu 2 W 2;p.RCIE/ W u.0/ D u0.0/ D 0g;

we have, following the argument in the proof of Theorem 8 in [14], which is valid
even for vector valued functions,

.Lp.RCIE/; S0/�;p D

8̂
<
:̂
B2�
p;p.R

CIE/ if � < 1
2p
;

fv 2 B2�
p;p.R

CIE/ W v.0/ D 0g if 1
2p
< � < 1

2
C 1

2p
;

fv 2 B2�
p;p.R

CIE/ W v.0/D v0.0/D 0g if 1
2

C 1
2p
< � < 1:

As S0 ,! S , we deduce that the conclusion holds if � < 1
2p

, and in case 1
2p
< � <

1
2

C 1
2p

,

fv 2 B2�
p;p.R

CIE/ W v.0/ D 0g 	 .Lp.RCIE/; S/�;p:

We show that, if 1
2p
< � , .Lp.RCIE/; S/�;p 	 fv 2 B2�

p;p.R
CIE/ W v.0/ D 0g. In

fact, as p < 1, S is dense in .Lp.RCIE/; S/�;p , which is continuously embedded
into B2�

p;p.R
CIE/. We deduce that, if v 2 .Lp.RCIE/; S/�;p, there is a sequence

.vk/k2N in S converging to v in B2�
p;p.R

CIE/. As 2� > 1
p

, the sequence .vk.0//k2N
converges to v.0/ in E . We deduce that v.0/ D 0.

So the conclusion holds in case � < 1
2

C 1
2p

.

Finally, let � � 1
2

C 1
2p

. We fix �0 in . 1
2p
; 1
2

C 1
2p
/, and set

S�0 WD fv 2 B2�0
p;p.R

CIE/ W v.0/ D 0g D .Lp.RCIE/; S/�0;p:

By the reiteration property,

.Lp.RCIE/; S/�;p D ..Lp.RCIE/; S/�0;p; S/ ���0
1��0

;p
:

Let v 2 B2�
p;p.R

CIE/, with v.0/ D 0. As

B2�
p;p.R

CIE/ D .B2�0
p;p.R

CIE/;W 2;p.RCIE// ���0
1��0

;p
;

there exist v0; v1, such that t�
���0
1��0 v0 2 Lp�.RCIB2�0

p;p.R
CIE//, t� 1��

1��0 v1 2 Lp�.RCI
W 2;p.RCIE//, and v D v0.t/C v1.t/ 8t 2 R

C. We fix � 2 C1.Œ0;1//, such that
�.s/ D 0 if s � 1 and �.0/ D 1. We set

uj .t/.s/ WD vj .t/.s/ � �.s/vj .t/.0/; j 2 f0; 1g; t 2 R
C; s 2 R

C:
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As z ! z.0/ is continuous and bounded from B2�0
p;p.R

CIE/ to E , we deduce that,
for some C 2 R

C independent of t ,

ku0.t/kB2�0p;p .RCIE// � Ckv0.t/kB2�0p;p .RCIE//;
ku1.t/kW 2;p.RCIE// � Ckv1.t/kW 2;p.RCIE//;

so that t�
���0
1��0 u0 2 L

p�.RCIS�0/, t�
1��
1��0 u1 2 L

p�.RCIS/. Moreover, as v0.t/.0/C
v1.t/.0/ D v.0/ D 0, 8t 2 R

C, u0.t/ C u1.t/ D v 8t 2 R
C. We conclude that

v 2 ..Lp.RCIE/; S/�0;p; S/ ���0
1��0

;p
. ut

Proof (of Proposition 9.6)

(I) We may identify W 1;2;A
p ..0; T / � R

CIE/ with fu 2 Lp..0; T /IE1/ W Dtu 2
Lp..0; T /IE0/g; if

E1 D W 2;p.RCIE/\Lp.RCID.A//; E0 D Lp.RCIE/:

So, by Theorem 9.3, we have

fu.0; �/ W u 2 W 1;2;A
p ..0; T / � R

CIE/g D .E0;E1/1�1=p;p:

We may identify Lp.RCID.A// with D.A0/, setting

�
A0 W Lp.RCID.A// ! Lp.RCIE/
A0v.x/ WD Av.x/:

Then, if h 2 W 2;p.RCIE/ and t 2 R
C, .t C A0/

�1h 2 W 2;p.RCIE/ and

k.t C A0/
�1hkW 2

p .R
CIE/ � Ct�1khkW 2

p .R
CIE/:

We deduce from Theorem 9.2 (II) that

.E0;E1/1�1=p;p
D .Lp.RCIE/;W 2;p.RCIE//1�1=p;p \ .Lp.RCIE/;Lp.RCID.A///1�1=p;p

D B
2�2=p
p;p .RCIE/ \ Lp.RCI .E;D.A//1�1=p;p/;

(9.59)

by Propositions 9.3 and 9.1;
(II) a similar argument holds for (II), replacingW 2;p.RCIE/ with

fu 2 W 2;p.RCIE/ W u.0/ D 0g

and employing Lemma 9.7. By the way, in case p > 3
2
, u0.0/ is well defined,

because 2 � 2
p
> 1

p
(see Proposition 9.3 (II));



9 Abstract Problems with Dynamic Boundary Conditions 201

(III) we may identifyW 1;2;A
p ..0; T / � R

CIE/ with

fu 2 Lp.RCIW 1;p..0; T /IE/\Lp..0; T /ID.A//// W D2
xu 2 Lp.RCILp..0; T /IE//g:

So, by Theorem 9.3, we have

fu.�; 0/ W u 2 W 1;2;A
p ..0; T / � R

CIE/g
D .Lp..0; T /IE/;W 1;p..0; T /IE/\ Lp..0; T /ID.A///1�1=.2p/;p:

Arguing as in the proof of (I), we have

.Lp..0; T /IE/;W 1;p..0; T /IE/\ Lp..0; T /ID.A///1�1=.2p/;p
D .Lp..0; T /IE/;W 1;p..0; T /IE//1�1=.2p/;p
\.Lp..0; T /IE/;Lp..0; T /ID.A///1�1=.2p/;p

D B
1�1=.2p/
p;p ..0; T /IE/\ Lp..0; T /I .E;D.A//1�1=.2p/;p/I

(IV) by (III), there exists v 2 W 1;2;A
p ..0; T / � R

CIE/, such that v.�; 0/ D g. Then

v.0; �/ 2 B2�2=p
p;p ..0; T /IE/\Lp..0; T /I .E;D.A//1�1=p;p/. Subtracting v, we

are reduced to show that there exists w 2 W
1;p;A
p ..0; T / � R

CIE/, such that
w.0; �/ D u0 � v.0; �/, w.�; 0/ � 0. This follows from (II);

(V) can be proved with the same argument of (IV);
(VI) it can be obtained following the same argument in (III). ut
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Chapter 10
Increasing Stability of the Continuation
for General Elliptic Equations of Second Order

Victor Isakov

To the memory of a good colleague and dear friend Alfredo
Lorenzi

Abstract We consider the Cauchy problem for general second partial differential
equations of elliptic type containing large parameter k (like in the Helmholtz
equation). By using energy estimates and splitting solution in “low” and “high”
frequency parts we obtain bounds of a solution in Sobolev spaces indicating
increasing stability in the Cauchy problem with growing k. These bounds show
Lipschitz stability of the “low” frequency part with decaying contribution of the a
priori bound on the “high” frequency part. Increasing stability is of importance in
(boundary) control theory and inverse problems (remote sensing).

10.1 Introduction

The Cauchy Problem (or equivalently the continuation of solutions) for partial
differential equations has a long and rich history, starting with the Holmgren-
John theorem on uniqueness for equations with analytic coefficients. It is of great
importance in the theories of boundary control and of inverse problems. In 1938
T. Carleman introduced a special exponentially weighted energy (Carleman type)
estimates to handle non analytic coefficients. These estimates imply in addition
some conditional Hölder type stability estimates for solutions of this problem. In
1960 [11] F. John showed that for the continuation for the Helmholtz equation from
inside of the unit disk onto any larger disk the stability estimate which is uniform
with respect to the wave numbers is still of logarithmic type. Logarithmic stability
is quite damaging for numerical solution of many inverse problems. In recent papers

V. Isakov (�)
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[1, 2, 4, 6, 7, 9] it was shown that in a certain sense stability is always improving for
larger k under (pseudo) convexity conditions on the geometry of the domain and of
the coefficients of the elliptic equation.

In this paper we attempt to eliminate any convexity type condition on the
elliptic operator or the domain. Due to John’s counterexample, one can not expect
increasing stability for all solutions. We show that (near Lipschitz) stability holds on
a subspace of (“low frequency”) solutions which is growing with the wave number k
under some mild boundedness constraints on complementary “high frequency” part.

We will consider the Cauchy problem

.AC ck C k2/u D f in ˝; (10.1)

with the Cauchy data

u D u0; @�u D u1 on �0 � @˝; (10.2)

where � is the outer unit normal to @˝ and

Au D
nX

j;mD1
ajm@j @mu C

nX
jD1

aj @j u C au

is the general partial differential operator of second order satisfying the ellipticity
condition

"0j�j2 �
nX

j;lD1
ajl.x/�j �l

for some positive number "0 and all x 2 ˝ and � 2 Rn. We assume that

ajm; @pajm; aj ; a; c 2 L1.˝/:

We consider bounded open ˝ � Rn�1 � .0; 1/, �0 D @˝ \ fxn D 0g, �1 D
@˝ \ fxn D 1g, and � D @˝ \ .Rn�1 � .0; 1//. Let V be a neighbourhood of N�
and ! D ˝ \ V .

We use the classical Sobolev spacesH.p/.˝/ with the standard norm k�k.p/.˝/.
In what followsC denote generic constants depending only on˝;�0; !; �1; A; c,

and ".
Under additional a priori constraints on u near � and on a “high frequency” part

of u we can claim

Theorem 10.1 There are a monotone family of closed subspaces H.1/.˝I k/ of
H.1/.˝/ with [kH.1/.˝I k/ D H.1/.˝/, linear continuous operators Pk from
H.1/.˝/ onto H.1/.˝I k/ with Pkul D ul for ul 2 H.1/.˝I k/, a semi norm
jjj � jjj.1Ik/.˝/ onH.1/.˝/, which is zero onH.1/.˝I k/ and decreasing with respect
to k, and a constant C such that
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kulk.0/.˝n/ �

C.kuk.0/.�0/C k�1.kf k.0/.˝/C ku1k.0/.�0/C kuk.1/.!/C jjjujjj.1;k/.˝///;
(10.3)

where ul D Pku, and

kuk.0/.˝ n NV / �

C.kuk.0/.�0/C k�1.kf k.0/.˝/C ku1k.0/.�0/C kuk.1/.!/C jjjujjj.1;k/.˝///
(10.4)

for all u 2 H.2/.˝/ solving (10.1), (10.2).

In the next result we will partially replace the Cauchy data on �0 by a function u
in ! D ˝ \ V .

Theorem 10.2 Let � > 0.
There are a monotone family of closed subspaces H.2/.˝I k/ of H.2/.˝/ with

[kH.2/.˝I k/ D H.2/.˝/, linear continuous operators Pk from H.2/.˝/ onto
H.2/.˝I k/ with Pkul D ul for ul 2 H.2/.˝I k/, a semi norm jjj � jjj.2Ik/.˝/
on H.2/.˝/, which is zero on H.2/.˝I k/ and decreasing with respect to k, and
constants C;C.�/ (depending on � > 0) such that

kulk.1/.�1 n NV /C krulk.0/.�1 n NV /C kulk.0/.˝/ �

CF C C.�/k� 1
2C� jjjujjj.2;k/.˝//; (10.5)

where ul D Pku, and

kuk.1/.�1 n NV /C kruk.0/.�1 n NV /C kuk.0/.˝/ � CF CC.�/k� 1
2C� jjjujjj.2;k/.˝//

(10.6)

for all u 2 H.2/.˝/ solving (10.1), (10.2),
where F D kf k.0/.˝/C ku0k.1/.�0/C ku1k.0/.�0/C kuk.1/.!/.

Let � be C1 function, � D 1 on˝ n V , � D 0 near � . We let v D �u in ˝ and
v D 0 on Rn�1 � .0; 1/. Obviously,

Pn�1
j;mD1 ajm.x/�j �m � E2j�j2 for some number

E > 0 and all x 2 Rn�1 � .0; 1/; � 2 Rn�1. We introduce low and high frequency
projectors

vl .x/ D F�1�kFv.x/; vh D v � vl ; (10.7)

where F is the (partial) Fourier transformation with respect to x0 D
.x1; : : : ; xn�1; 0/, �k.� 0/ D 1 when j� 0j2 < .1 � "/ k

2

E2
and �k.� 0/ D 0 otherwise.

We define ul D vl on ˝ n NV .
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As can be seen from the proofs of Theorems 10.1, 10.2,

jjjujjj.m;k/.˝/ D .kvhk2.m�1/.˝/C
n�1X
jD1

k@j vhk2.m�1/.˝//
1
2 : (10.8)

Corollary 10.1 Let ˝ be a C2-diffeomorphic image of the unit ball, V be a
neighbourhood of a boundary point of ˝ , �1 D @˝ n V , and ! D ˝ \ V . Let
� > 0.

There are a monotone family of closed subspaces H.2/.˝I k/ of H.2/.˝/ with
[kH.2/.˝I k/ D H.2/.˝/, linear continuous operators Pk from H.2/.˝/ onto
H.2/.˝I k/ with Pkul D ul for ul 2 H.2/.˝I k/, a semi norm jjj � jjj.2Ik/.˝/
on H.2/.˝/ which is zero on H.2/.˝I k/ and decreasing with respect to k, and
constants C;C.�/ such that

kulk.1/.�1 n NV /C krulk.0/.�1 n NV /C kulk.0/.˝/ �
CF C C.�/k� 1

2C� jjjujjj.2Ik/.˝/; (10.9)

where ul D Pku, and

kuk.1/.�1 n NV /C kruk.0/.�1 n NV /C kuk.0/.˝/ �
CF C C.�/k� 1

2C� jjjujjj.2Ik/.˝/ (10.10)

for all u 2 H.2/.˝/ solving (10.1), where F D kf k.0/.˝/C kuk.1/.!/.
This corollary shows that the geometrical condition of Theorem 10.2 can be

substantially relaxed. We will show that it directly follows from Theorem 10.2.
Since the operator A preserves ellipticity, we can use C2 diffeomorphic sub-

stitution and hence we can assume that ˝ D fx W jx � e.n/j < 1g, where
e.n/ D .0; : : : ; 0; 1/, and the origin is contained in V . To make use of Theorem 10.2
we will use the inversion y D �.2jxj/�2x. In y coordinates � will be a (bounded)
part of the (hyper)plane fyn D �1g,˝ will be the lower half-space fyn < �1g, and
! will contain fy W yn < �1; jyj > Rg. After a scaling, a translation, and possible
shrinking ! we can assume that ˝ D fy W 0 < yn < 1; jy � e.n/j < 0:5g and
! D fy W 0 < yn < 1; 0:4 < jy � e.n/j < 0:5g. Now we can apply Theorem 10.2
(with void �0), and complete the derivation of Corollary. ut

Now, also for a particular ˝ in R2 we will eliminate the constraint on u in !.
Let ˝ D fx W 1 < jxj < Rg, �0 D fx W jxj D 1g, and �1 D fx W jxj D Rg. The
principal part of the operatorA in the polar coordinates .'; r/ is a22@2r C2a12@r@'C
a11@2' . Let E D sup.a11/

1
2 over ˝ and " > 0. We will write the (angular) Fourier

series

u.; '/ D
X
m

u.m/e.'Im/;
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where e.'Im/ D 1p
2�
eim' , and introduce the low frequency part of u

ul .; '/ D
X

E2jmj2<.1�"/k2
u.m/e.'Im/: (10.11)

Under a constraint on the high frequency component of u we have

Theorem 10.3 Let � > 0.
There are C;C.�/ such that

kkuk.0/.�1/C kruk.0/.�1/C kuk.1/.˝/ �
C.kku0k.0/.�0/C ku1k.0/.�0/C kf k.0/.˝//C C.�/k� 1

2C�ku � ulk.2/.˝/
(10.12)

and

kkulk.0/.�1/C k@rulk.0/.�1/C kulk.1/.˝/ �
C.kku0k.0/.�0/C ku1k.0/.�0/C kf k.0/.˝/C C.�/k� 1

2C�ku � ulk.2/.˝/
(10.13)

for all u 2 H.2/.˝/ solving (10.1), (10.2).

10.2 Proof Under “High Frequency” and Local Energy
A Priori Constraints

In this section we will prove Theorem 10.1.
Since v D �u, from (10.1) by using the Leibniz formula we yield

.

nX
j;mD1

ajm@j @mv C
nX

jD1
aj @j v C aC kc C k2/v D �f C A1u; (10.14)

where A1u D 2
Pn

j;mD1 ajm@j�@mu CPn
jD1 aj @j�u.

Observe that

ann@
2
nv@nve��xn D 1

2
@n.ann.@nv/2e��xn /C �

1

2
ann.@nv/2e��xn � 1

2
.@nann/.@nv/2e��xn ;

2ajn@j @nv@nve��xn D @j .ajn.@nv/2e��xn /� .@j ajn/.@nv/2e��xn ; (10.15)

j D 1; : : : ; n�1 and � is a (large) positive number to be chosen later on. Integrating
by parts with respect to xj ,
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Z
Rn�1�.0;1/

n�1X
jD1

ajm@j @mv@nve��xn D

�
Z

Rn�1�.0;1/

n�1X
jD1

ajm@mv@j @nve��xn �
Z

Rn�1�.0;1/

n�1X
jD1

.@j ajm/@mv@nve��xn :

(10.16)

We have

n�1X
j;mD1

ajm@mv@j @nve��xn D 1

2

n�1X
j;mD1

@n.ajm@mv@j ve��xn/C

�

2

n�1X
j;mD1

ajm@mv@j ve��xn � 1

2

n�1X
j;mD1

.@najm/@mv@j ve��xn ; (10.17)

due to symmetry of ajm.
To form an energy integral we multiply the both sides of (10.14) by @nve��xn

and integrate by parts over Rn�1 � .0; �/; 0 < � � 1; with using (10.15), (10.16),
and (10.17) to yield

1

2

Z
Rn�1

ann.@nv/2.; �/e����1
2

Z
Rn�1

ann.@nv/2.; 0/C�

2

Z
Rn�1�.0;�/

ann.@nv/2e��xn�

1

2

Z
Rn�1

n�1X
j;mD1

ajm@j v@mv.; �/e��� C 1

2

Z
Rn�1

n�1X
j;mD1

ajm@j v@mv.; 0/�

�

2

Z
Rn�1�.0;�/

n�1X
j;mD1

ajm.; xn/@j v@mv.; xn/e
��xn C

Z
Rn�1�.0;�/

ckv@nv.; xn/e
��xnC

k2

2

Z
Rn�1

v2.; �/e��� � k2

2

Z
Rn�1

v2.; 0/C �k2

2

Z
Rn�1�.0;�/

v2e��xn C : : : D
Z

Rn�1�.0;�/
@nv�fe��xn C

Z
Rn�1�.0;�/

@nvA1ue��xn ; (10.18)

where : : : denotes the sum of terms bounded by

C

Z
Rn�1�.0;1/

.

nX
jD1

.@j v/2 C k2v2/e��xn :



10 Increasing Stability of the Continuation 209

We have

n�1X
j;mD1

ajm.; xn/@j v@mv.; xn/ D
n�1X
j;mD1

ajm.; xn/@j .vl C vh/@m.vl C vh/.; xn/ D

n�1X
j;mD1

.ajm.; xn/@j vl @mvl .; xn/C 2ajm.; xn/@j vl @mvh.; xn/C ajm.; xn/@j vh@mvh.; xn// �

n�1X
j;mD1

ajm.; xn/@j v@mv.; xn/C Cı

n�1X
jD1

.@j vl /
2.; xn/C Cı�1

n�1X
jD1

.@j vh/
2.; xn/; (10.19)

where we used the elementary inequality AB � ı
2
A2 C 1

2ı
B2 with A D @j vl ; B D

@mvh and assumed that 0 < ı < 1.
According to the definition of E ,

�
Z

Rn�1

n�1X
j;mD1

ajm.; xn/@j vl @mvl .; xn/ � �
Z

Rn�1

E2

n�1X
jD1

.@j vl /
2.; xn/ D

�
Z

Rn�1

E2

n�1X
jD1

�2j jFvl j2.; xn/ � �
Z

Rn�1

k2.1 � "/jFvl j2.; xn/ D

�.1 � "/k2
Z

Rn�1

v2l .; xn/; (10.20)

where we used that Fvl .; � 0; xn/ D 0 when �E2j� 0j2 < �.1 � "/k2, due to (10.7),
and utilized the Parseval’s identity. Similarly,

Z
Rn�1

.

n�1X
jD1

@j vl /
2 � Ck2

Z
Rn�1

v2l : (10.21)

Therefore, using (10.19) and (10.20) we obtain

�
Z

Rn�1

n�1X
j;mD1

ajm.; xn/@j vl @mvl .; xn/ �

�.1 � "/k2
Z

Rn�1

v2l .; xn/� Cık2
Z

Rn�1

v2l .; xn/� C

ı

Z
Rn�1

n�1X
jD1

.@j vh/
2.; xn/:

(10.22)
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Since
Z

Rn�1

vlvh.; xn/ D 0;

Z
Rn�1

@j vl @j vh.; xn/ D 0; j D 1; : : : ; n;

we have
Z

Rn�1

v2.; xn/ D
Z

Rn�1

.vl C vh/
2.; xn/ D

Z
Rn�1

v2l .; xn/C
Z

Rn�1

v2h.; xn/;

Z
Rn�1

.@j v/2.; xn/ D
Z

Rn�1

.@j vl /
2.; xn/C

Z
Rn�1

.@j vh/
2.; xn/: (10.23)

Hence from (10.18) and (10.22) by using the inequalities 2AB � A2 C B2 and
1
C
< ann (due to the ellipticity of A) we conclude that

1

C

Z
Rn�1

.@nv/2.; �/e��� C �

C

Z
Rn�1�.0;�/

.@nv/2e��xnC

." � Cı/k
2

2

Z
Rn�1

v2l .; �/e
��� C �." � Cı/k2

2

Z
Rn�1�.0;�/

v2l e
��xnC

k2

2

Z
Rn�1

v2h.; �/e
��� C �

2

Z
Rn�1�.0;�/

v2l e
��xn �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0//C
Z
˝

f 2e��xn C
Z
!

.A1u/
2e��xn/C

C.

Z
Rn�1

.
1

ı

n�1X
jD1

.@j vh/
2.; �/e�� C

Z
Rn�1�.0;�/

.
1

ı

n�1X
jD1

.@j v/2 C .@nv/2 C k2v2/e��xn/:

Let ı D "
2C

and use (10.23) again, then we yield the inequality

Z
Rn�1

.@nv/2.; �/e��� C �

Z
Rn�1�.0;�/

.@nv/2e��xnC

k2
Z

Rn�1

v2.; �/e��� C �k2
Z

Rn�1�.0;1/
v2e��xn �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0//C
Z
˝

f 2e��xn C
Z
!

.A1u/
2e��xn/C

C.

Z
Rn�1

n�1X
jD1

.@j vh/
2.; �/e��C

Z
Rn�1�.0;1/

.

n�1X
jD1

.@j vh/
2 C

n�1X
jD1

.@j vl /
2 C .@nv/2 C k2v2/e��xn/: (10.24)
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Choosing and fixing sufficiently large � (depending on the same parameters as C )
to absorb the three last terms on the right side in (10.24) by the left side we obtain

Z
Rn�1

.@nv/2.; �/C
Z

Rn�1�.0;�/
.@nv/2 C k2

Z
Rn�1

v2.; �/C k2
Z

Rn�1�.0;�/
v2 �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0//C
Z
˝

f 2 C
Z
!

.A1u/
2/C

Z
Rn�1

n�1X
jD1

.@j vh/
2.; �//C

Z
Rn�1�.0;1/

n�1X
jD1

.@j vh/
2/: (10.25)

Integrating the inequality (10.25) with respect � over .0; 1/, dropping the first
two terms on the left side, and recalling that v D �u we yield

k2kvk2.0/.˝/ � C.ku1k2.0/.�0/C k2ku0k2.0/.�0/
Ckf k2.0/.˝/C kuk2.1/.!/

C
n�1X
jD1

k@j vhk2.0/.Rn�1 � .0; 1//:

Recalling the definition of a high frequency norm (10.8), using that u D v on˝ nV ,
and dividing by k2 we obtain (10.4).

Due to (10.23), (10.3) follows from (10.4). ut

10.3 Proof Under High Frequency Constraints

In this section we will prove Theorem 10.2.
From the proof of Theorem 10.1, (10.25), we have

Z
Rn�1

.@nv/2.; 1/C
Z

Rn�1�.0;1/
.@nv/2 C k2

Z
Rn�1

v2.; 1/C k2
Z

Rn�1�.0;1/
v2 �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0//C
Z
˝

f 2 C
Z
!

.A1u/
2/C

Z
Rn�1

n�1X
jD1

.@j vh/
2.; 1/C

Z
Rn�1�.0;1/

n�1X
jD1

.@j vh/
2/:
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Using (10.21) and (10.23) we obtain

Z
Rn�1

.@nv/2.; 1/C
Z

Rn�1

n�1X
jD1

.@j vl /
2.; 1/C

Z
Rn�1�.0;1/

.@nv/2 C
Z

Rn�1�.0;1/

n�1X
jD1

.@j vl /
2C

k2
Z

Rn�1
v2.; 1/C k2

Z
Rn�1�.0;1/

v2 �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0/C
Z
˝
f 2 C

Z
!
.A1u/

2/C
Z

Rn�1

n�1X
jD1

.@j vh/
2.; 1//C

Z
Rn�1�.0;1/

n�1X
jD1

.@j vh/
2/:

By increasing C and using (10.23) again, it gives

Z
Rn�1

nX
jD1

.@j v/2.; 1/C
Z

Rn�1�.0;1/

nX
jD1

.@j v/2 C k2
Z

Rn�1

v2.; 1/Ck2
Z

Rn�1�.0;1/
v2 �

C.

Z
Rn�1

..@nv/2.; 0/C k2v2.; 0//C
Z
˝

f 2 C
Z
!

.A1u/
2/C

Z
Rn�1

n�1X
jD1

.@j vh/
2.; 1/C

Z
Rn�1�.0;1/

n�1X
jD1

.@j vh/
2/:

Therefore,

k@nv.; 1/k2.0/.Rn�1/C kv.; 1/k2.1/.Rn�1/C kvk2.1/.Rn�1 � .0; 1//C
k2kv.; 1/k.0/.Rn�1/C k2kv.; 1/k.0/.Rn�1 � .0; 1// �

C.ku1k2.0/.�0/C ku0k2.1/.�0/C kf k2.0/.˝/C kuk2.1/.!/C
kvh.; 1/k2.1/.Rn�1/C kvhk2.1/.Rn�1 � .0; 1//: (10.26)

Let v�
h be the extension of vh onto Rn constructed in [12, p. 14]. As follows from

[12], with natural choice of functional spaces,

kv�
hk.2/.Rn/ � Ckvhk.2/.Rn�1 � .0; 1//: (10.27)

From the construction in [12] it follows that .vh/� D .v�/h, i.e. that the Fourier
transform of .vh/� with respect to .x1; : : : ; xn�1/ is zero when j� 0j � p

1 � " k
E

. By
known trace theorems for Sobolev spaces [12, p. 42],

kvh.; 1/k2.1/.Rn�1/ � C.�/kv�
hk. 32C�/.R

n/: (10.28)
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Let V �
h .�/ be the Fourier transform of v�

h.x/. As known [12, p. 30], for Sobolev
norms,

kv�
hk2

. 32C�/.R
n/ D

Z
.1C j� 0j2 C �2n/

3
2C� jV �

h .�/j2d� �

k�1C2�
Z
k1�2� .1C j� 0j2 C �2n/

� 1
2C� .1C j� 0j2 C �2n/

2jV �
h .�/j2d� �

Ck�1C2�
Z
.1C j� 0j2 C �2n/

2jV �
h .�/j2d� D

Ck�1C2�kv�
hk2.2/.Rn/ � Ck�1C2�kvhk2.2/.Rn�1 � .0; 1//;

due to (10.27). Here we used that k1�2� .1 C j� 0j2 C �2n/
� 1
2C� � C on the actual

integration domain ( where jV �
h .�/j > 0 and hence k

C
< j� 0j). So using (10.28) we

yield

kvh.; 1/k2.1/.Rn�1/ � Ck�1C2�kvhk2.2/.Rn�1 � .0; 1//: (10.29)

Similarly,

kvhk2.1/.Rn�1 � .0; 1// � kv�
hk2.1/.Rn/ D

Z
.1C j� 0j2 C �2n/jV �

h .�/j2d� D

k�2
Z
.k2.1C j� 0j2 C �2n/

�1/.1C j� 0j2 C �2n/
2jV �

h .�/j2d� �

Ck�2
Z
.1C j� 0j2 C �2n/

2jV �
h .�/j2d� D

Ck�2kv�
hk2.2/.Rn/ � Ck�2kvhk2.2/.Rn�1 � .0; 1//;

due to (10.27). So

kvhk2.1/.Rn�1 � .0; 1// � Ck�2kvhk2.2/.Rn�1 � .0; 1//: (10.30)

Using that v D �u, from (10.26), (10.29), and (10.30), we obtain (10.6).
As in the proof of Theorem 10.1, (10.5) follows from (10.6) because of (10.23).
The proof is complete. ut

10.4 Proof for Annular Domains

In this section we will prove Theorem 10.3. We will use polar coordinates and the
operator A in these coordinates.
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From (10.1) we yield

a22@2ru C2a12@'@ru Ca11@2'u Ca1@'u Ca2@ru C auC kcu Ck2u D f (10.31)

in Œ0; 2�� � .1;R/. Repeating the argument from the proof of Theorem 10.1
(multiplying the both parts of (10.31) by @rue�� r and integrating by parts over ˝
with using angular periodicity) we will have

1

2

Z
Œ0;2��

a22.@ru/
2.; R/e��RR � 1

2

Z
Œ0;2��

a22.@ru/
2.; 1/e�� C �

2

Z
˝

a22.@ru/
2e�� r r�

1

2

Z
Œ0;2��

a11.@'u/2.; R/e��RRC 1

2

Z
Œ0;2��

a11.@'u/2.; 1/e�� � �

2

Z
˝

a11.@'u/2e�� r rC

k2

2

Z
Œ0;2��

u2.; R/e��RR � k2

2

Z
Œ0;2��

u2.; 1/C �k2

2

Z
˝

u2e�� r r C : : : D
Z
˝

@rufe�� r ; (10.32)

where : : : denotes the sum of terms bounded by

C

Z
˝

..@'u/2 C .@ru/
2 C k2u2/e�� r :

To handle the negative terms on the left side of (10.32) we use that

�
Z
Œ0;2��

a11.@'u/2.; r/ D �
Z
Œ0;2��

a11.@'ul C @'uh/
2.; r/ �

�
Z
Œ0;2��

a11.@'ul /
2.; r/ � ı

Z
Œ0;2��

.@'ul /
2.; r/ � C

ı

Z
Œ0;2��

.@'uh/
2.; r/:

As in the proof of Theorem 10.1, using (10.11), from the Parseval’s identity for
the Fourier series, we have

�
Z
Œ0;2��

a11.@'ul /
2.; r/ � �

Z
Œ0;2��

E2.@'ul /
2.; r/ �

�.1 � "/k2
Z
Œ0;2��

u2l .; r/ � �.1 � "/k2
Z
Œ0;2��

u2.; r/

and

�
Z
Œ0;2��

.@'ul /
2.; r/ � �Ck2

Z
Œ0;2��

.ul /
2.; r/ � �Ck2

Z
Œ0;2��

u2.; r/: (10.33)
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Hence from (10.32) we conclude that

1

2

Z
.0;2�/

a22.@ru/
2.; R/e��RRC �

2

Z
.0;2�/�.1;R/

a22.@ru/
2e�� r rC

."� Cı/
k2

2

Z
.0;2�/

u2.; R/e��RRC �." � Cı/k2

2

Z
.0;2�/�.1;R/

u2e�� r r �

C.
1

2

Z
.0;2�/

..@ru/
2.; 1/C k2u2.; 1//C

Z
.0;2�/�.1;R/

f 2e�� r rC

C

ı
.

Z
.0;2�/

..@ruh/
2 C .@'uh/

2/.; R/e��RRC �

Z
.0;2�/�.1;R/

..@ruh/
2 C .@'uh/

2/e�� r r/C
Z
.0;2�/�.1;R/

..@ru/
2 C .@'u/2 C k2u2/e�� r r/:

Choosing ı D "
2C

and using that 1
C
< a22 we yield

Z
.0;2�/

..@ru/
2.; R/C k2u2.; R//e��RR C �

Z
.0;2�/�.1;R/

..@ru/
2 C k2u2/e�� r r �

C.

Z
.0;2�/

..@ru/
2.; 1/C k2u2.; 1//C

Z
.0;2�/�.1;R/

f 2e�� r rC
Z
.0;2�/

.@ruh/
2.; R/e��RRC �

Z
.0;2�/�.1;R/

.@ruh/
2e�� r rC

Z
.0;2�/�.1;R/

..@ru/
2 C .@'u/2 C k2u2/e�� r r/: (10.34)

From the definition of ul we have

Z
.0;2�/�.1;R/

.@'u/2e�� r r D
Z
.0;2�/�.1;R/

..@'ul /
2 C .@'uh/

2/e�� r r �

Ck2
Z
.0;2�/�.1;R/

u2 C
Z
.0;2�/�.1;R/

.@'uh/
2e�� r r;

when we apply (10.33). So from (10.34) we obtain

Z
.0;2�/

..@ru/
2.; R/C k2u2.; R//e��RR C �

Z
.0;2�/�.1;R/

..@ru/
2 C k2u2/e�� r r �

C.

Z
.0;2�/

..@ru/
2.; 1/C k2u2.; 1//C

Z
.0;2�/�.1;R/

f 2e�� r rC
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Z
.0;2�/

..@ruh/
2 C .@'uh/

2/.; R/e��RRC �

Z
.0;2�/�.1;R/

..@ruh/
2 C .@'uh/

2/e�� r rC
Z
.0;2�/�.1;R/

..@ru/
2 C k2u2/e�� r r/:

Now, choosing and fixing � sufficiently large (but depending on the same quantities
as C ) to absorb the last term on the right side by the left side we yield

Z
.0;2�/

..@ru/
2.; R/C k2u2.; R//C �

Z
.0;2�/�.1;R/

..@ru/
2 C k2u2/ �

C.

Z
.0;2�/

..@ru/
2.; 1/C k2u2.; 1//C

Z
.0;2�/�.1;R/

f 2/C
Z
.0;2�/

..@ruh/
2 C .@'uh/

2/.; R/C
Z
.0;2�/�.1;R/

..@ruh/
2 C .@'uh/

2//: (10.35)

By trace theorems for Sobolev spaces

kuh.; R/k.1/.�1/C k@ruh.; R/k.0/.�1/ � C.�/kuhk. 32C�//.˝/:

For the high frequency part

kuhk2. 32C�/.˝// � Ck2��1kuhk2.2/.˝//; (10.36)

so from (10.35) we obtain (10.12).
Since the Sobolev norms of ul are bounded by Sobolev norms of u, (10.13)

follows from (10.12).
The proof is complete. ut

Conclusion
We think that the results of this paper can extended onto higher order elliptic
equations and systems. An important question is about minimal a priori
constraints on the high frequency part of a solution. It is feasible that semi
norms jjj � jjj.mIk/.˝/;m D 2; in Theorem 10.2 can be replaced by a similar
semi norm with m D 1, imposing only natural energy constraints on the high
frequency part of u. Moreover, a complete justification of increasing stability
can be obtained by proving that there are growing invariant subspaces where
the solution of the Cauchy problem (10.1), (10.2) is Lipschitz stable. We will
give one of related conjectures.

(continued)
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Let ˝ be a Lipschitz bounded domain introduced in Theorem 10.1. Let
us assume that there is an unique solution u 2 H.1/.˝/ of the following
Neumann problem

Au C cku C k2u D 0 in ˝;

@�u D 0 on @˝ n �1; @�u D g 2 H.� 1
2 /.�1/ on �1:

The operator B mapping g into u0 D u on �0 is compact from L2.�1/

into L2.�0/. Hence it admits the singular value decomposition consisting
of complete orthonormal system of functions gm;m D 1; 2; : : : in L2.�1/
and corresponding singular values 	m � 	mC1 > 0 (eigenfunction and
square roots of eigenvalues of B�B). The conjecture is that there are positive
numbers ı1; ı2 depending only onA; c and˝ (but not on k) such that 	m > ı1
whenm < ı2k. This conjecture for some interesting plane˝ was numerically
confirmed in [9].

Use of low frequency zone does not need any convexity type assumptions
and for this reason is very promising for applications. In the recent paper [9]
we studied this phenomenon on more detail and gave regularization schemes
for numerical solution incorporating the increasing stability. We gave several
numerical examples of increasing stability for the Helmholtz equation in
some interesting plane domains, admitting or not admitting explicit analytical
solution and complete analytic justification. It is important to develop theory
and collect numerical evidence of the increased stability for more complicated
geometries and for systems by using results in [3, 5].

The increasing stability is expected in the inverse source problem, where
one looks for f in the Helmholtz equation .� C k2/u D f (not depending
on k) in ˝ D fx W 1 < jxj < Rg from the Cauchy data u; @�u on � D fx W
jxj D 1g, k� < k < k�. One needs to obtain stability estimates improving
with growing k� and to give a numerical evidence of better resolution for
larger k�.

It was (numerically) observed, that use of only low frequency zone can
produce a stable solution of the inverse problem, where one looks for a speed
of the propagation from all possible boundary measurements. One can look at
the linearized problem: find f (supported in ˝ � R3) from

Z
˝

f .y/
ekijx�yj

jx � yj
ekijz�yj

jz � yjdy

given for x; z 2 � � @˝ . The closest analytic results on improving stability
are obtained in [8, 10] for the Schrödinger potential.
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Chapter 11
Simultaneous Observability of Plates

Vilmos Komornik and Paola Loreti

Abstract We consider a finite number of independently vibrating rectangular
plates, having a common side. We investigate whether the observation of the total
force exerted by the plates at this common side is sufficient for the determination of
the complete behaviour of each plate.

11.1 Introduction

The boundary observability of vibrating strings, membranes, beams and plates has
been investigated intensively during the last 30 years by several different methods:
by using multipliers, Fourier series or microlocal analysis the most frequently, see,
e.g., [7, 10] and their references. In [1–4] a system of vibrating beams or strings
was considered, having a common endpoint. By using a generalization of a classical
inequality of Ingham, it was established that by measuring the total force exerted by
the strings at this point, it is possible to determine the separate behaviour of each
string, under some natural assumptions on the lengths of the strings. The purpose of
this note is to show how to generalize these results to vibrating plates.
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Given finitely many positive numbers `; `1; : : : ; `N , we introduce the rectangular
domains˝j WD .0; `j /� .0; `/ with boundaries �j WD @˝j , j D 1; : : : ; N , and we
consider the following system of independently vibrating hinged plates:

8̂
ˆ̂̂<
ˆ̂̂̂
:

u00
j C�2uj D 0 in R �˝j ;

uj D �uj D 0 on R � �j ;
uj .0/ D uj 0 and u0

j .0/ D uj1 in ˝j ;

j D 1; : : : ; N:

(11.1)

We investigate whether the observation of the total force exerted by these plates
at this common side � WD f0g � .0; `/ is sufficient for the determination of
the complete behaviour of each plate. More precisely, introducing for some given
positive number T the function

f .t; y/ WD
NX
jD1

@uj
@�
.t; 0; y/; .t; y/ 2 .0; T / � .0; `/;

we ask whether the linear map

.u10; : : : ; uN0; u11; : : : ; uN1/ 7! f

is one-to-one for some natural Hilbert space of the initial data.
In order to formulate our theorem we recall some earlier results. We need some

notations.
For each j D 1; : : : ; N we consider the vector space Zj spanned by the

eigenfunctions of �� in H1
0 .˝j /, i.e. the vector space spanned by the functions

ejkn.x; y/ WD sin
k�x

`j
sin

n�y

`
; k D 1; 2; : : : ; n D 1; 2; : : : :

For each real number s we denote by Ds
j the Hilbert space obtained by completion

from Zj endowed with the Euclidean norm

������
X
k;n

cknejkn

������
s

WD
0
@X

k;n

.k2 C n2/s jcknj2
1
A
1=2

:

We observe that

D0
j D L2.˝j /; D1

j D H1
0 .˝j / and D2

j D H2.˝j /\H1
0 .˝j /

with equivalent norms.
Let us also set Ds WD Ds

1 � � � � �Ds
N .
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Since the system (11.1) is uncoupled, it follows from classical results (see, e.g.,
[10] or [7]) that for any given

.u10; : : : ; uN0; u11; : : : ; uN1/ 2 Ds �Ds�2

the system (11.1) has a unique solution

u 2 C.RIDs/\ C1.RIDs�2/:

If s � 2, then it follows from the “hidden regularity” results of Lions [8–10] that1

fy 2 L2..0; T / � .0; `//;

and

Z T

0

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy dt � c2

�
ku0k22 C ku1k20

�
(11.2)

for all .u0; u1/ 2 D2 �D0, with a constant depending only on T .
In what follows we consider only solutions of (11.1) corresponding to initial data

.u0; u1/ 2 D2 �D0. Our main result is the following inverse inequality:

Theorem 11.1 For almost all choices of .`1; : : : ; `N / 2 .0;1/N , the solutions
of (11.1) satisfy the estimates

ku0k2s C ku1k2s�2 � Cs

Z T

0

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy dt (11.3)

for every s < 1, with a suitable constant Cs , independent of the particular choice
of the initial data.

11.2 Review of the Simultaneous Observability of Beams

Let us first consider the analogous system of independently vibrating hinged beams:

8̂
ˆ̂̂<
ˆ̂̂̂
:

uj;t t C uj;xxxx D 0 in R � .0; `j /;
uj D uj;xx D 0 on R � ˚0; `j � ;
uj .0/ D uj 0 and u0

j .0/ D uj1 in .0; `j /;

j D 1; : : : ; N

(11.4)

1The subscript y stands for the corresponding partial derivative.
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with the observation

f .t/ WD
NX
jD1

uj;x.t; 0/; t 2 .0; T /:

Now the vector spaces Zj are spanned by the functions

ejk.x/ WD sin
k�x

`j
; k D 1; 2; : : : ;

and the Hilbert spaces Ds
j are obtained by completing Zj with respect to the

Euclidean norms

�����
X
k

ckejk

�����
s

WD
 X

k

k2s jckj2
!1=2

:

We have

D0
j D L2.0; `j /; D1

j D H1
0 .0; `j / and D2

j D H2.0; `j /\H1
0 .0; `j /

with equivalent norms.
Setting Ds WD Ds

1 � � � � �Ds
N again, it follows from classical results that for any

given

.u10; : : : ; uN0; u11; : : : ; uN1/ 2 Ds �Ds�2

the system (13.19) has a unique solution

u 2 C.RIDs/\ C1.RIDs�2/:

The results of Lions [8] yield again the estimate

Z T

0

jf .t/j2 dt � c1

�
ku0k21 C ku1k2�1

�
(11.5)

for all .u0; u1/ 2 D1 �D�1, with a constant depending only on T .
On the other hand, the inverse inequality also holds under some necessary

restrictions: we recall from [12] and [7, p. 208] the following theorem:

Theorem 11.2 For almost all choices of .`1; : : : ; `N / 2 .0;1/N , the solutions
of (11.1) satisfy the estimates

ku0k2s C ku1k2s�2 � cs

Z T

0

jf .t/j2 dt (11.6)
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for every s < 1, with a suitable constant cs , independent of the particular choice
of the initial data.

This theorem was proved by representing the solutions of (13.19) by Fourier
series and by evaluating the two sides of (11.6) by applying a generalization of a
classical Parseval type theorem of Ingham [6], obtained in [3,4]; see also [11]. Let us
recall the form of the solutions because we will need it in the proof of Theorem 11.1
in the next section.

Setting

�jk WD k�

`j
and !jk WD �2jk

for brevity, the solutions of (13.19) are given by the series

uj .t; x/ D
1X
kD1
.ajke

i!jkt C bjke
�i!jkt / sin�jkx; j D 1; : : : ; N; (11.7)

with suitable complex coefficients ajk and bjk.
Furthermore, using these coefficients the estimate (11.6) may be rewritten in the

following equivalent form:

NX
jD1

1X
kD1

k2s

ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�

� cs

Z T

0

ˇ̌
ˇ
NX
jD1

1X
kD1

�jkajke
i!jkt C �jkbjke

�i!jkt
ˇ̌
ˇ2 dt: (11.8)

In the rest of this section we explain the appearance of the assumption “almost
all” in Theorem 11.2 (this explication will not be used in the next section). We refer
to [7, pp. 207–210] for more details.

Using (11.7) and the definition of the spaces Ds
j we obtain by a straightforward

computation that2

��uj 0
��2
s

C ��uj1
��2
s�2 �

1X
kD1

k2s
�ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�

2We write g 	 h if there exist two positive constants ˛; ˇ, independent of the parameters j; k; n,
such that ˛g � h � ˇg.
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for each j , and hence

ku0k2s C ku1k2s�2 �
NX
jD1

1X
kD1

k2s
�ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�
: (11.9)

It remains to compare the right side of this relation with the integral on the right side
of (11.6). For this first we observe that

f .t/ D
NX
jD1

1X
kD1

.�jkajke
i!jkt C �jkbjke

�i!jkt /

is a trigonometric type series. If the “spectrum”

˚˙!jk W j D 1; : : : ; N; k D 1; 2; : : :
�

were uniformly discrete, then we could apply a classical generalization of Parseval’s
equality, due to Ingham [6], to conclude that

Z T

0

jf .t/j2 dt �
NX
jD1

1X
kD1

ˇ̌
�jk

ˇ̌2 �ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�
;

or equivalently

Z T

0

jf .t/j2 dt �
NX
jD1

1X
kD1

k2
�ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�
;

provided T is sufficiently large. Moreover, since3 !j;kC1 � !j;k ! 1 for each
fixed j as k ! 1, it can be shown by applying a method of Haraux [5] that the last
estimate remains valid for every (even arbitrarily small) T > 0.

However, the spectrum is not uniformly discrete. But it has a weaker gap
property, which enables us, by applying a theorem from [3] and [4], to obtain a
weaker conclusion of the form

Z T

0

jf .t/j2 dt � c

NX
jD1

1X
kD1

k2�2N�2
jk

�ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�
;

with a suitable positive constant c and with

�jk WD min
˚ˇ̌
!jk � !j 0k0

ˇ̌ W .j; k/ ¤ .j 0; k0/
�
:

3We write more correctly j; k instead of jk for more clarity.
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For each fixed j , the set
˚˙!jk W k D 1; 2; : : :

�
is uniformly discrete. On the

other hand, the differences
ˇ̌
!jk � !j 0k0

ˇ̌
may be small when j ¤ j 0, and this

makes the last estimate weaker. However, if the ratio `j =`j 0 does not belong to some
special set of zero Lebesgue measure, then a theorem on Diophantine approximation
yields an estimate of the form

�jk � cˇ
ˇ̌
!j;k

ˇ̌�ˇ

for each fixed ˇ > 0, with a positive constant cˇ , which is independent of j and k.
Since !j;k � k2, this yields the inequality

Z T

0

jf .t/j2 dt � c 0̌
NX
jD1

1X
kD1

k2�.4N�4/ˇ
�ˇ̌
ajk

ˇ̌2 C ˇ̌
bjk

ˇ̌2�

for each fixed ˇ > 0, with another positive constant c 0̌ . In view of (11.9), the
theorem follows by choosing ˇ > 0 such that 2s D 2 � .4N � 4/ˇ.

11.3 Proof of Theorem 11.1

Keeping the notations

�jk WD k�

`j
and !jk WD �2jk

of the preceding section and setting

�n WD n�

`
and !jkn WD �2jk C �2n D !jk C �2n

for brevity, it is well-known that the solutions of (11.1) are given by the Fourier
series

uj .t; x; y/ D
1X
kD1

1X
nD1
.ajkne

i!jknt C bjkne
�i!jknt / sin�jkx sin�ny;

j D 1; : : : ; N; (11.10)

with suitable complex coefficients ajkn and bjkn.
Using these expressions we have

��uj 0
��2
s

D
1X
kD1

1X
nD1
.k2 C n2/s

ˇ̌
ajkn C bjkn

ˇ̌2
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and

��uj1
��2
s�2 D

1X
kD1

1X
nD1
.k2 C n2/s�2!2jkn

ˇ̌
ajkn � bjkn

ˇ̌2
:

Since !jkn � k2 C n2, we obtain the following estimate of the left side of (11.3):

��uj 0
��2
s

C ��uj1
��2
s�2 �

1X
kD1

1X
nD1
.k2 C n2/s

�ˇ̌
ajkn

ˇ̌2 C ˇ̌
bjkn

ˇ̌2�
: (11.11)

Next we evaluate the right side of (11.3). Using (13.31) we have

fy.t; y/ D
NX
jD1

1X
kD1

1X
nD1
.ajkne

i!jknt C bjkne
�i!jknt /�jk�n cos�ny:

Using the orthogonality of the functions cos�ny in L2.0; `/, it follows that

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy D `

2

1X
nD1

�2n

ˇ̌
ˇ̌
ˇ̌
NX
jD1

1X
kD1
.ajkne

i!jknt C bjkne
�i!jknt /�jk

ˇ̌
ˇ̌
ˇ̌
2

:

Now a crucial observation is that, since !jkn WD !jk C �2n, we have

ˇ̌
ˇ̌
ˇ̌
NX
jD1

1X
kD1
.ajkne

i!jknt C bjkne
�i!jknt /�jk

ˇ̌
ˇ̌
ˇ̌
2

D
ˇ̌
ˇ̌
ˇ̌
NX
jD1

1X
kD1

.ajkne
i!jkt C bjkne

�i!jkt /�jk

ˇ̌
ˇ̌
ˇ̌
2

for each fixed n, and therefore

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy D `

2

1X
nD1

�2n

ˇ̌
ˇ̌
ˇ̌
NX
jD1

1X
kD1
.ajkne

i!jkt C bjkne
�i!jkt /�jk

ˇ̌
ˇ̌
ˇ̌
2

:

Applying the equalities (11.6) and (11.8), it follows that

Z T

0

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy dt

D `

2

1X
nD1

�2n

Z T

0

ˇ̌
ˇ̌
ˇ̌
NX
jD1

1X
kD1
.ajkne

i!jkt C bjkne
�i!jkt /�jk

ˇ̌
ˇ̌
ˇ̌
2

dt

� `

2cs

1X
nD1

NX
jD1

1X
kD1

k2s�2n

ˇ̌
ajkn

ˇ̌2 C ˇ̌
bjkn

ˇ̌2�
:
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Since s < 1, we have

k2s�2n D k2s�2n2`�2 � �2

`2
k2sn2s � �2

`2

�
k2 C n2

2

�s

for all k; n D 1; 2; : : : : We deduce therefore from the preceding estimate the
following inequality:

Z T

0

Z `

0

ˇ̌
fy.t; y/

ˇ̌2
dy dt � �2

2sC1`cs

1X
nD1

NX
jD1

1X
kD1

.k2 C n2/s

ˇ̌
ajkn

ˇ̌2 C ˇ̌
bjkn

ˇ̌2�
:

(11.12)

Combining (11.11) and (11.12), the estimate (11.3) of Theorem 11.1 follows with
a suitable constant Cs . ut
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Chapter 12
Kernel Estimates for Nonautonomous
Kolmogorov Equations with Potential Term

Markus Kunze, Luca Lorenzi, and Abdelaziz Rhandi

To the memory of Prof. Alfredo Lorenzi

Abstract Using time dependent Lyapunov functions, we prove pointwise upper
bounds for the heat kernels of some nonautonomous Kolmogorov operators with
possibly unbounded drift and diffusion coefficients and a possibly unbounded
potential term.

12.1 Introduction

We consider nonautonomous evolution equations
(
@tu.t; x/ D A .t/u.t; x/; .t; x/ 2 .s; 1� � R

d ;

u.s; x/ D f .x/; x 2 R
d ;

(12.1)
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where the time dependent operators A .t/ are defined on smooth functions ' by

A .t/'.x/ D
dX

ijD1
qij.t; x/Dij'.x/C

dX
iD1

Fi .t; x/Di'.x/ � V.t; x/'.x/:

We writeA0.t/ for the operatorA .t/CV.t/. Throughout this article, we will always
assume that the following hypothesis on the coefficients are satisfied.

Hypothesis 12.1 The coefficients qij; Fj and V are defined on Œ0; 1��R
d for i; j D

1; : : : ; d . Moreover,

1. there exists an & 2 .0; 1/ such that qij; Fj ; V 2 C
&
2 ;&

loc .Œ0; 1� � R
d / for all i; j D

1; : : : ; d . Further, qij 2 C0;1..0; 1/� R
d /;

2. the matrix Q D .qij/ is symmetric and uniformly elliptic in the sense that there
exists a number � > 0 such that

dX
i;jD1

qij.t; x/�i �j � �j�j2 for all � 2 R
d ; .t; x/ 2 Œ0; 1� � R

d I

3. V � 0;
4. there exist a nonnegative function Z 2 C2.Rd / and a constant M � 0 such

that limjxj!1Z.x/ D 1 and we have A .t/Z.x/ � M , as well as ��xZ.x/C
F.t; x/ � rxZ.x/ � V.t; x/Z.x/ � M , for all .t; x/ 2 Œ0; 1� � R

d ;
5. there exists a nonnegative function Z0 2 C2.Rd / such that limjxj!1 Z0.x/ D

1 and we have A0.t/Z0.x/ � M , as well as ��xZ0.x/CF.t; x/ � rxZ0.x/ �
M , for all .t; x/ 2 Œ0; 1� � R

d .

We summarize Hypothesis 12.1(4)–(5) saying that Z (resp. Z0) is a Lyapunov
function for the operators A and ��C F � rx � V (resp. for the operators A0 and
��C F � rx).

Clearly, 5 implies 4. However, for applications it will be important to differentiate
between Z and Z0.

The previous assumptions guarantee that, for any f 2 Cb.R
d /, the Cauchy

problem (12.1) admits a unique solution u 2 Cb.Œs; 1� � R
d / \ C1;2..s; 1� �

R
d /. Moreover, there exists an evolution family .G.t; s//.t;s/2D � L .Cb.R

d //,
where D D f.t; s/ 2 Œ0; 1�2 W t � sg, which governs Equation (12.1), i.e.,
u.t; x/ D .G.t; s/f /.x/. Here and throughout the paper, the index “b” stands for
boundedness.

By [2, Proposition 3.1], the operators G.t; s/ are given by Green kernels
g.t; s; �; �/, i.e., we have

G.t; s/f .x/ D
Z
Rd

f .y/g.t; s; x; y/ dy: (12.2)

Our aim is to prove estimates for the Green kernel g. Similar results as we present
here have been obtained in [10–13] for autonomous equations without potential
term. The case of autonomous equations with potential term was treated in [1, 8, 9].
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Recently, generalizing techniques from [4] to the parabolic situation, the authors
of the present article extended these results also to nonautonomous equations and,
even more importantly, allowed also unbounded diffusion coefficients, see [7]. In
this article, we extend the results of [7] to also allow potential terms in the equation.

Applying our main abstract result (Theorem 12.6) in a concrete situation, we
obtain the following result. In its formulation, for s � 0, we use the notation jxjs� to
denote a smooth version of the s-th power of the absolute value function, i.e., jxjs� D
jxjs whenever jxj � 1 and the map x 7! jxjs� is twice continuously differentiable in
R
d . This is done to meet the differentiability requirement in Hypothesis 12.1(1), (3)

and (5) and also later differentiability requirements. If s D 0 or s � 2we can choose
jxjs� D jxjs for any x 2 R

d as this is already twice continuously differentiable.

Theorem 12.2 Let k > d C 2, m; r � 0 and p > 1 be given with p > m � 1 and
r > m � 2. We consider the (time independent) operator A .t/ � A , defined on
smooth functions ' by

A '.x/ D .1C jxjm� /�'.x/ � jxjp�1x � r'.x/ � jxjr'.x/:

Then we have the following estimates for the associated Green kernel g:

1. if p � 1
2
.mC r/, then for ˛ > pC1�m

p�1 and " < 1
pC1�m we have

g.t; s; x; y/ � C.t � s/1� ˛.m_p/k
pC1�m e�".t�s/˛ jyjpC1�m

� I

2. if p < 1
2
.m C r/, then for " < 2

rC2�m and ˛ > r�mC2
rCm�2 , if r C m > 2, and

˛ > rC2�m
2.p�1/ , if r Cm � 2, we have

g.t; s; x; y/ � C.t � s/1�
˛.2m_2p_r/k

rC2�m e�".t�s/˛jyj
1
2 .rC2�m/

� ;

for all x; y 2 R
d and s 2 Œ0; t/.

Here, C is a positive constant.

These bounds should be compared to the ones in [1, Example 3.3], where the
case m D 0 was considered. We would like to note that in Theorem 12.2 we have
restricted ourselves to the autonomous situation so that one can compare the results
with those in [1]. Genuinely nonautonomous examples can easily be constructed
along the lines of [7, Sect. 5].

12.2 Time Dependent Lyapunov Functions

In this section we introduce time dependent Lyapunov functions and prove that they
are integrable with respect to the measures gt;s.x; dy/ WD g.t; s; x; y/dy, where
g.t; s; �; �/ is the Green kernel associated to the evolution operatorG.t; s/, see (12.2),
and g.t; �; x; �/ 2 L1..0; 1/�R

d /. To do so, it is important to have information about
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the derivative ofG.t; s/f with respect to s. We have the following result, taken from
[2, Lemma 3.4]. Here and in the rest of the paper, the index “c” stands for compactly
supported.

Lemma 12.1 1. For f 2 C2
c .R

d /, s0 � s1 � t and x 2 R
d we have

G.t; s1/f .x/ �G.t; s0/f .x/ D �
Z s1

s0

G.t; 	/A .	/f .x/ d	: (12.3)

2. For f 2 C2.Rd /, constant and positive outside a compact set and x 2 R
d , the

function G.t; �/A .�/f .x/ is integrable in Œ0; t � and for s0 � s1 � t we have

G.t; s1/f .x/ �G.t; s0/f .x/ � �
Z s1

s0

G.t; 	/A .	/f .x/ d	:

We note that in the case where V � 0 part (2) in Lemma 12.1 follows trivially
from part (1), since in that situation G.t; s/� � � and A .t/� D 0 so that
equation (12.3) holds for f D �, cf. [6, Lemma 3.2].

Let us note some consequences of Lemma 12.1 for later use. First of all, part
(1) of the lemma implies that @sG.t; s/f D �G.t; s/A .s/f for f 2 C2

c .R
d /.

Arguing as in [7, Lemma 2.2], we see that for 0 � a � b � t , x 2 R
d and

' 2 C1;2
c .Œa; b� � R

d /, the function s 7! G.t; s/'.s/.x/ is differentiable in Œa; b�
and

@sG.t; s/'.s/.x/ D G.t; s/@s'.s/.x/ �G.t; s/A .s/'.s/.x/:

Consequently, for such a function ' we have that

Z b

a

G.t; s/

@s'.s/ � A .s/'.s/

�
.x/ ds D G.t; b/'.b/.x/�G.t; a/'.a/.x/;

(12.4)

for every x 2 R
d .

As a consequence of formula (12.4) and [3, Corollary 3.11] we get the following
result.

Lemma 12.2 For any t 2 .0; 1� and any x 2 R
d the function g.t; �; x; �/ is

continuous (actually, locally Hölder continuous) in .0; t/ � R
d .

We now introduce time dependent Lyapunov functions.

Definition 12.1 Let t 2 .0; 1�. A time dependent Lyapunov function .on Œ0; t �/ is a
function 0 � W 2 C.Œ0; t � � R

d / \ C1;2..0; t/ � R
d / such that

1. W.s; x/ � Z.x/ for all .s; x/ 2 Œ0; t � � R
d ;

2. limjxj!1 W.s; x/ D 1, uniformly for s in compact subsets of Œ0; t/;
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3. there exists a function 0 � h 2 L1..0; t// such that

@sW.s; x/ � A .s/W.s/ � �h.s/W.s/ (12.5)

and

@sW.s/ � .��xW.s/C F.s/ � rxW.s/� V.s/W.s// � �h.s/W.s/ ; (12.6)

on R
d , for every s 2 .0; t/.

Sometimes, we will say that W is a time dependent Lyapunov function with respect
to h to emphasize the dependence on h.

Proposition 12.1 Let W be a time dependent Lyapunov function on Œ0; t � with
respect to h. Then for 0 � s � t and x 2 R

d the function W.s/ is integrable
with respect to the measure gt;s.x; dy/. Moreover, setting

W .s; x/ WD
Z
Rd

W.s; y/gt;s.x; dy/

we have

W .s; x/ � e
R t
s h.�/ d�W.t; x/: (12.7)

Proof Let us first note that by [2, Proposition 4.7] the functionZ is integrable with
respect to gt;s.x; dy/. Moreover,

G.t; s/Z.x/ WD
Z
Rd

Z.y/gt;s.x; dy/ � Z.x/CM.t � s/: (12.8)

It thus follows immediately from domination thatW.s/ is integrable with respect to
gt;s.x; dy/.

We now fix a sequence of functions  n 2 C1.Œ0;1// such that

(i)  n.�/ D � for � 2 Œ0; n�;
(ii)  n.�/ � const: for � � nC 1;

(iii) 0 �  0
n � 1 and  00

n � 0.

Let us also fix 0 � s < r < t . Note that, for any n 2 N, the function Wn WD
 n ıW is the sum of a function in C1;2

c .Œ0; r��R
d / and a positive constant. Indeed,

W.s; 	/ ! 1 as jxj ! 1 uniformly on Œ0; r�. For a positive constant function, we
have by Lemma 12.1(2) that

G.t; r/��G.t; s/� � �
Z r

s

G.t; 	/A .	/� d	 D
Z r

s

G.t; 	/

@	�� A .	/�

�
d	:



234 M. Kunze et al.

Combining this with Equation (12.4), it follows that

G.t; r/Wn.r/.x/ �G.t; s/Wn.s/.x/

�
Z r

s

G.t; 	/

@	Wn.	/ � A .	/Wn.	/

�
.x/ d	

D
Z r

s

G.t; 	/

 0
n.W.	//



@	W.	/ � A .	/W.	/

��
.x/ d	

�
Z r

s

G.t; 	/

V.	/W.	/ 0

n.W.	// � V.	/ n.W.	//
�
.x/ d	

�
Z r

s

G.t; 	/

 00
n .W.	//



Q.	/rxW.	/ � rxW.	/

��
.x/ d	

� �
Z r

s

G.t; 	/

 0
n.W.	//h.	/W.	/

�
.x/ d	; (12.9)

for any x 2 R
d , since G.t; s/ preserves positivity and the condition  00

n � 0 implies
that y 0

n.y/ �  n.y/ � 0 for any y � 0.
We next want to let r " t . We fix an increasing sequence .rk/ � .s; t/, converging

to t as k ! 1. By monotone convergence, we clearly have

Z rk

s

G.t; 	/

h.	/Wn.	/

�
.x/ d	 !

Z t

s

G.t; 	/

h.	/Wn.	/

�
.x/ d	

as k ! 1. We now claim that G.t; rk/Wn.rk/.x/ ! G.t; t/Wn.t/.x/ D Wn.t; x/

as k ! 1. To see this, we note that for f 2 Cb.R
d /, the function .s; x/ 7!

G.t; s/f .x/ is continuous in Œ0; t � � R
d as a consequence of [2, Theorem 4.11].

This immediately implies that G.t; rk/Wn.t/.x/ ! G.t; t/Wn.t/.x/ D Wn.t; x/ as
k ! 1. Moreover, from (12.8) it follows that

gt;s.R
d n B.0;R// � 1

infRd nB.0;R/ Z

Z
Rd

Z.y/gt;s .x; dy/ � Z.x/CM

infRdnB.0;R/ Z
;

(12.10)

where B.0;R/ � R
d denotes the open ball centered at 0 with radius R. Since

the right-hand side of (12.10) converges to zero as R ! 1, the set of measures
fgt;s.x; dy/ W s 2 Œ0; t �g is tight.

Taking into account that Wn.rk/ is uniformly bounded and converges locally
uniformly to Wn.t/ as k ! 1, it is easy to see that

G.t; rk/Wn.rk/.x/ �G.t; rk/Wn.t/.x/ D
Z
Rd

.Wn.rk; y/ �Wn.t; y// gt;rk .x; dy/ ! 0

as k ! 1. Combining these two facts, it follows that G.t; rk/Wn.rk/.x/ !
Wn.t; x/ as claimed.



12 Kernel Estimates for Nonautonomous Kolmogorov Equations with Potential Term 235

Thus, letting r " t in (12.9), we find that

Wn.t; x/ �G.t; s/Wn.s/.x/ � �
Z t

s

G.t; 	/

 0
n.W.	//h.	/W.	/

�
.x/ d	:

(12.11)

Note that  0
n.W.	//h.	/W.	/ and Wn.s/ converge increasingly to W.	/h.	/ and

W.s/, respectively, as n ! 1, for any 	 2 Œs; t �. Since each operator G.t; 	/
preserves positivity, we can use monotone convergence to let n ! 1 in (12.11),
obtaining

W.t; x/�G.t; s/W.s/.x/ � �
Z t

s

h.	/G.t; 	/W.	/.x/ d	:

Equivalently,

W .t; x/ � W .s; x/ � �
Z t

s

h.	/W .	; x/ d	; x 2 R
d : (12.12)

This inequality yields (12.7). Indeed, the function ˚ , defined by

˚.�/ WD
�
W .t; x/C

Z t

�

h.	/W .	; x/ d	

�
e
R �
s h.	/ d	 ;

is continuous on Œs; t � and increasing since its weak derivative is nonnegative
by (12.12). Hence ˚.s/ � ˚.t/, from which (12.7) follows at once if we take
again (12.12) into account. ut

Let us illustrate this in the situation of Theorem 12.2.

Proposition 12.2 Consider the (time independent) operator A .t/ � A , defined
by

A '.x/ D .1C jxjm� /�'.x/� jxjp�1x � r'.x/ � jxjr'.x/;

where m; r � 0 and p > 1. Moreover, assume one of the following situations:

(i) p > m � 1, ˇ WD p C 1 �m and ı < 1=ˇ;
(ii) r > m � 2, ˇ WD 1

2
.r C 2 �m/ and ı < 1=ˇ.

Then the following properties hold true:

1. the function Z.x/ WD exp.ıjxjˇ�/ satisfies Part (4) of Hypothesis 12.1;
2. for 0 < " < ı and ˛ > ˛0, the function W.s; x/ WD exp.".t � s/˛jxjˇ�/ is a time

dependent Lyapunov function in the sense of Definition 12.1. Here, ˛0 D ˇ

p�1
if we assume condition (ii) and additionally m C r � 2. In all other cases,
˛0 D ˇ

mCˇ�2 .
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Proof In the computations below, we assume that jxj � 1 so that jxjs� D jxjs for
s � 0. At the cost of slightly larger constants, these estimates can be extended to
all of Rd . We omit the details which can be obtained as in the proof of [7, Lemma
5.2]

1. By direct computations, we see that

AZ.x/ D ıˇ
h
.1C jxjm/jxjˇ�2



d C ˇ � 2C ıˇjxjˇ� � jxjp�1Cˇ � jxjr

i
Z.x/:

The highest power of jxj appearing in the first term is jxjmC2ˇ�2 which, in case
(i) is exactly jxjp�1Cˇ , in case (ii) it is exactly jxjr . In both cases, the highest
power in the square brackets has a negative coefficient in front, namely ıˇ � 1.
Thus limjxj!1 AZ.x/ D �1. It now follows from the continuity of A Z that
A Z � M for a suitable constantM . Since ��ZCF � rZ� VZ � A Z, where
� D 1 C infx2Rd jxjm� . We conclude that the function ��Z C F � rZ � VZ is
bounded from above as well.

2. We note that since " < ı, we have W.s; x/ � .Z.x//
"
ı � Z.x/ for all s 2 Œ0; t �

and x 2 R
d so that (1) in Definition 12.1 is satisfied. Condition (2) is immediate

from the definition of W so that it only remains to verify condition (3).

A computation shows that

@sW.s; x/ � AW.s; x/

D � "˛.t � s/˛�1jxjˇW.s; x/ � "ˇ.t � s/˛W.s; x/� (12.13)

�
h
.1C jxjm/jxjˇ�2
d C ˇ � 2C "ˇ.t � s/˛jxjˇ� � jxjp�1Cˇ

i

C jxjrW.s; x/
D � "˛.t � s/˛�1jxjˇW.s; x/ � "ˇ.t � s/˛W.s; x/�

�
h
.1C jxjm/jxjˇ�2
d C ˇ � 2C ıˇjxjˇ� � jxjp�1Cˇ

i

C jxjrW.s; x/
C "ˇ2.ı � "/.t � s/˛.1C jxjm/jxj2ˇ�2W.s; x/

� ".t � s/˛�1jxjˇ
.ı � "/ˇ2.t � s/jxjmCˇ�2 � ˛
�
W.s; x/

� "ˇ.t � s/˛W.s; x/
h
.1C jxjm/jxjˇ�2
d C ˇ � 2C ıˇjxjˇ�

� jxjp�1Cˇ � jxjr
i
; (12.14)

where in the last inequality we took into account that "ˇ.t � s/˛ < 1.
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To further estimate @sW.s/�AW.s/, we first assume that ˇCm� 2 � 0. This
condition is satisfied under condition (i) and also under condition (ii) provided that

mC r > 2. We set C WD 
.ı � "/ˇ2=˛�� 1

ˇCm�2 and distinguish two cases.

Case 1: jxj � C.t � s/� 1
ˇCm�2 .

In this case .ı� "/ˇ2.t � s/jxjˇCm�2 � ˛ so that the first summand in (12.14) is
nonnegative. Replacing C with a larger constant if necessary, we can – as in the
proof of part (1) – ensure that also the second summand is positive so that overall
@sW.s/� AW.s/ � 0 in this case.

Case 2: 1 � jxj < C.t � s/
� 1
ˇCm�2 .

In this case, we start again from estimate (12.13). We drop the terms involving
�jxjp�1Cˇ and jxjr and, using that jxj � 1, estimate further as follows:

W.s; x/�1.@sW.s; x/ � AW.s; x//

� � "˛.t � s/˛�1jxjˇ � 2"ˇ.t � s/˛jxjmCˇ�2.d C ˇ � 2C "ˇjxjˇ/

� � "˛.t � s/˛�1C ˇ.t � s/� ˇ
mCˇ�2 � 2"ˇ.t � s/˛CmCˇ�2.t � s/�1�

� 
d C ˇ � 2C "ˇCˇ.t � s/
� ˇ
mCˇ�2

�

� � QC.t � s/
˛�1� ˇ

mCˇ�2 DW �h.s/:

Note that h 2 L1.0; t/ since ˛ � 1 � ˇ

mCˇ�2 > �1 by assumption.

Suppose now thatmCˇ�2 � 0, so that jxjmCˇ�2 � 1 for jxj � 1. Taking again
into account that "ˇ.t � s/˛ < 1 and dropping the term involving jxjr , we derive
from (12.13) that

W.s; x/�1.@sW.s; x/ � AW.s; x//

� � ".t � s/˛�1jxjˇ
˛ C 2ˇ � ˇ.t � s/jxjp�1� � 2.d C ˇ � 2/;

for any jxj � 1. We can now argue as above taking C D 
.˛ C 2ˇ/=ˇ

� 1
p�1 and

distinguishing the cases jxj � C.t � s/
� 1
p�1 and 1 � jxj < C.t � s/

� 1
p�1 . We

conclude that

W.s; x/�1.@sW.s; x/ � AW.s; x// � �"C ˇ.˛ C 2ˇ/.t � s/
˛�1� ˇ

p�1 DW �h.s/;

for any s 2 .0; t/, jxj � 1, and h 2 L1..0; t// due to the condition on ˛.
We have thus proved (12.5) in Definition 12.1. The analogous estimate (12.6) for

��xCF �rx�c follows from observing that ��xW CF �rxW �cW � AW . ut
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12.3 Kernel Bounds in the Case of Bounded Diffusion
Coefficients

Throughout this section, we set R.a; b/ WD .a; b/� R
d and R.a; b/ WD Œa; b� � R

d

for any 0 � a < b � 1. Moreover, we assume that the coefficients qij and their
spatial derivatives Dkqij are bounded on R.0; b/ for i; j; k D 1; : : : ; d and every
b < 1. We will remove this additional boundedness assumption in the next section.

Fix now t 2 Œ0; 1�. For 0 � a < b � t , x 2 R
d and k � 1, we define the

quantities �j .k; x; a; b/ for j D 1; 2 by

�1.k; x; a; b/ WD
�Z

R.a;b/

jF.s; y/jkg.t; s; x; y/ ds dy

� 1
k

;

where g is the Green kernel associated with A , and

�2.k; x; a; b/ WD
�Z

Q.a;b/

jV.s; y/jkg.t; s; x; y/ ds dy

� 1
k

:

We also make an additional assumption about the parabolic equation governed
by the operators A0 without potential term. Hypothesis 12.1(5) guarantees that the
Cauchy problem (12.1) with A being replaced by A0 admits a unique solution u 2
Cb.R.s; 1//\C1;2.R.s; 1// for any f 2 Cb.Rd /. The associated evolution operator
admits a Green kernel which we denote by g0. In the following lemma, we will deal
with the space H p;1.R.a; b// of all functions in W 0;1

p .R.a; b// with distributional

time derivative in .W 0;1
p0 .R.a; b///

0, where 1=p C 1=p0 D 1. We refer the reader
to [5, 10] for more details on these spaces. Here, we just prove the following result
which is crucial in the proof of Theorem 12.4 (cf. [10, Lemma 7.2]).

Lemma 12.3 Let u 2 H p;1.R.a; b// \ Cb.R.a; b// for some p 2 .1;1/. Then,
there exists a sequence .un/ � C1

c .R
dC1/ of smooth functions such that un tends

to u in W 0;1
p .R.a; b// and locally uniformly in R.a; b/, and @tun converges to @tu

weakly� in .W 0;1
p0 .R.a; b///

0 as n ! 1.

Proof We split the proof in two steps: first we prove the statement with R.a; b/
being replaced with R

dC1 and, then, using this result we complete the proof.

Step 1. Let # 2 C1
c .R/ be a smooth function such that # � 1 in .�1; 1/ and

# � 0 in R n .�2; 2/. For any 	 > 0, any t 2 R and any x 2 R
d , set #	.t; x/ D

#.jt j=	/#.jxj=	/. Next, we define the function un 2 C1
c .R

dC1/ by setting

un.t; x/ D ndC1#n.t; x/
Z
RdC1

u.s; y/#1=n.t � s; x � y/ ds dy

DW ndC1#n.t; x/.u ? #1=n/.t; x/ ;

for any .t; x/ 2 R
dC1 and any n 2 N. Clearly, un converges to u in W 0;1

p .RdC1/
and locally uniformly in R

dC1.
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Let us fix a function  2 W
0;1
p0 .R

dC1/. Applying the Fubini-Tonelli theorem

and taking into account that #1=n.r; z/ D #1=n.�r;�z/ for any .r; z/ 2 R
dC1,

we easily deduce that h@tun;  i D h@tu;  ni for any n 2 N, where  n D
ndC1#1=n ? .#n / and h�; �i denotes the duality pairing of W 0;1

p0 .R
dC1/ and

.W
0;1
p0 .R

dC1//0. Since  n converges to  in W
0;1
p0 .R

dC1/ as n ! 1, we

conclude that h@tu;  ni ! h@tu;  i as n ! 1. This shows that @tun
�
* @tu

in .W 0;1
p0 .R

dC1//0 as n ! 1.

Step 2. Let us now consider the general case. We extend u 2 H p;1.R.a; b// \
Cb.R.a; b// to .3a � 2b; 2b � a/, by symmetry, first with respect to t D b and
then with respect to t D a. The so obtained function v belongs to H p;1.R.3a �
2b; 2b� a//\Cb.R.3a� 2b; 2b� a//. Proving that v 2 W 0;1

p .R.3a� 2b; 2b�
a// \ Cb.R.3a � 2b; 2b � a// is immediate. Hence, it remains to prove that the
distributional derivative @t v belongs to .W 0;1

p0 .R.3a� 2b; 2b� a///0. To that end
fix ' 2 C1

c .R.3a � 2b; 2b � a// and observe that

Z
R.3a�2b;2b�a/

v@t' dt dx D
Z
R.a;b/

u@t˚ dt dx ; (12.15)

where the function˚ D '�'.2b��; �/�'.2a��; �/C'.2a�2bC�; �/ belongs to
W 0;1
p0 .R.a; b//. It follows immediately that h@tv; 'i D h@tu; ˚i. The density of

C1
c .R.a; b// inW 0;1

p0 .R.a; b// implies that @tv 2 .W 0;1
p0 .R.3a� 2b; 2b � a///0.

We now fix a function  2 C1
c ..3a � 2b; 2b � a// such that  � 1 in

Œa; b�. Applying Step 1 to the function .t; x/ 7! .t/v.t; x/, which belongs to
H p;1.RdC1/ \ Cb.R

dC1/, we can find a sequence .un/ � C1
c .R

dC1/ converging
to the function v locally uniformly in R

dC1 and in W 0;1
p .RdC1/, and such that

@tun
�
* @t.v/ in .W 0;1

p0 .R
dC1//0. Clearly, un converges to u locally uniformly in

R.a; b/ and inW 0;1
p .R.a; b//. Moreover, fix ' 2 W 0;1

p0 .R.a; b// and denote by ' the

null extension of ' to the whole of RdC1. Clearly, ' belongs to W 0;1
p0 .R

dC1/. Since

Z
R.a;b/

@tun' dt dx D
Z
RdC1

@tun' dt dx

and @tun
�
* @t .v/ in .W 0;1

p0 .R
dC1//0, from formula (12.15) and since  0' � 0 and

' � ', it follows that

lim
n!1

Z
R.a;b/

@tun' dt dx D h@t .v/; 'i D
Z
R.a;b/

v 0' dt dx C h@tv; 'i

D h@tv; 'i D h@tu; 'i :

This completes the proof. ut
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Lemma 12.4 Let 0 � a < b < t and x 2 R
d . Moreover, assume that g0.t; �; x; �/ 2

L1.R.a; b//. Then, g.t; �; x; �/ 2 Cb.R.a; b//. Moreover, if for some q > 1we have
�1.q; x; a; b/ < 1 and �2.q; x; a; b/ < 1, then g.t; �; x; �/ 2 H p;1.R. Qa; Qb// for
all p 2 .1; q/ and any a < Qa < Qb < b.

Proof By the maximum principle, g.t; �; x; �/ � g0.t; �; x; �/ almost surely. Hence,
g.t; �; x; �/ 2 L1.R.a; b//. The continuity of the function g.t; �; x; �/ follows from
Lemma 12.2. To infer that g.t; �; x; �/ belongs to H p;1.R. Qa; Qb//, for any Qa and Qb as
in the statement of the lemma, we want to use [10, Lemma 3.2] (see also [7, Lemma
3.2] for the nonautonomous situation). We note that the proof of that lemma remains
valid for operators with potential term, provided that both �1.q; x; a; b/ < 1 and
�2.q; x; a; b/ < 1. Thus [7, Lemma 3.2] yields g 2 H p;1.R. Qa; Qb// for all p 2
.1; q/. ut

We next establish the kernel estimates. To that end, we use time-dependent
Lyapunov functions. We make the following assumptions.

Hypothesis 12.3 Fix 0 < t � 1, x 2 R
d and 0 < a0 < a < b < b0 < t . Let

time dependent Lyapunov functions W1;W2 with W1 � W2 and a weight function
1 � w 2 C1;2.R.0; t// be given such that

1. the functions w�2@sw and w�2ryw are bounded on R.a0; b0/;
2. there exist a constant k > dC2 and constants c1; : : : ; c7 � 1, possibly depending

on the interval .a0; b0/, such that

.i/ w � c1w
k�2
k W

2
k

1 ; .ii/ jQrywj � c2w
k�1
k W

1
k

1 ;

.iii/ jTr.QD2w/j � c3w
k�2
k W

2
k

1 ; .iv/ j@swj � c4w
k�2
k W

2
k

1 ;

.v/ jPd
iD1 Diqijj � c5w� 1

k W
1
k

2 ;

and

.vi/ jF j � c6w� 1
k W

1
k

2 ; .vii/ V
1
2 � c7w� 1

k W
1
k

2 ;

on R.a0; b0/;
3. g0.t; �; x; �/ 2 L1.R.a0; b0//.

Having fixed t and x, we write �.s; y/ WD g.t; s; x; y/ to simplify notation. We
can now prove the main result of this section.

Theorem 12.4 Assume Hypotheses 12.3. Then there exists a positive constant C1,
depending only on d; k and �, such that

w� � C1

�
c
k
2

1 sup
s2.a0;b0/

W1.s/C
�

c
k
2

1

.b0 � b/ k2
C ck2 C c

k
2

3 C c
k
2

4

�Z b0

a0

W1.s/ ds

C
�
c
k
2

2 c
k
2

6 C ck5 C ck6 C ck7

�Z b0

a0

W2.s/ ds

�
(12.16)

in R.a; b/.
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Proof We first assume that the weight function w, along with its first order partial
derivatives is bounded. It follows from Hypothesis 12.3(2)(i) and (vi) that

�1.k=2; x; a0; b0/
k
2 D

Z
R.a0;b0/

jF.s; y/j k2 g.t; s; x; y/ ds dy

�
Z
R.a0;b0/

w.s; x/jF.s; x/j k2 g.t; s; x; y/ ds dy

� c
k
2

6

Z
R.a0;b0/

w.s; y/
1
2 W2.s; y/

1
2 g.t; s; x; y/ ds dy

� c
k
4

1 c
k
2

6

Z
R.a0;b0/

W2.s; y/g.t; s; x; y/ ds dy < 1;

as a consequence of Proposition 12.1. Moreover, using Hypothesis 12.3(2)(vii)
instead, it follows that

�2.k=2; x; a0; b0/
k
2 � ck7

Z b0

a0

W2.s; x/ ds < 1:

We thus infer from Lemma 12.4 that g.t; �; x; �/ 2 L1.R.a0; b0// \
H p;1.R.a1; b1// for all p 2 .1; k

2
/, where a0 < a1 < a < b < b1 < b0.

Let # W R ! R be a smooth function with #.s/ D 1 for s 2 Œa; b�, #.s/ D 0 for
s � b1, 0 � # � 1 and j# 0j � 2.b1 � b/�1 in R. Given  2 C1;2

c .R.a1; b1//, we

put '.s; y/ WD #.s/
k
2 w.s; y/ .s; y/. It follows from (12.4) that

Z
R.a1;b1/


@s'.s; y/ � A .s/'.s; y/

�
�.s; y/ ds dy D 0: (12.17)

We write Q� WD #
k
2 � and note that w Q� 2 H p;1.R.a1; b1// for all p 2 .1; k

2
/, since

w and its derivatives are bounded. Thus with some standard computations involving
integration by parts we derive from (12.17) that

Z
R.a1;b1/

hQry.w Q�/;ry i �  @s.w Q�/� ds dy

D
Z
R.a1;b1/

Q�
�
2

dX
i;jD1

qij.Diw/.Dj / �
dX

i;jD1

w.Diqij/.Dj /C whF;ry i
�

ds dy

� k

2

Z
R.a1;b1/

�w #
k�2
k # 0 ds dy

C
Z
R.a1;b1/

 

 Q�Tr.QD2w/C Q�hF;rywi � Q�V w � Q�@sw

�
ds dy ;
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where, with a slight abuse of notation, we denote by
R
R.a1;b1/

 @s.w�/ ds dy the

pairing between @s.w�/ 2 .W 0;1
p0 .R.a1; b1///

0 and  2 W 0;1
p0 .R.a1; b1//.

We now want to apply [7, Theorem 3.7] to the function u D w Q� and infer that
there exists a constant C , depending only on �; d and k (but not on kQk1/, such
that

kw Q�k1 � C

�
kw Q�k1;2 C k Q�Qrywkk C k Q�Fwkk C

dX
jD1

���� Q�w
dX
iD1

Diqij

����
k

C k Q�V wk k
2

C k

b1 � b k�w#
k�2
k k k

2
C k Q�Tr.QD2w/k k

2
C k Q�@swk k

2

C k Q�F � rywk k
2

�
; (12.18)

where for p 2 Œ1;1/ we denote by kf kp the usual Lp-norm of the function f W
R.a1; b1/ ! R. Moreover, kf k1;2 WD sups2.a1;b1/ kf .s; �/kL2.Rd /.

Note that a major tool in the proof of that theorem is the formula

Z
R.a1;b1/

#.v � `/C@t v dt dx D 1

2

�Z
Rd

#.v.b1/� `/2C dx

�
Z
Rd

#.v.a1/� `/2C dx

�
(12.19)

satisfied by v D w Q� 2 H p;1.R.a1; b1//, any ` > 0 and any nonnegative function
# 2 C1

c .R
d /, if p > d C 2. However, formula (12.19) is satisfied also in the case

p � d C 2, which is our situation, if we additionally assume that v 2 Cb.R.a1; b1//
(which follows from Lemma 12.4). Its proof can be obtained arguing as in [7,
Lemma 3.6] taking Lemma 12.3 into account, with slight and straightforward
changes. Once formula (12.19) is established, the proof of (12.18) follows the same
lines as in [7, Theorem 3.7] with no changes.

We now estimate the terms in the right-hand side of (12.18), using part (2) of
Hypothesis 12.3. We have

k Q�Qrywkkk D
Z
R.a1;b1/

j Q�Qrywjk ds dy � ck2

Z
R.a1;b1/

Q�kwk�1W1 ds dy

� ck2 k Q�wkk�11
Z b1

a1

W1.s; x/ ds:
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Let us write Mk WD R b1
a1
Wk .s; x/ ds and NM WD sups2.a1;b1/ 1.s; x/. With similar

estimates as above, we find

k Q�Fwkk � c6k Q�wk k�1
k1 M

1
k

2 ;
��� Q�w

Pd
iD1 Diqij

���
k

� c5k Q�wk k�1
k1 M

1
k

2 ;

k Q�V wk k
2

� c27k Q�wk k�2
k1 M

2
k

2 ; k�w#
k�2
2 k k

2
� c1k Q�wk k�2

k1 M
2
k

1 ;

k Q�Tr.QD2w/k k
2

� c3k Q�wk k�2
k1 M

2
k

1 ; k Q�@swk k
2

� c4k Q�wk k�2
k1 M

2
k

1 ;

k Q�F � rywk k
2

� ��1c2c6k Q�wk k�2
k1 M

2
k

2 ; kw Q�k1;2 � c
k
4

1 kw Q�k 1
21 NM 1

2 :

From (12.18) and the above estimates, we obtain the following inequality for X WD
kw Q�k 1

k1 :

Xk � ˛X
k
2 C ˇXk�1 C 
Xk�2 ;

where ˛ WD Cc
k
4

1
NM 1
2 , ˇ D C

�
c2M

1
k

1 C .c6 C c5d/M
1
k

2

�
and


 D C

�
c1

b1 � b
C c3 C c4

�
M

2
k

1 C C.c2c6 C c27/M
2
k

2 :

Estimating ˛Xk=2 � 1
4
Xk C ˛2, we find

Xk � 4

3
˛2 C 4

3
ˇXk�1 C 4

3

Xk�2: (12.20)

We note that the function

f .r/ D rk � 4

3
ˇrk�1 � 4

3

rk�2 � 4

3
˛2 Drk�2

�
r2 � 4

3
ˇr � 4

3



�
� 4

3
˛2

WDrk�2g.r/ � 4

3
˛2

is increasing in

�
4
3
ˇ C

q
4
3

 C 


4
3
˛2
� 1
k ;1

�
since the functions r 7! rk�2 and g

are positive and increasing. Moreover,

f

�
4

3
ˇ C

r
4

3

 C

�
4

3
˛2
� 1

k
�

D
�
4

3
ˇ C

r
4

3

 C

�
4

3
˛2
� 1

k
�k�2

�

�
��
4

3
˛2
� 2

k

C
�
4

3

� 3
2

ˇ

1
2 C 2

�
4

3

� kC2
2k

˛
2
k

�p
3

3
ˇ C p




��
� 4

3
˛2

>

�
4

3
˛2
� k�2

k
�
4

3
˛2
� 2

k

� 4

3
˛2 D 0:
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From these observations and inequality (12.20) it follows that X � 4
3
ˇ C

q
4
3

 C



4
3
˛2
� 1
k . Equivalently,

k Q�wk1 � K1

�
˛2 C ˇk C 


k
2

�
;

for some positive constant K1. Taking into account that c � 1, one derives (12.16)
from this by plugging in the definitions of ˛; ˇ; 
 and, then, letting a1 # a0 and
b1 " b0.

To finish the proof of the theorem, it remains to remove the additional assumption
on the weight w. To that end, we set w" WD w

1C"w . Using Hypothesis 12.3(1), we see
that w", along with its partial derivatives is bounded. Straightforward computations
show that Part (2) of Hypothesis 12.3 is satisfied with the same constants c1; : : : ; c7.
Thus the first part of the proof shows that (12.18) is satisfied with w replaced with
w" and the constants on the right-hand side do not depend on ". Thus, upon " # 0

we obtain (12.18) for the original w. ut

12.4 The Case of General Diffusion Coefficients

We now remove the additional boundedness assumption imposed in Sect. 12.3. We
do this by approximating general diffusion coefficients with bounded ones, taking
advantage of the fact that the constantC1 obtained in Theorem 12.4 does not depend
on the supremum norm of the diffusion coefficients. More precisely, we approximate
the diffusion matrixQ as follows. Given a function ' 2 C1

c .R/ such that ' � 1 in
.�1; 1/, ' � 0 in R n .�2; 2/ and jt' 0.t/j � 2 for all t 2 R, we define 'n.s; x/ WD
'.W1.s; x/=n/ for s 2 Œ0; t � and x 2 R

d . We put

q
.n/
ij .s; x/ WD 'n.s; x/qij.s; x/C .1 � 'n.s; x//�ıij;

where ıij is the Kronecker delta, and define the operators An.s/ by

An.s/ WD
dX

i;jD1
q
.n/
ij .s/Dij C

dX
jD1

Fj .s/Dj � V.s/:

We collect some properties of the approximating operators, omitting the easy
proof.

Lemma 12.5 Each operator An satisfies Hypothesis 12.1 in Œ0; t �, and its diffusion
coefficients are bounded together with their first-order spatial derivatives. More-
over, any time dependent Lyapunov function for the operator @s � A .s/ on Œ0; t � is
a time dependent Lyapunov function for the operator @s � An.s/ with respect to the
same h.
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It follows that the parabolic equation (12.1) with A replaced with An is
wellposed and the solution is given through an evolution family .Gn.r; s//0�s�r�t .
Moreover, for s < r the operator Gn.r; s/ is given by a Green kernel gn.r; s; �; �/.
We write A 0

n WD An C V and denote the Green kernel associated to the operators
A 0
n by g0n.
We make the following assumptions.

Hypothesis 12.5 Fix 0 < t � 1, x 2 R
d and 0 < a0 < a < b < b0 < t

and assume we are given time dependent Lyapunov functions W1;W2 with W1 �
W2 � c0Z

1�	 for some constants c0 > 0 and 	 2 .0; 1/ and a weight function
1 � w 2 C2.Rd / such that

1. Hypotheses 12.3(1)–(2) are satisfied;

2. j�ywj � c8w
k�2
k W

2
k

1 and jQryW1j � c9w� 1
k W1W

1
k

2 on Œa0; b0��R
d , for certain

constants c8; c9 � 1;
3. for n 2 N we have g0n.t; �; x; �/ 2 L1..a; b/ � R

d /.

In order to prove kernel estimates for the Green kernel g, we apply Theorem 12.4
to the operatorsAn and then let n ! 1. To do so, we have to show that the operators
An satisfy Hypothesis 12.3.

Lemma 12.6 The operator An satisfies Hypothesis 12.3 with the same constants
c1, c4, c6, c7 and with c2, c3 and c5 being replaced, respectively, by 2c2, c3 C �c8
and c5 C 4c9.

Proof Since part (1) is obvious and part (3) follows directly from part (3) in
Hypothesis 12.5, we only need to check part (2) of Hypothesis 12.3. Here, the
estimates (i), (iv), (vi) and (vii) are obvious, as they do not depend on the diffusion
coefficients. Let us next note that

jrywj D jQ�1Qrywj � ��1c2w
k�1
k W

1
k

1 ;

so that

jQnrywj D j'nQryw C .1 � 'n/�rywj � jQrywj C �jrywj � 2c2w
k�1
k W

1
k

1 :

This gives (ii) for Qn. As for (iii), we have

jTr.QnD
2w/j � jTr.QD2w/j C �j�wj � .c3 C �c8/w

k�2
k W

2
k

1 :

It remains to check (v). We note that

dX
iD1

Diq
.n/
ij D 'n

dX
iD1

Diqij C ' 0.W1=n/

n


.QryW1/j � �DjW1

�
:
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As jt' 0.t/j � 2, it follows that

ˇ̌
ˇ̌' 0.W1=n/

n


.QryW1/j � �DjW1

�ˇ̌ˇ̌ � 2

W1

.jQryW1j C �jryW1j/:

Consequently,

ˇ̌
ˇ̌ dX
iD1

Diq
.n/
ij

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ dX
iD1

Diqij

ˇ̌
ˇ̌C 2

W1

.jQryW1j C �jryW1j/ � .c5 C 4c9/w
� 1
k W

1
k

2 :

This finishes the proof. ut
We shall need the following convergence result for the Green kernels.

Lemma 12.7 Fix r � t and x 2 R
d and define �n.s; y/ WD gn.r; s; x; y/ and

�.s; y/ WD g.r; s; x; y/ for s 2 Œ0; r� and y 2 R
d . Then �n ! �, locally uniformly

in .0; r/ � R
d .

Proof The proof is obtained as that of [7, Proposition 2.9]. We give a sketch. Using
Schauder interior estimates and a diagonal argument, one shows that for any f 2
C
2C&
c .Rd / Gn.�; s/f converges to G.�; s/f locally uniformly. This implies that the

measure �n.s; y/ dsdy converges weakly to the measure �.s; y/ dsdy.
On the other hand, [3, Corollary 3.11] implies that for a compact set K � R

d

and a compact interval J � .0; r/ we have k�nkC
 .J�K/ � C for certain constants
C > 0 and 
 2 .0; 1/ independent of n. Thus, by compactness, a subsequence
converges locally uniformly to some continuous function  which, by the above,
has to be �. ut

We can now state and prove our main result.

Theorem 12.6 Assume Hypothesis 12.5. Then there exists a positive constant C1,
depending only on d; k and �, such that

w� � C1

�
c
k
2

1 sup
s2.a0;b0/

W1.s/C
�

c
k
2

1

.b0 � b/ k2
C ck2 C c

k
2

3 C c
k
2

4 C c
k
2

8

�Z b0

a0

W1.s/ ds

C
�
c
k
2

2 c
k
2

6 C ck5 C ck6 C ck7 C ck9

�Z b0

a0

W2.s/ ds

�
(12.21)

in .a; b/ � R
d .
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Proof We apply Theorem 12.4 to the operators An. Taking Lemma 12.6 into
account, we obtain

w�n � C1

�
c
k
2

1 sup
s2.a0;b0/

1;n.s/C
�
c
k
2

2 c
k
2

6 C .c5 C 4c9/
k C ck6 C ck7

�Z b0

a0

2;n.s/ ds

C
�

c
k
2

1

.b0 � b/ k2
C .2c2/

k C .c3 C �c8/
k
2 C c

k
2

4

�Z b0

a0

1;n.s/ ds

�
;

(12.22)

in .a; b/, where j;n.s/ WD R
Rd
Wj .x; y/gn.t; s; x; y/dy. Note that j;n is well

defined by Proposition 12.1, since Wj is also a time dependent Lyapunov function
for An by Lemma 12.5. Since �n ! � locally uniformly by Lemma 12.7,
Estimate (12.21) follows from (12.22) upon n ! 1 once we prove that the right-
hand sides also converge.

To that end, it suffices to prove that j;n converges to Wj uniformly on .a0; b0/.
Using the estimate Wj � c0Z

1�	 and Hölder’s inequality, we find

jj;n.s/�Wj .s/j �
Z
Rd

Wj .s/j�n.s/ � �.s/j dy

�
Z
B.0;R/

Wj .s/j�n.s/ � �.s/j dy

C
Z
Rd nB.0;R/

Wj .s/�n.s/ dy C
Z
RdnB.0;R/

Wj .s/�.s/ dy

� kWjkL1..a0;b0/�B.0;R//k�n � �kL1..a0;b0/�B.0;R//jB.0;R/j

C c0

�Z
Rd nB.0;R/

Z.y/gn.t; s; x; y/ dy

�1�	
.gn.t; s; x;R

d n B.0;R///	

C c0

�Z
Rd nB.0;R/

Z.y/g.t; s; x; y/ dy

�1�	
.g.t; s; x;Rd n B.0;R///	 ;

(12.23)

where jB.0;R/j denotes the Lebesgue measure of the ball B.0;R/. We first
note that, as a consequence of Equation (12.8) (which is also valid if G is
replaced with Gn since Z is also a Lyapunov function for An), the integralsR
Rd
Z.y/gn.t; s; x; y/ dy are uniformly bounded. Arguing as in the proof of (12.10),

it is easy to check that the measures fgn.t; s; x; y/ dy W s 2 Œ0; t �g are tight.
Therefore, the last two terms in (12.23) can be bounded by any given " > 0 if R is
chosen large enough. Since �n ! � locally uniformly, given R, also the first term
in (12.23) can be bounded by " if n is large enough. Thus, altogether j;n ! Wj
uniformly on Œa0; b0�. This finishes the proof. ut
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12.5 Proof of Theorem 12.2

Let us come back to the example from Theorem 12.2. We start by observing that
the same computations as in the proof of Proposition 12.2 show that the function
Z0.x/ D exp.ıjxjpC1�m� / is a Lyapunov function for both the operators A0 and
��x � F � rx .

To obtain estimates for the Green kernel associated with the operatorA , we want
to apply Theorem 12.6. We assume that we are in the situation of Proposition 12.2
and pick 0 < "0 < "1 < "2 < ı, where ı < 1=ˇ, and ˛ > ˇ

mCˇ�2 . For ˇ � 2, we

define the functions w;W1;W2 W Œ0; t � � R
d by

w.s; y/ WD e"0.t�s/˛jyjˇ
� and Wj .s; y/ WD e"j .t�s/˛jyjˇ

� :

Let us check the conditions of Theorem 12.6. As a consequence of Proposi-
tion 12.2, W1 and W2 are time dependent Lyapunov functions which obviously
satisfy W1 � W2 � Z1�	 for suitable 	 , where Z.y/ WD exp.ıjyjˇ�/. We have to
verify that with this choice of w;W1 andW2 Hypothesis 12.5 is satisfied. As before,
we make only computations assuming that jxj � 1, omitting the details concerning
the neighborhood of the origin.

We now fix arbitrary a0; b0 2 .0; t/with a0 < b0. Note that w.s; y/�2@sw.s; y/ D
�"0˛.t � s/˛�1jyjˇe�"0.t�s/˛ jyjˇ . This is clearly bounded. Similarly, one sees that
w�2ryw is bounded.

Let us now turn to part (2) of Hypotheses 12.3 and 12.5. Since w � W1, clearly
(2)(i) is satisfied with c1 D 1. As for (2)(ii), we have

jQ.s; y/ryw.s; y/j
w.s; y/1�1=kW1.s; y/1=k

D "0ˇ.t � s/˛jyjˇ�1.1C jyjm/e� 1
k ."1�"0/.t�s/˛jyjˇ :

To bound this expression, we note that for �; 
; z > 0, we have

z
e��zˇ D �
� 

ˇ .�zˇ/



ˇ e��zˇ � �

� 

ˇ

�



ˇ

� 

ˇ

e
� 

ˇ DW �� 


ˇ C.
; ˇ/ ;

which follows from the fact that the maximum of the function t 7! tpe�t on .0;1/

is attained at the point t D p. Applying this estimate in the case where z D jyj,
� D k�1."1 � "0/.t � s/˛ , ˇ D ˇ and 
 D ˇ � 1Cm, we get

jQ.s; y/ryw.s; y/j
w.s; y/1�1=kW1.s; y/1=k

� 2"0ˇ.t � s/˛
�
"1 � "0

k

�� ˇ�1Cm
ˇ

.t � s/
�˛ ˇ�1Cm

ˇ C.ˇ � 1Cm;ˇ/

DW Nc.t � s/
� ˛.m�1/

ˇ � Nc.t � b0/
�˛.m�1/

C

ˇ ;

for a certain constant Nc.
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Thus we can choose the constant c2 as Nc.t � b0/
� ˛.m�1/

C

ˇ , where Nc is a universal
constant. Note that c2 depends on the interval .a0; b0/ only through the factor
.t � b0/

�
2 . As it turns out, similar estimates show that also for (2)(iii)–(vii)
in Hypothesis 12.3 and in Part (2) of Hypothesis 12.5 we can choose constants
c3; : : : ; c9 of this form, however with different exponents 
3; : : : ; 
9. We now
determine the exponents we can choose. To simplify the presentation, we drop
constants from our notation and write . to indicate an estimate involving a constant
which merely depends on d;m; p; r; k; "0; "1; "2.

As for (iii) we find

jTr.QD2w.s; y//j
w.s; y/1�2=kW1.s; y/2=k

.

.t � s/˛jyjˇ�2Cm C .t � s/2˛jyj2ˇ�2Cm�e� 2

k ."1�"0/.t�s/˛jyjˇ

..t � s/2˛.t � s/�˛ 2ˇ�2Cm
ˇ � .t � b0/�

˛.m�2/
C

ˇ ;

so that here 
3 D .m�2/C
ˇ

. The estimates

j@sw.s; y/j
w.s; y/1�2=kW1.s; y/2=k

. .t � s/˛�1jyjˇe� 2
k ."1�"0/.t�s/˛jyjˇ

. .t � s/˛�1.t � s/�˛ � .t � b0/�1 ;

w.s; y/1=k jPd
iD1 Diqij.s; y/j

W2.s; y/1=k
. jyjme� 1

k ."2�"0/.t�s/˛jyjˇ . .t � s/
� ˛m

ˇ

� .t � b0/
� ˛m

ˇ

and

w.s; y/1=k jF.s; y/j
W2.s; y/1=k

D jyjpe� 1
k ."2�"0/.t�s/˛jyjˇ . .t � s/

� ˛p
ˇ � .t � b0/

� ˛p
ˇ ;

show that in (iv), resp. (v), resp. (vi) we can choose 
4 D 1, resp. 
5 D ˛m
ˇ

resp.


6 D ˛p

ˇ
.

A similar estimate as for (vi) shows that in (vii) we can choose 
7 D ˛r
2ˇ

.
Concerning part (2) of Hypothesis 12.5, we note that repeating the computations

for Hypothesis 12.3(2)(ii)–(iii) with m D 0, we see that in the estimate for j�ywj
and jQryW1j we can pick c8 D c9 D Nc.

Finally for part (3) of Hypothesis 12.3, we note that in this special situation the
boundedness of the Green kernel for the associated operators without potential term
can also be established using time dependent Lyapunov functions. This has been
done in [7].
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We may thus invoke Theorem 12.6. To that end, given s 2 .0; t/, we choose
a0 WD maxfs � .t � s/=2; s=2g and b0 WD s C .t � s/=2 so that t � b0 D .t � s/=2

and b0 � a0 � t � s. Let us note that, as a consequence of Proposition 12.1,

Wj .s; x/ � exp

�Z t

s

h.�/ d�

�
Wj .t; x/ D exp

�Z t

s

h.�/ d�

�
:

Thus, recalling the form of h from the proof of Proposition 12.2, we see that there
exists a constant H , depending only on ˛; ˇ and m, hence independent of .a0; b0/,
such that

Z b0

a0

Wj .s/ ds � H.b0 � a0/ � H.t � s/:

Thus, by Theorem 12.6, we find that, for a certain constant C , we have

w� � C
�
.t � s/1�

k
2 C .t � s/

1� ˛
2ˇ ..m�1/CCp/k C .t � s/1� ˛

ˇ �k
�
; (12.24)

where� D m _ p _ r
2
. To simplify this further, we note first that

� � 1

2
..m � 1/C C p/:

Now, let us assume that both p > m�1 and r > m�2 so that we can either assume
(i) or (ii) in Proposition 12.2. Note that in case (i), we have, by the choice of ˛, that

˛�

ˇ
� ˛p

ˇ
>

p

mC ˇ � 2
D p

p � 1
>
1

2
:

In case (ii), we distinguish the cases r Cm > 2 and r C m � 2. If r C m > 2 we
have

˛�

ˇ
� ˛r

2ˇ
>

r

2.mC ˇ � 2/
D r

r Cm � 2
>
1

2
;

since r > m � 2. On the other hand, if r Cm � 2, then

˛�

ˇ
� ˛p

ˇ
>

p

p � 1 >
1

2
;

Thus, the right-hand side of (12.24) can be estimated by a constant times .t �
s/
1� ˛

ˇ �k .
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Therefore, if p � 1
2
.mC r/, we pick ˇ D pC 1�m. We have, for ˛ > pC1�m

p�1 ,

" < 1
pC1�m ,

g.t; s; x; y/ � C.t � s/1� ˛.m_p/k
pC1�m e�".t�s/˛ jyjpC1�m

� ;

for a certain constant C . On the other hand, for p < 1
2
.m C r/, we pick ˇ D

1
2
.r C 2 �m/. So, we obtain

g.t; s; x; y/ � C.t � s/1� ˛.2m_2p_r/
2.rC2�m/ ke�".t�s/˛ jyj

1
2 .rC2�m/

� ;

for " < 2
rC2�m and ˛ > r�mC2

rCm�2 if r Cm > 2, and ˛ > rC2�m
2.p�1/ if r Cm � 2, where,

again, C is a positive constant independent of t and s. This finishes the proof of
Theorem 12.2.
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13.1 Introduction

The inverse problem of the calculus of variations consists in the following. Let a
second order differential equation with deviating arguments and partial derivatives
be given. It is required to know whether there exists a functional defined by
an integral for which this equation is a necessary extremum condition for the
functional. If such a functional exists, then we need to find it. The inverse problem
of the calculus of variations is closely connected with the variational method
of the differential equations research. It is very important for this method to
obtain a solution of the inverse problem in the form of an integral with the
integrand containing derivatives of smaller order than in the given equation (see, for
instance [2]). If an one-parameter group of variational symmetries is known, then
we can find a solution of Euler’s equation of the second order in quadratures (see,
e.g., [9]). The survey [3] is devoted to various approaches and results concerning
inverse problems of the calculus of variations.

Differential equations with deviating arguments have numerous applications in
automatic control theory, in the theory of self-oscillating systems, in the study of
duct-burning problems in rocketry. They occur in problems of long-term forecasting
in economics, in various biophysical problems, etc. The reason for the occurrence
of delays in variational problems in control theory is sometimes related to time
delays incurred in signal transmission. However, usually it is due to simplifying
assumptions that reduce the action of intermediate transmitting and amplifying
devices in the system to delays in the transmission of signals [1].

To the best of my knowledge, if inverse problems of the calculus of variations
are solvable then two approaches to solve these problems can be applied. The most
known method uses the integration with respect to an auxiliary parameter of a
bilinear form depending on a given equation (see, for instance [2]). The second
approach allows us to obtain the explicit expression for the integrand of a functional
depending on the first order derivatives by integrating functions standing before
the second order derivatives in the given equation with respect to some of their
arguments [11]. The solution of the inverse problem of the calculus of variations in
the explicit form for the second order ordinary differential equation with deviating
arguments has been found by the first approach in [10] for linear systems with
symmetrical conditions and in [12] by the second approach for non-linear equations
with asymmetrical conditions for solutions. Note that the first approach has been
also used for partial differential difference equations (see, for instance [8]).

The present paper deals with the inverse problem of the calculus of variations
for two types of second order differential equations with respect to functions of
two variables with deviating arguments. Using the second approach the solvability
conditions and the explicit formulae for the integrand of the inverse problem
solution, depending on functions with deviating arguments and partial derivatives
of the first order, are obtained. We compare two approaches to inverse problems of
the calculus of variations by considering illustrative examples.

The paper is organized as follows. In Sect. 13.2 we present the results devoted
to inverse problems in the symmetrical case where a solution of the given equation
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satisfies a prescribed condition on the boundary of the domain of function definition.
Section 13.3 deals with an asymmetrical case in which a solution of a given equation
satisfies conditions of various forms on parts of the rectangle being a domain of
function definition. Examples illustrating the solving of considered problems are
given. In Sect. 13.4 we compare two approaches to inverse problems of the calculus
of variations by considering two examples.

13.2 Symmetrical Problems

13.2.1 Euler’s Equation

Let Q be an open bounded connected subset in IRn with a sufficiently smooth
boundary @Q. We begin with one result from [7] concerning the necessary
extremum condition for the functional

J.z/ D
Z

Q

F.t; z.t/; zt1 .t/; : : : ; ztn .t/; z.!1.t//; zt1 .!1.t//; : : : ; ztn .!1.t//; : : : ;

z.!m.t//; zt1 .!m.t//; : : : ; ztn .!m.t/// dt

(13.1)

under the given boundary condition

z.t/ D '.t/; t 2 @Q: (13.2)

Here m � 0 is fixed, the function F is assumed to be twice continuously
differentiable and the mapping !k W Q ! Q is surjective, !k 2 C2. NQ/, and its
inverse 
k D !�1

k 2 C2. NQ/ for all k D 0; : : : ; m. For notational convenience we
set!0.t/ D t . The notation ztk .!/ stands for the partial derivative of z with respect to
tk at the point !. A function z providing an extremum for functional (13.1) is sought
among functions from C2.Q/\ C1. NQ/ satisfying the boundary condition (13.2).

Set

˚ WD
mX
kD0

F jtD
k.t/Ik; (13.3)

where Ik D j
 0
k.t/j and 
 0

k.t/ is the Jacobian
D.
k1 ;:::;
kn /

D.t1;:::;tn/
. Note that I0 D 1.

If the functional (13.1) under the boundary conditions (13.2) attains an extremum
on a function z.t/, then this function satisfies the following equation

˚z.t/ �
nX
iD1

@

@ti
˚zti .t /

D 0: (13.4)
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The proof of this fact can be found in [7]. Note that relation (13.4) is a generalization
of Euler’s equation to the case of the functional (13.1).

A similar result for the case n D 2 and m D 1 is presented in [4]. We will
consider this particular situation. Let t D .x; y/. Assume also that F does not
depend on partial derivatives at the point w1.t/ D w.t/, that is, relation (13.1) has
the form

J.z/ D
Z

Q

F.x; y; z.x; y/; zx .x; y/; zy.x; y/; z.!.x; y//dxdy; (13.5)

where !.x; y/ D .�.x; y/; �.x; y//. We assume the same conditions on Q and F
as before. For instance, letQ D f.x; y/ 2 IR2 W x2 Cy2 < r2g and ! be a rotation.

In this case, (13.3) becomes

˚ WD F C QF ;
where

QF WD F.˛.t/; ˇ.t/; z.˛.t/; ˇ.t//; zx .˛.t/; ˇ.t//; zy .˛.t/; ˇ.t//; z.t//I;

t D .x; y/ 2 Q; .˛.x; y/; ˇ.x; y// D !�1.x; y/; I D
ˇ̌
ˇ̌D.˛; ˇ/
D.x; y/

ˇ̌
ˇ̌ :

Using (13.4), we obtain Euler’s equation for functional (13.5)

Fz � @

@x
Fzx � @

@y
Fzy C QFz D 0:

Let us write the last equality in the expanded form

� Fzxzx zxx � 2Fzxzy zxy � Fzyzy zyy C Fz � Fzxx � Fzxzzx � Fzxz.!/z!!x �
�Fzyy � Fzyzzy � Fzyz.!/z!!y C QFz D 0: (13.6)

13.2.2 The Inverse Problem of the Calculus of Variations

Taking into account the form of Euler’s equation (13.6), let us consider the following
equation with deviating arguments and partial derivatives

Azxx.x; y/C Bzxy.x; y/C Czyy.x; y/CD D 0: (13.7)

Here D WD D1 CD2, the functions A; B; C , andD1 depend on six variables

x; y; z.x; y/; zx.x; y/; zy .x; y/; z.�.x; y/; �.x; y//; (13.8)
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and the functionD2 depends on variables (13.8) and

zx.�.x; y/; �.x; y//; zy .�.x; y/; �.x; y//; ˛.x; y/; ˇ.x; y/; z.˛.x; y/; ˇ.x; y//;

zx.˛.x; y/; ˇ.x; y//; zy .˛.x; y/; ˇ.x; y//:

All functions in (13.7) are continuously differentiable with respect to the arguments.
It is also assumed that admissible functions z satisfy (13.2).

Consider the inverse problem of the calculus of variations for equation (13.7).
Namely, we seek for a functional of the form (13.5) such that the corresponding
Euler’s equation coincides with equation (13.7).

The next result provides necessary solvability conditions for the considered
inverse problem.

Theorem 13.1 If the inverse problem of the calculus of variations for equa-
tion (13.7) has a solution in the form of the functional (13.5) with the function F ,
which is three times continuously differentiable, then the functions A; B; C; and D
satisfy the following conditions:

Azy D 1

2
Bzx ; (13.9)

Czx D 1

2
Bzy ; (13.10)

Dzx D Ax C Azzx C Az.!/z!!x C 1

2
By C 1

2
Bzzy C 1

2
Bz.!/z!!y; (13.11)

Dzy D 1

2
Bx C 1

2
Bzzx C 1

2
Bz.!/z!!x C Cy C Czzy: (13.12)

Proof If the inverse problem of the calculus of variations has a solution, then there
is a function F such that equation (13.7) is Euler’s equation for the functional (13.5)
with the integrand F . Hence, the left-hand side of equality (13.7) coincides with the
left-hand side of (13.6) for the function F . Differentiating successively with respect
to zxx, zxy, and zyy we have

A D �Fzxzx ; (13.13)

B D �2Fzxzy ; (13.14)

C D �Fzyzy ; (13.15)

D D D1 CD2 D Fz � Fzxx � Fzxzzx � Fzxz.!/z!!x � Fzyy

�Fzyzzy � Fzyz.!/z!!y C QFz: (13.16)
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Using the differentiation, we arrive at conditions (13.9)–(13.12). ut
Remark 13.1 If (13.7) does not contain deviating arguments, then the solvability
conditions (13.9)–(13.12) correspond to conditions (6.6)–(6.9) from [11].

Analogously [11, p. 104], where an equation without deviating arguments has
been considered, we obtain from (13.13)

F D �1
2

Z Z
B dzy dzx C

Z
U.x; y; z; zx; z.!//dzx C V.x; y; z; zy ; z.!//;

(13.17)

where the functions U and V are unknown. In the last formula and further, the
notation of the form

R R
f .x; y/dxdy means an iterated integral with respect to x

and y. Taking into account (13.13) and (13.15), we get

A D 1

2

Z
Bzxdzy � Uzx ; C D 1

2

Z
Bzydzx � Vzyzy :

Since we have no aim to find the general form of F , in view of the last two relations
we can take

U D 1

2

Z Z
Bzx dzy dzx �

Z
A dzx; (13.18)

Vzy D 1

2

Z Z
Bzy dzx dzy �

Z
C dzy; (13.19)

and

V D 1

2

Z Z Z
Bzy dzx dzy dzy �

Z Z
C dzy dzy CW; (13.20)

where the functionW D W.x; y; z; z.!// is unknown. Note that W is a three times
continuously differentiable function of four variables x, y, z.x; y/, and z.!.x; y//.
We seek for a non-general form of F . Therefore, we can find W from the equality
Fz D D1 and relations (13.17), (13.18), and (13.20)

W D
Z �

D1 C 1

2

Z � Z
Bzdzx �

Z Z
Bzxz dzx dzx �

Z Z
Bzzy dzx dzy

�
dzy

C
Z Z

Az dzx dzx C
Z Z

Cz dzy dzy
�

dz: (13.21)

In order to ensure (13.16) we must require the validity of the equality

D2 D �Fzxx �Fzxzzx �Fzxz.!/z!!x �Fzyy �Fzyzzy �Fzyz.!/z!!y C QFz; (13.22)
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where F is defined by (13.17), (13.18), (13.20), (13.21).
We will also assume that

.D1/zx D �1
2

Z �
Bz �

Z
Bzx zdzx�

Z
Bzzydzy

�
dzy�

Z
Azdzx�

Z Z
Czzx dzy dzy;

(13.23)

.D1/zy D �1
2

�Z
Bzdzx �

Z Z
Bzxz dzx dzx �

Z Z
Bzzy dzx dzy

�

�
Z Z

Azzy dzx dzx �
Z
Czdzy: (13.24)

Theorem 13.2 If the twice continuously differentiable functions A; B; C; and D
in (13.7) satisfy (13.9), (13.10), and (13.22)–(13.24), then the function F , defined
by (13.17), (13.18), (13.20), and (13.21), determines the solution (13.5) of the
inverse problem of the calculus of variations for equation (13.7).

Proof In view of (13.9), (13.10), (13.23), and (13.24) it follows from (13.18),
(13.19), (13.21), respectively, that Uzy D 0, Vzyzx D 0, Wzx D 0, Wzy D 0.
Hence, Vzx D 0. Substitute the expression for the function F , defined
by (13.17), (13.18), (13.20), and (13.21), into the left-hand side in (13.6). Using the
given conditions, we obtain the left-hand side in (13.7). ut
Remark 13.2 The obtained formulae show that the differentiability conditions for
the functions in (13.7) can be relaxed for some functions.

13.2.3 Example 1

Let Q D f.x; y/ 2 IR2 W x2 C y2 < r2g and

�.x; y/ D x � yp
2
; �.x; y/ D x C yp

2
; ˛.x; y/ D x C yp

2
; ˇ.x; y/ D y � xp

2
:

Consider the equation of form (13.7) with

A D 1

2
B D C D �D1 D � exp

n
z.x; y/C zx.x; y/C zy.x; y/C z

�x � yp
2
;
x C yp

2

�o

D2 D �D1 �
�

zx.x; y/C zy.x; y/C p
2zy
�x � yp

2
;
x C yp

2

��
(13.25)

C exp
n
z
�x C yp

2
;
y � xp
2

�
C zx

�x C yp
2
;
y � xp
2

�
C zy

�x C yp
2
;
y � xp
2

�
C z.x; y/

o
:
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Let us solve the inverse problem of the calculus of variations. By (13.17), (13.18),
(13.20), and (13.21) we obtain

U D W D V D 0;

F D exp
n
z.x; y/C zx.x; y/C zy.x; y/C z

�x � yp
2
;
x C yp

2

�o
: (13.26)

Conditions (13.9), (13.10), and (13.22)–(13.24) from Theorem 13.2 are valid in this
case. Therefore,F in (13.26) defines the required functional (13.5). It is not difficult
to verify directly that Eq. (13.7) with functions (13.25) is really Euler’s equation for
the functional (13.5) with the obtained function (13.26).

13.3 Asymmetrical Problems

Let Q D .x0; x1/ � .y0; y1/. Denote by L2.Q/ the space of square integrable
functions and byH.Q/ the space of functions z.x; y/ which are differentiable with
respect to x almost everywhere on Q and such that z 2 L2.Q/ and zx 2 L2.Q/.
The norm in H.Q/ is defined by jjzjjH D .jjzjj2L2.Q/ C jjzx jj2L2.Q//1=2.

Consider the problem of an extremum of the functional

J.z/ D
x1Z

x0

dx

y1Z

y0

F


x; y; z.x; y � h/; z.x; y/; zx.x; y � h/; zx.x; y/

�
dy (13.27)

with respect to functions of two variables (see [5, 6]). Here 0 < h < y1 � y0 and
the function F is assumed to be twice continuously differentiable onQ. Admissible
functions belong to the space H.Q/ and, moreover, satisfy the following boundary
conditions

z.x; y/ D '.x; y/; .x; y/ 2 E0I z.x; y/ D �.x/; .x; y/ 2 E1I (13.28)

z.x; y/ D �.y/; .x; y/ 2 G0I z.x; y/ D �.y/; .x; y/ 2 G1: (13.29)

Here E0 D f.x; y/ W x 2 Œx0; x1�; y 2 Œy0 � h; y1/g, E1 D f.x; y/ W x 2
Œx0; x1�; y D y1g, G0 D f.x; y/ W x D x0; y 2 .y0; y1/g, and G1 D f.x; y/ W
x D x1; y 2 .y0; y1/g. The functions ', �, �, and � defined on E0, E1, G0, and
G1 respectively are given (see Fig. 13.1). It is also assumed that ' 2 H.E0/ and the
functions � and v are integrable and essentially bounded in G0 and G1 respectively.
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y

y1

E1,  (x)

G0,µ(y) G1,v(y)Q,z(x,y)

E0,ϕ(x,y)

y0

y0 – h

x0 x1

x

c

Fig. 13.1 The domains of definition of functions '; �; �, and �

13.3.1 Euler’s Equation

Define

QF WD F.x; y C h; z.x; y/; z.x; y C h/; zx.x; y/; zx.x; y C h//;

QFz and QFzx denote the partial derivatives of QF with respect to the third and to the
fifth arguments respectively. Introduce the following notation

� D F C QF ; y 2 Œy0; y1 � h�I � D F; y 2 .y1 � h; y1�:

Now we are formulating the necessary condition for an extremum of functional
(13.27).

Theorem 13.3 ([5, 6]) Let an extremum of functional (13.27) be attained at z
under boundary conditions (13.28) and (13.29) in the space H.Q/. Then almost
everywhere on Q the function z satisfies the equation

�z.x;y/ � d

dx
�zx.x;y/ D 0; (13.30)

which is an analog of Euler’s equation for the considered problem.

Further, we will consider the function F in (13.27) which does not depend on
zx.x; y � h/, i.e. we will deal with the functional of the form

J.z/ D
x1Z

x0

dx

y1Z

y0

F .x; y; z.x; y � h/; z.x; y/; zx.x; y// dy: (13.31)
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For this case, we obtain from (13.30) the Euler equation in the expanded form

Fz.x;y/ C QFz.x;y/ � Fzx.x;y/x � Fzx.x;y/z.x;y�h/zx.x; y � h/� Fzx.x;y/z.x;y/zx.x; y/

� Fzx.x;y/zx .x;y/zxx.x; y/ D 0; .x; y/ 2 Œx0; x1� � Œy0; y1 � h�I

Fz.x;y/ � Fxzx.x;y/ � Fzx.x;y/z.x;y�h/zx.x; y � h/ � Fzx .x;y/z.x;y/zx.x; y/

� Fzx.x;y/zx .x;y/zxx.x; y/ D 0; .x; y/ 2 Œx0; x1� � .y1 � h; y1�:
(13.32)

13.3.2 The Inverse Problem of the Calculus of Variations

Taking into account the Euler equation (13.32), we will consider the equations of
the form

Azxx.x; y/C B C Czx.x; y � h/C QD D 0; .x; y/ 2 Œx0; x1� � Œy0; y1 � h�;

(13.33)

Azxx.x; y/CBC Czx.x; y�h/ D 0; .x; y/ 2 Œx0; x1�� .y1 �h; y1�; (13.34)

where QD D D.x; y C h; z.x; y/; z.x; y C h/; zx.x; y C h// and the functions A,
B , C , and D depend on x, y, z.x; y � h/, z.x; y/, and zx.x; y/. We assume that
they are twice continuously differentiable. In fact, the smoothness assumptions can
be weakened (see formulae below). It follows from (13.33) that it is sufficiently to
define the functionD on Œx0; x1� � Œy0 C h; y1�.

Let us refine the settings of the inverse problem. For given equations (13.33)
and (13.34) it is required to find a functional of the form (13.31) for which
the left-hand side of Euler’s equation coincides with the left-hand side of equa-
tions (13.33) and (13.34) for all twice continuously differentiable functions z.�; �/
satisfying conditions (13.28) and (13.29).

Theorem 13.4 The inverse problem of the calculus of variations for equations
(13.33) and (13.34) has a solution if and only if the functions in (13.33) and (13.34)
satisfy the following conditions

Czx .x;y/ � Az.x;y�h/ D 0; .x; y/ 2 Q; (13.35)

Bzx.x;y/ �Ax � zx.x; y/Az.x;y/ D 0; .x; y/ 2 Q; (13.36)
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Dzx.x;y/ C C D 0; .x; y/ 2 Œx0; x1� � .y0 C h; y1�; (13.37)

Dz.x;y/ C
zx.x;y/Z

0

Cz.x;y/dzx.x; y/�Gz.x;y�h/z.x;y/ D 0; .x; y/ 2 Œx0; x1�� .y0 C h; y1�;

(13.38)

where

GDG.x; y; z.x; y�h/; z.x; y//D
z.x;y/Z

0

�
B�

zx.x;y/Z

0

Bzx.x;y/dzx.x; y/CEx
�

dz.x; y/CK;

(13.39)

K D

8̂
ˆ̂<
ˆ̂̂:

0; .x; y/ 2 Œx0; x1� � .y1 � h; y1�;
z.x;y/R
0

� QD C
zx.x;yCh/R

0

QCdzx.x; y C h/ � QGz.x;y/

�
dz.x; y/;

.x; y/ 2 Œx0; x1� � Œy0; y1 � h�;
(13.40)

E D E.x; y; z.x; y�h/; z.x; y// D
z.x;y�h/Z

0

.

zx.x;y/Z

0

Az.x;y�h/dzx.x; y/�C/dz.x; y�h/;

.x; y/ 2 Q; (13.41)

the function K for x 2 Œx0; x1�; y 2 Œy0; y1 � h� is determined successively on the
domains

Œx0; x1� � .y1 � kh; y1 � .k � 1/h�; k D 2; : : : W y1 � kh � y0:

The function F , which determines the solution of the form (13.31) of the inverse
problem of the calculus of variations, can be expressed as follows:

F D �
zx.x;y/Z

0

� zx.x;y/Z

0

A dzx.x; y/
�

dzx.x; y/C Ezx.x; y/CG; .x; y/ 2 Q:

(13.42)

Remark 13.3 If it turns out that one of the integrals in the statement of Theo-
rem 13.4 does not exist, then we can replace the lower limit of integration by any
number such that this integral does exist.

Proof Necessity. Suppose that the inverse problem has a solution. Then the left-hand
sides of (13.32) coincide with the left-hand sides of (13.33) and (13.34) respectively.
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Therefore, the following equalities (13.43)–(13.46) must be valid

� Fzx.x;y/zx.x;y/ D A; .x; y/ 2 Œx0; x1� � Œy0; y1�; (13.43)

� Fzx .x;y/z.x;y�h/ D C; .x; y/ 2 Œx0; x1� � Œy0; y1�; (13.44)

Fz.x;y/ C QFz.x;y/ � Fzx.x;y/x � Fzx.x;y/z.x;y/zx.x; y/ D B C QD; .x; y/ 2 Œx0; x1�
�Œy0; y1 � h�; (13.45)

Fz.x;y/ � Fzx.x;y/x � Fzx.x;y/z.x;y/zx.x; y/ D B; .x; y/ 2 Œx0; x1� � .y1 � h; y1�;
(13.46)

From (13.43), we obtain

Fzx .x;y/ D �
zx.x;y/Z

0

A dzx.x; y/C E.x; y; z.x; y � h/; z.x; y//; (13.47)

and

F D �
zx.x;y/Z

0

.

zx.x;y/Z

0

A dzx.x; y// dzx.x; y/CE.x; y; z.x; y �h/; z.x; y/zx.x; y/

CG.x; y; z.x; y � h/; z.x; y//; (13.48)

where .x; y/ 2 Œx0; x1� � Œy0; y1�. Here E and G are sufficiently smooth functions.
Substituting (13.47) for Fzx.x;y/ into (13.44), we have

zx.x;y/Z

0

Az.x;y�h/ dzx.x; y/ � C D Ez.x;y�h/; .x; y/ 2 Œx0; x1� � Œy0; y1�:

(13.49)

The function E must not explicitly depend on zx.x; y/, hence, after differentiating
the last equality with respect to zx.x; y/, we obtain (13.35). If relation (13.35) holds,
then the left-hand side of (13.49) does not explicitly depend on zx.x; y/.
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Substituting (13.48) into (13.46), we obtain

�
zx.x;y/Z

0

.

zx.x;y/Z

0

Az.x;y/ dzx.x; y// dzx.x; y/C
zx.x;y/Z

0

Ax dzx.x; y/

Czx.x; y/

zx.x;y/Z

0

Az.x;y/ dzx.x; y/ � B D Ex �Gz.x;y/ (13.50)

for all .x; y/ 2 Œx0; x1� � .y1 � h; y1�. Differentiating the last equality with respect
to zx.x; y/ and noting that the functions E and G are explicitly independent of
zx.x; y/, we have (13.36) for .x; y/ 2 Œx0; x1� � .y1 � h; y1�. If (13.36) holds, then
the left hand side of (13.50) does not explicitly depend on zx.x; y/.

Substituting (13.48) into (13.45), we obtain

�
zx.x;y/Z

0

.

zx .x;y/Z

0

Az.x;y/ dzx.x; y// dzx.x; y/C
zx.x;y/Z

0

Ax dzx.x; y/C zx.x; y/ �

zx.x;y/Z

0

Az.x;y/ dzx.x; y/�
zx .x;yCh/Z

0

.

zx.x;yCh/Z

0

QAz.x;y/ dzx.x; y C h//dzx.x; y C h/ � B � QD

D Ex � QEz.x;y/zx.x; y C h/�Gz.x;y/ � QGz.x;y/; .x; y/ 2 Œx0; x1� � Œy0; y1 � h�:

It follows from (13.35) that QAz.x;y/ D QCzx.x;yCh/. Therefore, using the last equality
and (13.49), we have

�
zx.x;y/Z

0

.

zx.x;y/Z

0

Az.x;y/ dzx.x; y// dzx.x; y/C
zx.x;y/Z

0

Ax dzx.x; y/

Czx.x; y/

zx.x;y/Z

0

Az.x;y/ dzx.x; y/ � B � Ex � QD �
zx.x;yCh/Z

0

QC dzx.x; y C h/

D �Gz.x;y/ � QGz.x;y/; .x; y/ 2 Œx0; x1� � Œy0; y1 � h�:

(13.51)

Differentiating this equality with respect to zx.x; y/, we obtain (13.36) for .x; y/ 2
Œx0; x1� � Œy0; y1 � h�. If (13.36) holds, then the left-hand side of (13.51) does not
explicitly depend on zx.x; y/. Using the differentiation of (13.51) with respect to
zx.x; y C h/, we obtain (13.37). If (13.37) holds, then the left-hand side of (13.51)
does not explicitly depend on zx.x; y C h/.
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Taking into account (13.36), from (13.50) and (13.51) we obtain the equalities

B �
zx.x;y/Z

0

Bzx.x;y/ dzx.x; y/CEx D Gz.x;y/; .x; y/ 2 Œx0; x1� � .y1 � h; y1�I

B �
zx.x;y/Z

0

Bzx.x;y/ dzx.x; y/CEx C QD C
zx.x;yCh/Z

0

QC dzx.x; y C h/

D Gz.x;y/ C QGz.x;y/; .x; y/ 2 Œx0; x1� � Œy0; y1 � h�:

(13.52)

Noting that the functions B; E; and G are independent of z.x; y C h/ and
differentiating (13.52) with respect to z.x; y C h/, we obtain condition (13.38).
If (13.38) holds, then the expression for Gz.x;y/ obtained from (13.52) does not
explicitly depend on z.x; y C h/.

Sufficiency. We will show that under conditions (13.35)–(13.38) func-
tional (13.31) with the function F from (13.42) is a solution of the inverse problem
of the calculus of variations for equations (13.33) and (13.34).

Recall that the problem of determining the general form of the function F is
not posed here. In view of condition (13.35), the expressions for E and G do
not explicitly depend on zx.x; y/ and in view of conditions (13.37) and (13.38),
the expression for the function G is independent of zx.x; y C h/ and z.x; y C h/

respectively.
We substitute into the second equation in (13.32) the expressions for partial

derivatives found from (13.42) regarding the explicit independence of E and G of
zx.x; y/.

�
zx.x;y/Z

0

.

zx.x;y/Z

0

Az.x;y/ dzx.x; y// dzx.x; y/C Ez.x;y/zx.x; y/CGz.x;y/

C
zx.x;y/Z

0

Ax dzx.x; y/ � Ex C .

zx.x;y/Z

0

Az.x;y/ dzx.x; y/ � Ez.x;y//zx.x; y/

C.
zx.x;y/Z

0

Az.x;y�h/ dzx.x; y/ �Ez.x;y�h//zx.x; y � h/C Azxx.x; y/ D 0;

.x; y/ 2 Œx0; x1� � .y1 � h; y1�:

From here, in view of (13.39)–(13.41), and (13.36), we obtain (13.34).
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Further, we substitute the found from (13.42) expressions for the partial deriva-
tives of the function F and QF into the first equation in (13.32).

�
zx.x;y/Z

0

.

zx.x;y/Z

0

Az.x;y/ dzx.x; y// dzx.x; y/C Ez.x;y/zx.x; y/CGz.x;y/ �

�
zx.x;yCh/Z

0

.

zx.x;yCh/Z

0

QAz.x;y/dzx.x; yCh//dzx.x; yCh/C QEz.x;y/zx.x; yCh/C QGz.x;y/C

C
zx.x;y/Z

0

Ax dzx.x; y/ �Ex C .

zx.x;y/Z

0

Az.x;y/ dzx.x; y/ �Ez.x;y//zx.x; y/C

C.
zx.x;y/Z

0

Az.x;y�h/ dzx.x; y/ � Ez.x;y�h//zx.x; y � h/C Azxx.x; y/ D 0;

.x; y/ 2 Œx0; x1� � Œy0; y1 � h�:

Taking into account (13.35), (13.36), and (13.39)–(13.41), we obtain (13.33) from
the last equality. Note that in transforming the two last expressions we have used the

easily verified identity
xR
0

.
xR
0

f .x/dx/ dx C
xR
0

f .x/ dx D x
xR
0

f .x/dx: ut

13.3.3 Example 2

Let us solve the inverse problem of the calculus of variations for equations of the
form

M.x; y; z.x; y � h/; z.x; y/; zx.x; y � h/; zx.x; y/; zxx.x; y//

D �.2x2 � z.x; y�h//zxx.x; y/C 24z.x; y/� 4xzx .x; y/C zx.x; y/zx.x; y �h/ D 0;

.x; y/ 2 Œx0; x1� � .y1 � h; y1�; (13.53)

M.x; y; z.x; y�h/; z.x; y/; zx.x; y�h/; zx.x; y/; zxx.x; y//� 1

2
.zx.x; yCh//2 D 0;

.x; y/ 2 Œx0; x1� � Œy0; y1 � h�: (13.54)
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Here h 2 .0; y1 � y0/ is a parameter.
Comparing (13.53) and (13.54) with (13.34) and (13.33) respectively, we get

A D �2x2 C z.x; y � h/; B D 24z.x; y/ � 4xzx.x; y/; C D zx.x; y/;

D D �1
2
.zx.x; y//

2:

It is not difficult to check that the solvability conditions (13.35)–(13.38) obtained in
Theorem 13.4 are valid in this case.

Using (13.39)–(13.42), we obtain

E D K D 0; G D 12.z.x; y//2;

F D 12.z.x; y//2 C x2.zx.x; y//
2 � 1

2
z.x; y � h/.zx.x; y//

2:

The last function F determines functional (13.31). It is easily to verify immediately
that (13.53), (13.54) is really Euler’s equation for the functional of form (13.31)
with the obtained function F .

13.4 The Comparison of Two Approaches

In this section, we will compare two methods for finding solutions of the inverse
problems of the calculus of variations using some examples. We consider equations
of form (13.7). It is assumed that .x; y/ 2 Q; Q is an open circle with the
center in the origin of coordinates, ! is a rotation, 
.x; y/ D !�1.x; y/ D
.˛.x; y/; ˇ.x; y//, the boundary function ' D 0.

Example 3 Let us consider the equation

zxx.x; y/C zxy.x; y/C zyy.x; y/C z�.x; y/z�.!.x; y//

C �

�C 1
z�C1.
.x; y//z��1.x; y/ D 0; � ¤ �1: (13.55)

Here

A D B D C D 1; D1 D z�.x; y/z�.!.x; y//; D2 D �

�C 1
z�C1.
.x; y//z��1.x; y/:

Conditions (13.9), (13.10), and (13.22)–(13.24) are satisfied. Therefore, we obtain
from Theorem 13.2 an integrand of a solution of the inverse problem
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F D �1
2
.z2x.x; y/C zx.x; y/zy.x; y/C z2y.x; y//C z�C1.x; y/

�C 1
z�.!.x; y//:

(13.56)

Applying the traditional approach for finding a solution of the inverse problem for
equation (13.55), we have the following expression

Z

Q

1Z

0

.s.zxx.x; y/C zxy.x; y/C zyy.x; y//C s�C�.z�.x; y/z�.!.x; y//

C �

�C 1
z�C1.
.x; y//z��1.x; y///z.x; y/ ds dx dy:

(13.57)

If � C � > �1, then we integrate with respect to s. Further, in the integrals of
three first addends we pass to iterated integrals and use the formula of integration
by parts. In the integral of the fifth addend we make the change of the variables
u D ˛.x; y/; v D ˇ.x; y/. By taking into account the zero boundary condition for z
and the form of !, we obtain a solution of the inverse problem with the integrand of
the form (13.56). Note that using the formula for the solution of the inverse problem
from Theorem 13.2 is simpler then (13.57).

For � C � � �1 we have in (13.57) the divergent integral with respect to
s, therefore in this case we cannot find the solution of the inverse problem for
equation (13.55) using the traditional approach.

Example 4 Solve the inverse problem of the calculus of variations for the equation

zxx.x; y/C zxy.x; y/C zyy.x; y/C exp .z.x; y/z.!.x; y///

C exp .z.x; y/z.
.x; y///.z.x; y/z.
.x; y// � 1/=z2.x; y/ D 0: (13.58)

Here

A D B D C D 1; D1 D exp.z.x; y/z.!.x; y///;

D2 D exp .z.x; y/z.
.x; y///.z.x; y/z.
.x; y// � 1/=z2.x; y/:

Conditions (13.9), (13.10), and (13.22)–(13.24) from Theorem 13.2 are satisfied
here. Hence, we obtain from (13.17), (13.18), (13.20), and (13.21) the integrand of
a solution of the inverse problem

F D �1
2
.z2x.x; y/C zx.x; y/zy.x; y/C z2y.x; y//C exp .z.x; y/z.!.x; y///

z.!.x; y//
:

Applying the traditional approach for finding a solution of the inverse problem for
equation (13.58), we have the following expression
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Z

Q

1Z

0

.s.zxx.x; y/C zxy.x; y/C zyy.x; y//C exp .s2z.x; y/z.!.x; y///

C exp .s2z.x; y/z.
.x; y///.s2z.x; y/z.
.x; y// � 1/=.s2z2.x; y///z.x; y/ ds dx dy:

We cannot obtain from here the explicit presentation for a solution of the inverse
problem in the form (13.5), since the last relation contains the integrals with respect
to s which cannot be found in elementary functions.

Acknowledgements The author is grateful to Professors V. G. Zadorozhnii and A. L.
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Chapter 14
Intrinsic Decay Rate Estimates for Semilinear
Abstract Second Order Equations with Memory

Irena Lasiecka and Xiaojun Wang

Abstract Semilinear abstract second order equation with a memory is considered.
The memory kernel g.t/ is subject to a general assumption, introduced for the
first time in Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris Ser. I 347,
867–872, 2009), g0 � �H.g/, where the function H.�/ 2 C1.RC/ is positive,
increasing and convex with H.0/ D 0. The corresponding result announced in
Alabau-Boussouira and Cannarsa (C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009)
(with a brief idea about the proof) provides the decay rates expressed in terms of
the relaxation kernel in the case relaxation kernel satisfies the equality g0 D �H.g/
(Theorem 2.2 in Alabau-Boussouira and Cannarsa, C. R. Acad. Sci. Paris Ser. I 347,
867–872, 2009). In the case of inequality g0 � �H.g/, Alabau-Boussouira and
Cannarsa (C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009) claims uniform decay
of the energy without specifying the rate (Theorem 2.1 in Alabau-Boussouira and
Cannarsa, C. R. Acad. Sci. Paris Ser. I 347, 867–872, 2009). The result presented
in this paper establishes the decay rate estimates for the general case of inequality
g0 � �H.g/. The decay rates are expressed (Theorem 2) in terms of the solution
to a given nonlinear dissipative ODE governed by H.s/. Applications to semilinear
elasto-dynamic systems with memory are also provided.
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14.1 Introduction

14.1.1 The Model

This paper is concerned with the existence and uniform decay rates of solutions to
the following semilinear abstract second order in time equation:

(
utt CAu � g 
 Au D fs.u/; for t > 0;
u.0/ D u0 2 D.A1

2 /; ut .0/ D u1 2 H :
(14.1)

Here A W D.A/ ! H is a self-adjoint positive operator defined on a real Hilbert
space H . The scalar function g.t/ is the relaxation kernel of convolution operator
A W H ! H :

A .z/ , .g 
 z/.t/ D
Z t

0

g.t � s/z.s/ ds;

and fs W D.A1=2/ ! H is a nonlinear operator representing the source terms. It is
assumed that fs is locally Lipschitz with the property that its potential function F W
D.A1=2/ ! R (i.e. rF.�/ D fs.�/) satisfies the dissipativity condition F.s/ � 0.

We assume here g W RC ! RC is a C1.RC/ function,1 monotone decreasing
and such that

g.0/ > 0 and 1 �
Z 1

0

g.s/ ds D l > 0; : (14.2)

System of type (14.1) has been used to model the viscoelastic materials with
memory effects and extensively investigated in the literature, see [28, 30, 31].
Under the assumptions imposed later on one shows without difficulties that the
system (14.1) has a unique “finite energy” solution .u; ut / 2 C.0;1;D.A1=2�H /,
which is “regular” for regular initial data. Problems related to long time behavior,
including asymptotic behavior have occupied central role in the literature on
viscoelastic models [16, 30, 31] including references therein and more recently
[1, 2, 5, 17, 25, 26, 28, 32] among others Our goal is to study the decay rates of the
energy associated with the system (14.1). Precise definition of the energy is given
below after introducing notation used throughout the manuscript.
Notations: We work on a Hilbert space H , on which we denote the inner product
and norm by .�; �/ and jj � jj respectively. Throughout this work, C;C1; C2; c0; c1; c2;
etc., are some generic constants possibly different at different occurrences. For a

1In this work, we use RC for Œ0;1/, which is different from .0;1/. Hence C1.RC/ is
for C1.Œ0;1//, meaning that it contains functions whose first derivatives can be continuously
extended to the boundary. Similar to C2.RC/ and so on.



14 Intrinsic Decay Rates for Semilinear Equations with Memory 273

given function H.s/ we shall also use the notation OH.s/ , c1H.c2s/ for some
positive constants c1; c2. In other words, OH will denote the rescale of functionH .

We introduce a quantity

.g ı v/.t/ ,
Z t

0

g.t � s/jjv.t/ � v.s/jj2ds;8v 2 H

which plays a critical role in the study of memory problems and has been used in
the literature.

The decay of a solution to (14.1) is described by the decay of the energy function
given by

E.t/ , 1

2
jjut jj2C 1

2
.1�

Z t

0

g.s/ds/jjA1
2 ujj2C 1

2
.gıA1

2 u/.t/�F.u.t//: (14.3)

With the above setup one has thatE.t/ D Ek.t/CEp.t/, where the potential energy
Ep.t/ is topologically equivalent to jjA1=2ujj.

14.1.2 Canonical Examples

We shall present several canonical examples illustrating the abstract model intro-
duced above. Let ˝ � Rn be a bounded domain with a smooth boundary � .

14.1.2.1 Semilinear Wave Equation

utt ��u � g 
�u C jujp�1u D 0; in ˝ � .0;1/

u D 0 on � � .0;1/: (14.4)

Let H D L2.˝/. Then D.A1=2/ D H1
0 .˝/. We identify fs.u/ D �jujp�1u which

is locally Lipschitz from H1.˝/ to L2.˝/, for all 2p � p�, p� D 2n
n�2 . The latter

follows from Sobolev’s embeddings H1.˝/ � Lp� .˝/. Thus the source function
complies with the hypotheses. In this case we haveF.u/ D �.pC1/�1 R˝ jujpC1dx.
F is locally Lipschitz H1.˝/ ! R�.

14.1.2.2 Berger’s Plate with Clamped Boundary Conditions

utt C�2u � g 
�2u ��u
Z
˝

jruj2dx D 0; in ˝ � .0;1/

u D 0; @�u D 0 on � � .0;1/:

(14.5)
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Let H D L2.˝/. Then fs.u/ D �ujjrujj2 and F.u/ D � 1
4
jjrujj4. The operator

A is given by Au D �2u with

D.A/ D H2
0 .˝/\H4.˝/:

We have

D.A1=2/ D H2
0 .˝/

thus fs is locally Lipschitz from D.A1=2/ ! H .
Next example exploits plate equation with free boundary conditions represented

by shear forces, torques and the moments.

14.1.2.3 Semilinear Plate with Free Boundary Conditions

utt C�2u � g 
�2u C f .u/ D 0; in ˝ � .0;1/

@��u C .1 � �/@�@�@�u D 0; on �

@2�u C �@�
2u C � div �@�u D 0; on �: (14.6)

Here @�; @� denote normal and tangential derivatives. � 2 .0; 1=2/ denotes
Poisson’s modulus. Let H D L2.˝/ with ˝ � R2.Then assuming that f .s/s � 0

we have F.u/ D �.R 1
0
f .su/ds; u/˝ , so that F.u/ � 0. The operator A is defined

as Au D �2u with

D.A/ D fu 2 H4.˝/; @��uC.1��/@� @�@�u D 0; @2�uC�@� 2C� div �@�u D 0; on � g:

It is well known by now that A is selfadjoint, nonnegative and D.A1=2/ D H2.˝/.
Since H2.˝/ � C.˝/, the nonlinear source f .u/ and F.u/ comply with all the
requirements.

14.1.3 About the Problem Studied

Decay rates for the energy function associated with dissipative dynamics have occu-
pied considerable attention in the literature. This quantitative piece of information
allows for a better understanding of the properties of damping mechanism, hence it
is useful in designing suitable materials and devices in order to meet preassigned
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targets. Both frictional and viscoelastic damping mechanism draw prime attention
in this area. In the case of frictional damping the situation is well understood and
the results available in the literature are fairly complete and general. Less is known
in the area of viscoelasticity where the damping is caused by the past history of
the dynamics. In fact, majority of the results pertain to rather specific structures
of relaxation kernels, most notably the exponential ones that lead to exponential
decay rates or for very special configurations of decaying kernels, see references in
[7–14, 18, 19, 29]. Not surprisingly, more recent efforts are directed toward ability
to consider more general relaxation functions. In order to understand and fully
appreciate the meaning of “more general”, it is instructive to step back and consider
the same issue within the context of frictional damping. The first result in this
direction for a frictional damping was given in [22] see also later developments
in [3, 24]. We shall explain briefly the main idea.

For the abstract wave equation with frictional damping of the form

utt C Au C g.ut / D fs.u/; for t > 0; (14.7)

u.0/ D u0 2 D.A1
2 /; ut .0/ D u1 2 H ; (14.8)

where g.s/ is a monotone, increasing function, zero at the origin it was shown that
the decay rates of the energy are driven by an ODE, i.e.,E.t/ � s.t/; t > T0, where
s.t/ satisfies the following differential equation.

st C OH.s/ D 0; (14.9)

where OH is a rescaled variant ofH.s/ i.e., OH.s/ D c1H.c2s/ withH.s/ determined
from

s2 C g2.s/ � H�1.sg.s//; jsj � 1: (14.10)

In view of monotonicity of g(s) such a function H.s/, which is continuous,
increasing, convex, zero at the origin can always be constructed. Thus, (14.10) is
not an assumption but the property, see [22].

The goal of the present work is to construct a similar theory for an abstract
second order equation with a viscoelastic damping. In fact, following [2] we shall
formulate a hypothesis which is meant to play the role of condition (14.10) in the
context of viscoelastic damping. The relaxation kernel is assumed (see [2]) to obey
the following differential inequality:

g0.t/CH.g.t// � 0 for t > 0; (14.11)

and the controlling function H.s/ is assumed convex, continuous and strictly
increasing with H.0/ D 0. The assumption (14.11) was introduced for the
first time in this form in [2] for the treatment of viscoelastic damping. While
conditions (14.10) and (14.11) share some similarities in the sense that damping
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mechanisms [frictional in (14.10) and viscoelastic in (14.11)] are characterized by
convex, increasing functions H.s/, the real nature of both conditions is different.
Inequality in (14.10) is not an additional condition imposed on g.s/. It is rather
a property of a continuous, increasing function g.s/. As shown in [22], such a
function H.s/ can be always constructed for a given g.s/ which is continuous,
increasing and zero at the origin. Instead, condition (14.11) is a real restriction
imposed on a monotone decreasing function g.s/ (for instance, it requires convexity
of g.s/). However, condition (14.11) introduced in [2] is still very general and
allows for many parallels and borrows from the analysis of the frictional damping
satisfying (14.10). In particular, the role of convexity of H.s/ exploited via
appropriate use of Jensen’s inequality and a connection to dissipative ODE solutions
are paramountly common in both cases.

Thus, the goal of this paper is to relate the asymptotic decay rates for the energy
of PDE weak solutions to the decay rates driven by a dissipative ODE governed
by a rescaled variant of function H.s/ in (14.11). While there are many papers
in the literature which provide decay rates for the energy with a “specified” (linear,
polynomial) behavior ofH.s/, the problem of finding general argument which gives
the correct answer for an un-quantitized behavior of H.s/ at the origin (critical
region) is relatively novel, particularly in the case of memory damping. The first
result in this direction for viscoelastic damping has been announced in [2]. Alabau-
Boussouira and Cannarsa [2] asserts the decay rates expressed in terms of the
relaxation kernel (Theorem 2.2 in [2]) for the case of relaxation kernel satisfying the
equality g0 D �H.g/. In the case of inequality g0 � �H.g/, [2] claims an uniform
decay of the energy without specifying the rate (Theorem 2.1). The announcement
of the result in [2] attributes its proof to convexity arguments along with suitable
weighted inequalities developed in [3, 4].

The result presented in this paper provides decay rate estimates for the general
case of inequality g0 � �H.g/. The decay rates are expressed in terms of a
function bounded by a solution to a given nonlinear dissipative ODE governed by
H.s/. Our aim is to develop an elementary method, based on ODE methodology
introduced in [22], which is capable to provide specified decay estimates for
solutions corresponding to general structures of relaxation kernels defined by the
inequality (14.11). The nonlocal character of the damping provides a new set of
mathematical difficulties to be dealt with. Starting with general assumption (14.11)
(introduced in [2]) we adjust convexity arguments of [22]) in order to incorporate the
nonlocal terms into the multipliers estimates via multiple applications of Jensen’s
inequality (used heavily in [22]). The method is intrinsic and is based on an
adaptation of the main idea introduced in [22] for the treatment of frictional
damping. It relies on an exploitation of convexity of function H.s/, via Jensen’s
inequality, along with a suitable comparison theory for ODE’s. The final result is
that the decay rates for PDE solutions are given by ODE solutions governed by
rescales of functionH.s/.

Our paper is organized as follows: In Sect. 14.2, we introduce the notations,
state the assumptions and the main results. Section 14.3 is devoted to the proofs.
Section 14.3.1 provides some preliminary material and estimates which are critical
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for the development. These include generalized Jensen’s inequality, derivation of
the energy balance, and the iterative estimates involving convolutions (so called
˛-Sequences) which are used critically later on. Sections 14.3.2 and 14.3.3 deal
with the main core of the proofs.

14.2 Main Results

14.2.1 Preliminaries

Our main task is to study optimal decay rates, after the global existence of weak
(mild or even strong actually) solution is asserted. The former is accomplished
by showing local existence plus the non-blowup property. The latter requires the
investigation of the energy function E.t/. To this end, we introduce the damping
term D.t/ defined by

D.t/ , �1
2
.g0 ı A1

2 u/.t/C 1

2
g.t/jjA1

2 u.t/jj2dx � 0: (14.12)

It is standard by now ([1] and references therein) to derive from (14.1) the energy
balance equality

E.t/C
Z t

s

D.�/d� D E.s/;8s � t; (14.13)

where the energy function E.t/ is given by (14.3). Thus, the energy is decreasing
and we always have E.t/ � E.s/; s < t . This answers global existence part
provided, however, one has local solutions along with a priori bounds. Precise
formulation of this statement is given below.

14.2.2 Wellposedness of Finite Energy Solutions

Assumptions (A):

1. there exists a constant c0 > 0 such that the operator A satisfies the following
generalized Poincare inequality:

jjujj � c0jjA1
2 ujj;8u 2 D.A1

2 /I

2. fs W D.A1
2 / ! H is locally Lipschitz with fs.0/ D 0 and .fs.u/; u/ � 0:

As a consequence of Assumption (A) with F.u/ D R 1
0
.fs.tu/; u/dt; u 2 D.A1

2 / we
have
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• F.0/ D 0; F.u/ � 0 and fs.�/ D rF.�/ onD.A
1
2 /;

• d
dtF.u.t// D .fs.u/; ut / and jF.u/j � �.jjA1

2 ujj/jjjA1
2 ujj2,where �.u/ is a

bounded function for bounded arguments.

Assumption (A) constitutes a set of standard hypotheses imposed on semi linear
potential function F in the context of wellposedness of local and global solutions
corresponding to abstract second order semi linear evolutions.. Part 2 in Assumption
(A) reflects local Lipschitz continuity and it corresponds to Hypothesis (H1) in [1].
The last bullet in Assumption (A) states that nonlinear part of potential energy is
locally bounded see Assumption 3.1 p. 486 in [15]. This is stated in the same form
as (14.25) in Assumption (H2) in [1]. The following wellposedness result is known
and standard by now [1] and references therein.

Theorem 14.1 Let .u0; u1/ 2 D.A
1
2 / � H be given. Assume that the Assumption

(A) is satisfied, then the problem (1.1) has a unique global (weak) solution

u 2 C.RCID.A1
2 / \ C1.RCIH /:

Moreover, if .u0; u1/ 2 D.A/ �D.A1
2 /, then the solution satisfies

u 2 C.RCID.A// \ C1.RCID.A1
2 // \ C2.RCIH /:

14.2.3 Uniform Decay Rates for the Energy Function

By (14.13), we know that the solution decreases in time. We want to find out if
it decreases to zero and how fast it decreases. In order to provide a quantitative
answer, the following assumption is needed.

Assumptions (B):

1. assume that there exists a convex function H 2 C1.RC/, which is strictly
increasing with H.0/ D 0 such that

g0.t/CH.g.t// � 0;8t > 0I (14.14)

2. let y.t/ be a solution of the following ODE:

y0.t/CH.y.t// D 0; y.0/ D g.0/ > 0

and assume that there exists ˛0 2 .0; 1/ such that y1�˛0 2 L1.RC/;
3. in addition to H 2 C1.RC/, assume there exists an interval Œ0; Nı�; Nı > 0 such

that H.�/ 2 C2.0;1/ and lim inf
x!0C

˚
x2H 00.x/ � xH 0.x/CH.x/

� � 0;
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Remark 14.1 • The inequality in Assumption (B)-1 along with convexity require-
ment is the same as inequality (7) introduced in [2].

• Note that H.�/ 2 C2.RC/ means H 00.x/ can be continuously extended to
0, for instance H.x/ D x.x C 1/p�1, x � 0; 1 < p < 2. However, a
C2.0;1/ function may have second derivative unbounded at zero, for instance,
H.x/ D jxjp�1x; x 2 R

nC. Thus, this case requires a different treatment. Instead
of assuming H.�/ 2 C2.RC/ or H.x/ 2 C2.0;1/, we shall consider a limited
regularity H.�/ 2 C1.RC/ only, supplemented with an additional assumption

that all the functions defined by H.k/.x/ , x
1� 1

˛k H.x
1
˛k /; k D 0; 1; : : : m, are

convex on Œ0; Nı�, where ˛k D .k C 1/˛0 and m C 1 is the first integer to make
k˛0 � 1. The assumption stated in (B3) guarantees this to happen.

We begin with the following preliminary uniform decay result.

Proposition 14.1 Under the Assumptions (A), (B1), (B2), the energy E.t/ of the
solutions associated to weak solutions to problem (14.1) decay to zero uniformly
with respect to the topology of finite energy space. More specifically, E.t/ �
S.t/; t > T0, with some T0 > 0 where S.t/ satisfies the nonlinear ODE

St C OH˛0.S/ D 0; S.0/ D E.0/

where OH˛ D c1H.c2s
1
˛ / for some constants c1; c2 > 0.

The result stated above is suboptimal since ˛0 < 1. However it constitutes a
necessary first step for the analysis. The second and main result provides sharp
decay rates where OH˛ is used with ˛ D 1.

Theorem 14.2 Let Assumption (A)–(B) be in force. Then, the decay rates obtained
for the energy of weak solutions obey the estimate for some T0 > 0

E.t/ � S.t/ for t > T0

where S.t/ satisfies St C OH.S/ D 0; S.0/ D E.0/, with OH given by OH.S/ D
c1H.c2S/ with some suitable constants c1; c2 > 0. The constants c1; c2 and T0 do
not depend on a particular solution but they may depend on E.0/

Remark 14.2 • Theorem 14.2 is a viscoelastic analogue of a related result obtained
for a frictional damping in [22].

• A related result has been announced in [2]. More specifically, under the hypoth-
esis that g.t/ satisfies the differential equality g0.t/CH.g.t// D 0;8t > 0; [2]
announces that the decay rates for the linear system (14.1) with fs D 0 obey the
inequality E.t/ � C.Eu.0//g.t/. In the case of inequality g0.t/ C H.g.t// �
0;8t > 0; Theorem 2.1 in [2] announces uniformity of the decay but without
specifying the rates. It should be noted that techniques used in [2] and the present
manuscript are very different. While [2] refers to weighted energy inequalities
developed in [3–5], the present work is based on the ODE method developed
in [22]. We believe that this latter method provides a more effective framework
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when dealing with the case of inequality characterization of the relaxation kernel.
Such characterization provides incomplete information on the kernel itself, thus
any claim comparing the decay rates of the PDE with the actual decay rates of a
given kernel is not reasonable to expect. The only ground for comparison is the
ODE which simultaneously characterizes both quantities involved.

Remark 14.3 A good testing ground asserting significance of Theorem 14.2 is
the polynomial case when H.s/ D jsjp�1s with p 2 .1; 2/. This corresponds
to relaxation kernel g.t/ � 1

t1=.p�1/ four t large. It is easy to verify that all the

conditions in Assumption B are satisfied. Indeed, ˛0 <
p�2
p�1 satisfies the requirement

in Assumption B(2). As for B(3), the variant (b) applies. For x ! 0C we have

x2H
00 � xH 0

.x/CH.x/ D .p � 1/2xp

which is nonnegative. Thus, all the hypotheses apply for the maximal range of the

parameter p 2 Œ1; 2/ and we obtain sharp decay rates for the energy E.t/ � t
� 1
p�1

for p > 1. The exponential decay rates for p D 1 correspond to a linear function
H.s/—being well understood in the past.

In order to point out the novelty and significance of the result in Theorem 14.2,
it suffices to mention that almost all papers in the field when considering this model
impose the following restriction on the range of parameters p 2 Œ1; 3=2/. This also
includes [1] where sharp polynomial decay rates are proved for p 2 Œ1; 3=2/ see
(24), Assumption (H2) in [1]. This unnatural restriction is removed by using the
methodology presented in this paper. In fact, sub-optimality of the results in the
polynomial case was a motivation for introducing new method in [20], which not
only generalizes previous theories, but it also provides results in the cases which
were explicitly ruled out in previous treatments. However, the proof in [20] is
inductive and it requires verification of a “dynamic” hypothesis (we note that the
inductive hypothesis introduced in [20] is very different from “successive energy
decay estimates or “boot strap” arguments used in [1, 13]. Instead, in the present
framework, the optimal result is obtained in one shot. One should also mention
that iterative method already used in [13] (and later in [1], when applied to the
polynomial case, still required restrictions on the parameters p 2 Œ1; 3=2/: Instead
[2] states the result as valid for the range p 2 .1; 2/, however since there is no proof
given in [2] it is difficult to discern the technicalities responsible for this particular
point (iterative method used before is simply not enough).

Remark 14.4 The result stated in Theorem 14.2 applies directly to canonical
examples of nonlinear waves and plates introduced in Sect. 14.2. In particular, one
shows that the decays obtained for the energy function are sharp with respect to
reconstructing properties of relaxation function g.s/. In the polynomial case, with
semi linear terms in the viscoelastic equation, [1] proves the decay rates which are
sharp but applicable only to restricted range of p 2 Œ1; 3=2/.
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14.2.4 Discussion of the Results and of the Method Used
in the Context of the Past Literature

As already mentioned, decay rates for the energy function of viscoelastic abstract
models have been considered in past literature rather frequently. While vast majority
of the work deals with well quantized relaxation kernels or with kernels specifying
“linear type” of differential inequalities characterized by g0.t/C �.t/g.t/ � 0 with
suitable assumptions imposed on time dependent function �.t/ [7–9, 12, 18, 19, 25,
26, 32], there have been few attempts to reach the level of generality which does
not require such specifications. In this context we should mention [2, 20, 32]. All
these works follow a general idea of employing convex analysis (as in [22]) in
order to obtain estimates independent on specific characterization of the kernel.
Paper [2] announces (without a proof—with only brief sketch of the proof) sharp
decay result for linear problem under the assumption that the relaxation kernel
satisfies differential equation rather than inequality Theorem 2.2. In the case of
inequality, [2] provides only (Theorem 2.1) the statement on uniformity of decay
rates without specifying the rates. Paper [32] studies coupled second order evolution
equations where one equation is subject to memory effects with relaxation kernel
satisfying equality differential relation, in addition to other technical assumptions.
In particular Assumption (2.3) in [32] requires total subordination of the operator
Bi (coupling term) with respect to the square roots of the generators—which is
a typical assumption in coupled dynamics but not natural for a single dynamics.
Manuscript [27] is the first one which derives the decay rates for the case of
differential inequality. However, these rates are non-optimal. Non-optimality is
already manifested in the case of algebraically decaying kernels where the method
used forces the restricted range of parameters, as explained in Remark 14.3 above.
Lasiecka et al. [20] achieves sharp decay rates for the case of inequality, however
the most general result requires an inductive-dynamic hypothesis to be satisfied. The
contribution of the present work is that it removes the limitation of [20] and there is
no need for the dynamic hypothesis.

It should also be mentioned that from the point of view of methodology, the
methods used in [2, 27, 32] rely on weighted energy inequalities, while the method
used now and in [20] pursues the approach of [22] which is ODE based. It
appears that ODE based method is more effective when formulating the results for
relaxation kernels satisfying differential inequalities-rather than equalities. This is
due to the fact that relaxation kernels quantitated by inequalities may be poorly
characterized—thus decay rates given in terms of the relaxation kernel itself may
not be possible at all. Instead, ODE approach exploits the maximum information
available in this case—with ODE being an accurate description. In addition, there
are several generalizations developed in the present work where the methodology
employed allows to eliminate numerous technical restrictions. Thus, the novel
contribution of this work is from the point of view of both the results obtained
and the methodology developed.
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We shall briefly explain the approach used in this paper. Let u.t/ be a solution
to (14.1). We rewrite .g ı A

1
2 u/.t/ D R t

0
g.t � s/f 2.t; s/ds for notational

convenience, where f is defined by

f .t; s/ D jjA1
2 .u.t/ � u.s//jj: (14.15)

For 0 < ˛ � 1 we pay attention to the important parameter

c.t; ˛/ ,
Z t

0

g.t � s/1�˛f 2.t; s/ds; (14.16)

which is related the ˛ -Sequence in Proposition (14.2). This parameter was already
used in [20, 27]. Given the Assumption (B)(2) along with the bound f 2.t; s/ �
2E.0/, we know that for some ˛0 2 .0; 1/,

0 < c˛0 , sup
t>0

c.t; ˛0/ � C

Z 1

0

y1�˛0dt < 1: (14.17)

The above allows [20] to construct function OHT;˛0 , H.cT s
˛�1
0 / , where T is a

sufficiently large -but finite and cT is a suitable constant. The crux of the matter is
showing that the validity of (14.17) implies the estimate

E..nC 1/T /C OHT;˛0fE..nC 1/T /g � E.nT/ (14.18)

for all T > T0 and uniformly in n D 1; 2; : : : .
Note that the new function OHT;˛0 is more “convex” than the original one H.s/ -

thus it will produce “slower” decays. By exploiting boundedness in (14.17), Lemma
3.3 in [22] the method in [20] shows that the decay of the energy are driven by ODE

St C OHT;˛0 .S/ D 0;

which gives uniform decays (non-optimal though, since ˛0 < 1) to zero asserted in
Proposition 14.1. In order to improve the decay rates we use a bootstrap argument
by applying new piece of information regarding the decay of function f .t; s/ and
thus improving index ˛0 ! ˛1 where we have strict inequality ˛0 < ˛1. Continuing
the process iteratively, for optimality one needs to show the limit of ˛n is 1, since
˛ D 1;H˛ D H corresponds to the optimal value. Typically an infinite sequence of
˛n is generated and the condition (14.16) is tested dynamically.

In contrast with the above procedure developed in [20] we will be constructing
iterations with a uniform step [exploiting the Assumption (B)(3)], thus the limiting
argument is no longer necessary. The final result is quantitatively the same, namely
that the decay rates are driven by a rescale of functionH .
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14.3 Proofs of the Results

14.3.1 Preliminary Inequalities

In this section we shall enlist several estimates used through the course of the
proofs. We will begin with Jensen’s inequality which was important devise used
since [22] where for the first time unquantified damping in the convex framework
was considered. For readers’ convenience we recall this inequality stated in the exact
form to be used in the arguments to follow.

Let F be a convex increasing function on Œa; b�, f W ˝ ! Œa; b� and h are
integrable functions on ˝ such that h.x/ � 0; and

R
˝
h.x/dx D k > 0; then

generalized Jensen’s inequality states that

F Œ
1

k

Z
˝

f .x/h.x/dx� � 1

k
Œ

Z
˝

F Œf .x/�h.x/dx�: (14.19)

The above version of Jensen’s inequality is well known in the literature, see [6, 23]
and has been also critically used in [20, 22, 27].

For readers convenience we shall also recall derivation of the energy balance
in (14.13). In fact, this derivation is helpful in motivating particular structure of the
energy function.

Lemma 14.1 The strong form of energy equality takes the form:

d

dt

n1
2

jjut jj2 C 1

2
.1�

Z t

0

g.s/ds/jjA1
2 ujj2 C 1

2
.g ı A1

2 u/.t/ � F.u.t//
o

D 1

2

Z t

0

g0.t � s/jjA1
2 .u.t/ � u.s//jj2ds � 1

2
g.t/jjA1

2 u.t/jj2:

The derivation of this equality is standard-once we have regular local in time
solutions (guaranteed in our case Theorem 14.1). To recall the calculations we
proceed as follows.

Taking the inner product of (14.1) and ut on H , we have

.utt C Au � g 
 Au; ut / D .fs.u/; ut /

) 1

2

d

dt
jjut jj2 C 1

2

d

dt
jjA1

2 ujj2 �
Z t

0

g.t � s/.Au.s/; ut .t//ds D 1

2

d

dt
F.u/:
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Now the third term on the left

�
Z t

0

g.t � s/.Au.s/; ut .t//ds

D
Z t

0

g.t � s/.Au.t/ � Au.s/; ut .t//ds �
Z t

0

g.t � s/.Au.t/; ut .t//ds

D 1

2

Z t

0

g.t � s/
d

dt
jjA1

2 .u.t/ � u.s//jj2ds � 1

2

Z t

0

g.s/ds
d

dt
jjA1

2 u.t/jj2

D 1

2

d

dt

Z t

0

g.t � s/jjA1
2 .u.t/ � u.s//jj2ds � 1

2

Z t

0

g0.t � s/jjA1
2 .u.t/ � u.s//jj2ds

�1
2

d

dt
Œ

Z t

0

g.s/dsjjA1
2 u.t/jj2�C 1

2
g.t/jjA1

2 u.t/jj2:

We end up with energy equality

d

dt

n1
2

jjut jj2 C 1

2
.1�

Z t

0

g.s/ds/jjA1
2 ujj2 C 1

2
.g ı A1

2 u/.t/ � F.u.t//
o

D 1

2

Z t

0

g0.t � s/jjA1
2 .u.t/ � u.s//jj2ds � 1

2
g.t/jjA1

2 u.t/jj2:

Thus it is natural to define the energy

E.t/ , 1

2
jjut jj2 C 1

2
.1 �

Z t

0

g.s/ds/jjA1
2 ujj2 C 1

2
.g ı A1

2 u/.t/ � F.u.t//:

The following integral inequality will be used frequently in the derivation of
energy estimate in Sect. 14.3.

Lemma 14.2 Let u be a solution of (14.1) and  2 L1.0;1/;  � 0; a:e:. Then,

ˇ̌
ˇ̌
ˇ̌
ˇ̌
Z t

0

 .t � s/.u.t/ � u.s// ds

ˇ̌
ˇ̌
ˇ̌
ˇ̌2 � jj jjL1.0;1/. ı u/.t/: (14.20)

Proof The proof is given in [20, 27]. For readers’ convenience we repeat the
arguments. We have, making using of Cauchy-Schwarz inequality and Fubini’s
theorem,

ˇ̌
ˇ̌
ˇ̌
ˇ̌Z t

0

 .t � s/.u.t/ � u.s// ds

ˇ̌
ˇ̌
ˇ̌
ˇ̌2

D
Z
˝

�Z t

0

p
 .t � s/p .t � s/.u.t/ � u.s// ds

�2
dx
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�
Z
˝

�Z t

0

 .�/ d�

�Z t

0

 .t � s/.u.t/ � u.s//2 dsdx

� jj jjL1.0;1/

Z t

0

 .t � s/jj.u.t/ � u.s//jj2 dxds;

which proves the lemma. ut
Another critical estimate is used to “boot strap” the decay rate of the energy.

To achieve the optimal decay rate, we reiterate this estimate and generate a finite
sequence of parameters, which we call the ˛-Sequence, whose boundedness is in
turn required to carry out the iteration.

Proposition 14.2 (˛-Sequence) Let ˛0 2 .0; 1/ and y.t/ 2 C Œ0;1/ be a positive
function decreasing to zero. Moreover

Z 1

0

y1�˛0.t/dt D L < 1:

Letm be a positive integer such thatm˛0 < 1 and .mC1/˛0 � 1. A finite sequence
of parameters, in form of definite integrals on Œ0; t �, are generated in the following
way:

Ik.t/ D
Z t

0

y1�k˛0 .t � s/y.k�1/˛0.s/ds; k D 1; 2; : : : ; m; (14.21)

ImC1.t/ D
Z t

0

ym˛0.s/ds: (14.22)

Then each Ik.t/; k D 1; : : : ; mC 1, is bounded, uniformly in t , namely,

sup
t>0

Ik.t/ < 1:

Proof We first assume y.0/ � 1.
For k D 1; : : : ; m, we have

Ik D
Z t

0

y1�k˛0 .t � s/y.k�1/˛0.s/ds

D
Z t=2

0

y1�k˛0.t � s/y.k�1/˛0.s/ds C
Z t

t=2

y1�k˛0 .t � s/y.k�1/˛0.s/ds

�
Z t=2

0

y1�k˛0 .s/y.k�1/˛0.s/ds C
Z t

t=2

y1�k˛0 .t � s/y.k�1/˛0.t � s/ds
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D
Z t=2

0

y1�˛0 .s/ds C
Z t

t=2

y1�˛0 .t � s/ds

D 2

Z t=2

0

y1�˛0 .s/ds � 2L < 1:

Above we use the fact that y.t/, hence y1�k˛0 .t/, is a decreasing function and on
each subinterval we have either s < t � s or s > t � s.

For ImC1, we have

ImC1 D
Z t

0

ym˛0.s/ds �
Z t

0

y1�˛0 .s/ds � L < 1;

since .mC 1/˛0 > 1 ) m˛0 > 1 � ˛0 and y.t/ � y.0/ � 1.
For y with y.0/ > 1, we can always find a time t0 so that y.t/ � 1; t > t0 since

y decreases to zero. The fact y 2 C Œ0;1/ implies the only possibility to stop the
integrals from being finite is the asymptotic behavior of y at infinity. So y being
larger than 1 on a finite interval Œ0; t0� does not bear influence on our result. ut

14.3.2 Proof of Proposition 14.1

This follows directly from [20]. Indeed, since c.t; ˛0/ < 1 we construct a

suboptimal function H˛0.s/ D H.s
1
˛0 / where its rescale OH˛ is also continuous,

convex on Œ0;1/, strictly increasing and zero at the origin. It is shown in [20]
that the inequality in (14.18) holds. Thus solution driven by the ODE st .t/ C
c1H..c2s/

1
˛0 / D 0, provides the decay for the energy E.t/—see [20]. Since H

is increasing, s0 < �c < 0 ) s.t/ ! 0 ) E.t/ � s.t/ ! 0, where the constants
c1 and c2 depend on jjA1=2u.0/jjj but not on a specific solution. This proves the
uniform convergence to zero of the energy function which are quantified by ˛0.

Our next step is to improve the decay rates by making these eventually
independent on ˛0.

14.3.3 Proof of Theorem 14.2

Given the result in Proposition14.1, Theorem14.2 is a consequence of the following
sequence of lemmas. The proofs of these results are given later.

Lemma 14.3 There exists T > 0 and the positive constants C1T ; C2T such that for
n D 1; 2 : : :
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E..nC 1/T / � C1T

Z .nC1/T

nT
.g ı A1

2 u/.t/dt C C2T

Z .nC1/T

nT
D.t/dt: (14.23)

In what follows we shall use another function -H related -defined as

H1;˛.s/ , ˛s1�
1
˛ H˛.s/ D ˛s1�

1
˛ H.s

1
˛ /: (14.24)

As before we shall denote the rescale of these functions by OH1;˛ . Also note that all
three functionsH;H˛;H1;˛ coincide for the optimal value of the parameter ˛ D 1.
For ˛ < 1, H˛ and H1;˛ represent additional convexification which then leads to
compromised decay rates for the energy function.

Lemma 14.4 Under the Assumptions (B)(3), there exists an interval .0; ı/; 0 < ı <
Nı on which we have

1. H1;˛.0/ D 0 andH1;˛.s/ is increasing and convex;
2. moreover, if c˛ , sup

t>0

c.˛; t/ D sup
t>0

R t
0 g

1�˛.t � s/f 2.t; s/ds < 1, then there

exist constants # so that

H1;˛Œ#.g ıA1
2 u/�.t/ � ˛#D.t/; for t 2 ŒnT; .nC 1/T �; n D 1; 2 : : : ; (14.25)

with # 2 .0; 1/ independent on n.

Lemma 14.5 Given the results of lemmas above, we have

E..nC 1/T /C OH1;˛fE..nC 1/T /g � E.nT/ (14.26)

holds for all T > T0, where OH1;˛ is defined by

OH�1
1;˛ .x/ D C1T

#
TH�1

1;˛

h˛#
T
x
i

C C2T x;8x 2 R:

Moreover, we can show that OH1;˛.s/ is a convex, continuous increasing and zero at
the origin function. Here C1T ; C2T ; # depends only on ˛; T , but not on n;

Lemma 14.5 leads to the following decay result proved originally in [22] with
more explicit estimates in [21] (see also [3] for results on decay rates of the energy
expressed in terms of integral inequalities):

Lemma 14.6 Given the Lemma 14.5 and condition (14.25) we have the following
decay rates for the energy function

E.t/ � s.t/;8t > T
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with

st C OH1;˛.s/ D 0; s.0/ D E.T /; 2 (14.27)

Lemma 14.7 Comparison principle.
Given y.t/ satisfying

yt CH.y/ D 0; y.0/ D y0 > 0; (14.28)

and s.t/ satisfying

st C ˛s1�
1
˛ H.s

1
˛ / D 0; s.0/ D s0 > 0: (14.29)

Both function y and s are positive, decreasing, Then we have

s.t/ D y˛.t C c/; (14.30)

for some constant c, meaning the decay rate of s.t/ is identical to y˛.t/ up to a
finite time delay.

Lemma 14.8 Iteration for optimality.
We show the following decay rates for the energy function

E.t/ � S.t/; for t > T

with

St C OH.S/ D 0; S.0/ D E.T / (14.31)

where OH.x/ D c1H.c2x/ is a convex, continuous increasing and zero at the origin
function.

Remark 14.5 Heuristic for the proof of the main result. Lemma 14.3 gives the
energy inequality, while Lemmas 14.4–14.6 show the energy is driven by damping
function H1;˛ which has “weaker” decay rate than H . Lemma 14.7 discovers
the explicit relation between the energy decay rate caused by H1;˛ and that by
H , namely between E.t/ and y.t/. In view of the critical quantity

R t
0
g1�˛.t �

s/f 2.t; s/ds � 2
R t
0
y1�˛.t � s/E.s/ds, this explicit relation gives an extra bit room

for y1�˛.t � s/, hence g1�˛.t � s/, to improve. More precisely, a larger ˛ is reached
while

R t
0
g1�˛.t � s/f 2.t; s/ds still being bounded uniformly in t . Lemma 14.8

adopts the ˛-sequence property and completes the proof of Theorem 14.2.

2Here we can take s.0/ D E.0/ for notational convenience, since E.T / � E.0/.
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Proof (of Lemma 14.3)
We seek global integral energy estimates for (i) potential energy jjA1

2 ujj2, (ii) the
kinetic energy jjut jj2 and (iii) viscoelastic energy g ı A1=2u; This is accomplished
by using standard multipliers used in viscoelasticity [1, 10–14] with the difference
that our estimates are carried out over the discrete time segments ŒnT; .n C 1/T �

without any weights, rather than over the full time intervals .0;1/with the assigned
weights. This difference is related to the fact that our method (based on [22]) seeks
a comparison with a discrete version of ODE.

1. Estimate on the potential energy
R .nC1/T

nT jjA1
2 u.t/jj2dt.

Taking the inner product of (14.1) and u, we have

.utt C Au � g 
 Au; u/ D .fs.u/; u/:

Since .utt; u/ D d
dt .ut ; u/� jjut jj2 and .Au; u/ D jjA1

2 ujj2; we get

d

dt
.ut ; u/� jjut jj2 C jjA1

2 ujj2 � .fs.u/; u/ D .g 
 Au; u/:

The following are easy to check

j.g 
 Au; u/j D j
Z t

0

g.t � s/.A
1
2 u.s/; A

1
2 u.t//dsj

� j
Z t

0

g.t � s/.A1
2 Œu.s/� u.t/�; A

1
2 u.t//dsj C j

Z t

0

g.t � s/.A1
2 u.t/; A

1
2 u.t//dsj

� .1 � l/.1C �/jjA1
2 u.t/jj2 C C�.g ı A1

2 u/.t/;

and

j.ut ; u/j � jjujj2
2

C jjut jj2
2

� C.jjA1
2 ujj2 C jjut jj2/ � CE.t/

which implies �.ut ; u/j.nC1/T
nT � C ŒE.nT/C E..nC 1/T /�.

After Integrating on time interval ŒnT; .nC 1/T �, we arrive at

Z .nC1/T

nT
jjA1

2 ujj2dt �
Z .nC1/T

nT
.fs.u/; u/dt (14.32)

� C

Z .nC1/T

nT
jjut jj2dt C C

Z .nC1/T

nT
.g ıA1

2 u/.t/dt � .ut ; u/j.nC1/T
nT

� C

Z .nC1/T

nT
jjut jj2dt C C

Z .nC1/T

nT
.g ıA1

2 u/.t/dt C CŒE.nT/C E..nC 1/T /�:

Here the generic constant C depends on �; l , but not on n;
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2. Estimate on the kinetic energy. Now we want to bound term
R .nC1/T

nT jjut jj2dt.
We take the inner product of each term in (14.1) with term

R t
0
g.t � s/.u.t/ �

u.s//ds and have

Z .nC1/T

nT
.utt.t/;

Z t

0

g.t � s/.u.t/ � u.s//ds/dt (14.33)

D .ut ;
Z t

0

g.t � s/.u.t/ � u.s//j.nC1/T
nT

�
Z .nC1/T

nT
.ut .t/;

Z t

0

g0.t � s/.u.t/ � u.s//dsdt

�
Z .nC1/T

nT

Z t

0

g.s/dsjjut .t/jj2dt

Z .nC1/T

nT
.Au.t/;

Z t

0

g.t � s//.u.t/ � u.s//ds/dt (14.34)

D
Z .nC1/T

nT
.A

1
2 u.t/;

Z t

0

g.t � s/A
1
2 .u.t/ � u.s//ds/dt

Z .nC1/T

nT
.

Z t

0

g.t � s/Au.s/ds;
Z t

0

g.t � s/.u.t/ � u.s//ds/dt

D
Z .nC1/T

nT
.

Z t

0

g.t � s/A
1
2 u.s/ds;

Z t

0

g.t � s/A
1
2 .u.t/ � u.s//dsdt

D �
Z .nC1/T

nT
jj
Z t

0

g.t � s/A
1
2 .u.s/� u.t//dsjj2dt (14.35)

C
Z .nC1/T

nT
.

Z t

0

g.s/ds/A
1
2 u.t/;

Z t

0

g.t � s/A1
2 .u.t/ � u.s//dsdt:

Combining the equalities in (14.33)–(14.35) leads to

.ut ;
Z t

0
g.t�s/.u.t/� u.s//ds/j.nC1/T

nT �
Z .nC1/T

nT
.ut .t/;

Z t

0
g0.t � s/.u.t/� u.s//dsdt

�
Z .nC1/T

nT

Z t

0
g.s/dsjjut .t/jj2dt C

Z .nC1/T

nT
.A

1
2 u.t/;

Z t

0
g.t � s/A

1
2 .u.t/ � u.s//dsdt

D �
Z .nC1/T

nT
jj
Z t

0
g.t � s/A

1
2 .u.s/� u.t//dsjj2dt
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C
Z .nC1/T

nT

Z t

0
g.s/ds.A

1
2 u.t/;

Z t

0
g.t � s/A

1
2 .u.t/ � u.s//ds/dt

C
Z .nC1/T

nT
.fs.u/;

Z t

0
g.t � s/.u.t/� u.s//ds/dt:

We rewrite it into

Z .nC1/T

nT

Z t

0

g.s/dsjjut .t/jj2dt

D .ut ;
Z t

0

g.t � s/.u.t/ � u.s//ds/j.nC1/T
nT

�
Z .nC1/T

nT
.ut .t/;

Z t

0

g0.t � s/.u.t/ � u.s//ds/dt

C
Z .nC1/T

nT
.A

1
2 u.t/;

Z t

0

g.t � s/A
1
2 .u.t/ � u.s//ds/dt

C
Z .nC1/T

nT
jj
Z t

0

g.t � s/A1
2 .u.s/� u.t//dsjj2dt

�
Z .nC1/T

nT

Z t

0

g.s/ds.A
1
2 u.t/;

Z t

0

g.t � s/A1
2 .u.t/ � u.s//ds/dt

�
Z .nC1/T

nT
.fs.u/;

Z t

0

g.t � s/.u.t/ � u.s//ds/dt

D I1 C I2 C I3 C I4 C I5 C I6:

Now we need the estimates on the right hand side
For the first term, we show that for the

I1 D .ut ;
Z t

0

g.t � s/.u.t/ � u.s//ds/j.nC1/T
nT � C ŒE.nT/CE..nC 1/T /�;

(14.36)

where the constant C does not depend on T .
Indeed since

jj
Z t

0

g.t � s/.u.t/ � u.s//dsjj2

� jjgjjL1.RC/

Z t

0

g.t � s/jju.t/ � u.s/jj2ds

� c0jjgjjL1.RC/

Z t

0

g.t � s/jjA1
2 .u.t/ � u.s//jj2ds

� C.g ı A1
2 u/.t/;
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we have

.ut ;
Z t

0

g.t � s/.u.t/ � u.s//ds/

� 1

2
jjut .t/jj2 C 1

2
jj
Z t

0

g.t � s/.u.t/ � u.s//dsjj2

� CE.t/

which implies (14.36).
Now for the rest of the terms appearing in the expression
The second term:

I2 D
Z .nC1/T

nT
.ut .t/;

Z t

0

g0.t � s/.u.t/ � u.s//dsdt

� �

Z .nC1/T

nT
jjut .t/jj2dt C C�jjg0jjL1

Z .nC1/T

nT
.jg0j ı A1

2 u/.t/dt

� �

Z .nC1/T

nT
jjut .t/jj2dt � C

Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt;

since g0 < 0 and jjg0jjL1 D g.0/ < 1.
The third term:

I3 D
Z .nC1/T

nT
.A

1
2 u.t/;

Z t

0

g.t � s/A1
2 .u.t/ � u.s//ds/dt

�
Z .nC1/T

nT
jjA1

2 u.t/jjjj
Z t

0

g.t � s/A
1
2 .u.t/ � u.s//dsjjdt

� �

Z .nC1/T

nT
jjA1

2 u.t/jj2dt C C�

Z .nC1/T

nT
.g ı A1

2 u/.t/dt:

The fourth term:

I4 D
Z .nC1/T

nT
jj
Z t

0

g.t � s/A
1
2 .u.s/� u.t//dsjj2dt

� C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt:
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The fifth term:

I5 D �
Z .nC1/T

nT

Z t

0

g.s/ds.A
1
2 u.t/;

Z t

0

g.t � s/A
1
2 .u.t/ � u.s//ds/dt

�
Z .nC1/T

nT
j
Z t

0

g.s/dsjjjA1
2 u.t/jjjj

Z t

0

g.t � s/A1
2 .u.t/ � u.s//dsjjdt

� �

Z .nC1/T

nT
jjA1

2 u.t/jj2dt C C�

Z .nC1/T

nT
.g ı A1

2 u/.t/dt:

The final term:

I6 D �
Z .nC1/T

nT
.fs.u/;

Z t

0

g.t � s/.u.t/ � u.s//ds/dt

� C�

Z .nC1/T

nT
jj
Z t

0

g.t � s/j.u.t/ � u.s//jdsjj2dt C �

Z .nC1/T

nT
jjA1=2u.t/jj2

� C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt C �

Z .nC1/T

nT
jjA1=2u.t/jj2

where the last inequality results from the fact that fs.u/ is locally Lipschitz.
Indeed, at 0 we have jjfs.u/ � 0jj � CjjA1=2ujjjjA1=2u � 0jj, while we know
jjA1=2u.t/jj2 � E.t/ ! 0.
Combining the above estimates of I1 � I5, we arrive at

Z .nC1/T

nT
Œ

Z t

0

g.s/ds�jjut .t/jj2dt � �
Z .nC1/T

nT
jjut .t/jj2dt C �

Z .nC1/T

nT
jjA1

2 u.t/jj2

C C�

Z .nC1/T

nT
.g ı A1

2 u/.t/dt

� C�

Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt

C C ŒE.nT/C E..nC 1/T /�;

that is

Z .nC1/T

nT
f
Z t

0

g.s/ds � �gjjut .t/jj2dt � �

Z .nC1/T

nT
jjA1

2 u.t/jj2

CC�
Z .nC1/T

nT
.g ı A1

2 u/.t/dt � C�

Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt

CC ŒE.nT/C E..nC 1/T /�;
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We can pick T > 0 so that fR t
0
g.s/ds � �g > ı0 > 0, so that we have

Z .nC1/T

nT
jjut .t/jj2dt � �

Z .nC1/T

nT
jjA1

2 u.t/jj2 (14.37)

C C�

Z .nC1/T

nT
.g ı A1

2 u/.t/dt � C�

Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt

C C ŒE.nT/CE..nC 1/T /�

Now combining with (14.32), selecting � small enough so that the term of
jjA1

2 ujj2 is absorbed by the term on the left, we get

Z .nC1/T

nT
jjA1

2 ujj2dt � C

Z .nC1/T

nT
.g ıA1

2 u/.t/dt �C
Z .nC1/T

nT
.g0 ıA1

2 u/.t/dt

C C ŒE.nT/C E..nC 1/T /�;

which in turn by (14.32) gives

Z .nC1/T

nT
jjut jj2dt � C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt � C
Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt

C C ŒE.nT/C E..nC 1/T /�I

3. Estimate on the total energy E.t/.
The above estimates give

Z .nC1/T

nT
jjA1

2 ujj2dt C
Z .nC1/T

nT
jjut jj2dt � C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt

�C
Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt C C ŒE.nT/C E..nC 1/T /�: (14.38)

Noting that by Assumption A.2 we have

Z .nC1/T

nT
F.u/dt �

Z .nC1/T

nT
�.jjA1

2 ujj/jjA1
2 ujj2dt

� �.
p
E0/

Z .nC1/T

nT
jjA1

2 ujj2dt

� C

Z .nC1/T

nT
jjA1

2 ujj2dt
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which leads to the following observability inequality:

Z .nC1/T

nT
E.t/dt � C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt

�C
Z .nC1/T

nT
.g0 ı A1

2 u/.t/dt C C ŒE.nT/C E..nC 1/T /�: (14.39)

Energy identity gives

E..nC 1/T /C 1

2

Z .nC1/T

nT

�
g.t/jjA1

2 u.t/jj2 � .g0 ı A1
2 u/.t/

�
dt D E.nT/:

(14.40)

Recalling D.t/ D 1
2
g.t/jjA1

2 u.t/jj2 � 1
2
.g0 ı A1

2 u/.t/, we write

E..nC 1/T /C
Z .nC1/T

nT
D.t/dt D E.nT/:

From (14.39)

Z .nC1/T

nT
E.t/dt � C

Z .nC1/T

nT
.g ı A1

2 u/.t/dt

C C

Z .nC1/T

nT
D.t/dt C CE..nC 1/T /:

Since

Z .nC1/T

nT
E.t/dt � TE..nC 1/T /;

we have

TE..nC1/T / � C

Z .nC1/T

nT
.gıA1

2 u/.t/dtCC
Z .nC1/T

nT
D.t/dtCCE..nC1/T /:

Selecting T > C gives

E..nC 1/T / � C1T

#

Z .nC1/T

nT
.g ı A1

2 u/.t/dt C C2T

Z .nC1/T

nT
D.t/dt:

The constants Ci ; i D 1; 2 depends only on T and not on n. The same argument
applies to all intervals ŒnT; .nC 1/T �, n D 1; 2 : : :.

ut



296 I. Lasiecka and X. Wang

Proof (of Lemma 14.4)
Since H 2 C1Œ0;1/, by a simple variable substitution and L’Hospital rule we

can see that function H1;˛.s/ D ˛s1� 1
˛ H.s

1
˛ /; 0 < ˛ < 1 is well-defined with

H1;˛.0/ D 0.

1. To show that there exist a ı > 0 such that function H1;˛.s/ is increasing and
convex on .0; ı/, we perform some simple calculations. Let k D 1

˛
� 1. We have

H1;˛.s/ D 1
k
s1�kH.sk/ and

H 0
1;˛.s/ D .1 � k/

k
s�kH.sk/C s1�kH 0.sk/sk�1

D 1

k
s�kH.sk/C ŒH 0.sk/ � s�kH.sk/� > 0;8s > 0:

The last inequality results from the properties of H.s/:

H.x/ � xH 0.x/; x > 0: (14.41)

Indeed, this follows from geometric interpretation of convexity of H.x/ and the
fact that H.0/ D 0 which then gives H 0.x/x � H.x/ > 0;8x > 0. Thus we
show that H1;˛.x/ is increasing on the positive half line.

For the second derivative on .0;1/, we have

H 00
1;˛.s/ D .1 � k/.�1/s�k�1H.sk/C .1 � k/s�kH 0.sk/sk�1 C ksk�1H 00.sk/

D 1

skC1 Œkx2H 00.x/ � .k � 1/xH 0.x/C .k � 1/H.x/� (14.42)

with x D sk .
We first assume Assumption (B)(3)(a) holds, namely H.x/ 2 C2.RC/.

Noting H.0/ D 0, simple Taylor expansion gives

H.x/ D H 0.0/x CH 00.0/
x2

2
C o.x2/

H 0.x/ D H 0.0/CH 00.0/x C o.x/

H 00.x/ D H 00.0/C o.1/; x ! 0:

Then (14.42) implies

H 00
1;˛.s/ D 1

skC1 Œkx
2H 00.x/ � .k � 1/xH 0.x/C .k � 1/H.x/�

D 1

skC1 Œ
.k C 1/

2
x2H 00.0/C o.x2/�:
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So long as H 00.0/ > 0, which is the case, there exist an interval Œ0; ı�; ı > 0

on which H1;˛.s/ D ˛s1� 1
˛ H.s

1
˛ / is increasing and convex.

For the case H.x/ 2 C2.0;1/, but H 00.0/ might be undefined, we rewrite

H 00
1;˛.s/ D 1

skC1 Œkx2H 00.x/ � .k � 1/xH 0.x/C .k � 1/H.x/�

D 1

skC1


x2H 00.x/C .k � 1/Œx2H 00.x/ � xH 0.x/CH.x/�

�
:

By Assumption (B)(3)(b) we have H 00
1;˛.s/ � 0;8s; 0 < s < ı. Hence we

conclude the proof for part 1, namely, there exist an interval .0; ı/; 0 < ı < Nı on
which H1;˛.s/ D ˛s1� 1

˛ H.s
1
˛ / is increasing and convex.

2. Now we prove that H1;˛.s/ D ˛s1� 1
˛ H.s

1
˛ / satisfies

H1;˛Œ#.g ı A1
2 /.t/� � ˛#D.t/ (14.43)

(or equivalently .g ı A1
2 /.t/ � 1

#
H�1
1;˛ .˛#D.t//), under the assumption

0 < c˛ D sup
t>0

c.˛; t/ D sup
t>0

Z t

0

g1�˛.t � s/f 2.t; s/ds < 1:

Noting that .g ı A
1
2 /.t/ D R t

0 g.t � s/f 2.t; s/ds and c.˛; t/ DR t
0
g1�˛.s/f 2.t; s/ds < 1, also noting H1;˛.s/ D ˛s1� 1

˛ H.s
1
˛ / is convex,

by Jensen’s Inequality we have

H1;˛

h
#

Z t

0

g.t � s/f 2.t; s/ds
i

D H1;˛

h Z t

0

#g˛.t � s/g1�˛.s/f 2.t; s/ds
i

D H1;˛

h 1

c.t; ˛/

Z t

0

#c.t; ˛/g˛.t � s/g1�˛.t � s/f 2.t; s/ds
i

� 1

c.t; ˛/

Z t

0

H1;˛


#c.t; ˛/g˛.t � s/

�
g1�˛.t � s/f 2.t; s/ds

D 1

c.t; ˛/

Z t

0

˛Œ#c.t; ˛/g˛.t�s/�1� 1
˛ H.


#c.t; ˛/g˛.t�s/� 1˛ /g1�˛.t�s/f 2.t; s/ds

D ˛#1� 1
˛

c.t; ˛/
1
˛

Z t

0

H.

#

1
˛ c.t; ˛/

1
˛ g.t � s/�/f 2.t; s/ds:
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Now we can take # such that #
1
˛ c.t; ˛/

1
˛ � 1, e.g. # D 1

c˛
, thus we have

H.

#

1
˛ c.t; ˛/

1
˛ g.t � s/�/ � #

1
˛ c.t; ˛/

1
˛ H.g.t � s//;

because H.0/ D 0 and H.x/ is convex.
So we have

H1;˛

h
#

Z t

0

g.t � s/f 2.t; s/ds
i

� ˛#

Z t

0

H

g.t � s/

�
f 2.t; s/ds

� ˛#

Z t

0

 � g0.t � s/�f 2.t; s/ds � ˛#D.t/:

This completes the proof of (14.43). ut
Proof (of Lemma 14.5) From (14.23)–(14.25), we have

E..nC 1/T / � C1T

Z .nC1/T

nT
.g ı A1

2 u/.t/dt C C2T

Z .nC1/T

nT
D.t/dt

� C1T

#

Z .nC1/T

nT
H�1
1;˛ .˛#D.t//dt C C2T

Z .nC1/T

nT
D.t/dt

� C1T

#
TH�1

1;˛

h˛#
T

Z .nC1/T

nT
D.t/dt

i
C C2T

Z .nC1/T

nT
D.t/dt

� OH�1
1;˛

h Z .nC1/T

nT
D.t/dt

i
:

Here we define OH�1
1;˛ , as the inverse of a function OH1;˛ , by

OH�1
1;˛ .x/ D C1T

#
TH�1

1;˛

h˛#
T
x
i

C C2T x:

It is easy to see that OH�1
1;˛ is increasing and concave with OH�1

1;˛ .0/ D 0. Hence OH1;˛

is increasing, convex and through origin. Furthermore,

E..nC 1/T / � OH�1
1;˛

h Z .nC1/T

nT
D.t/dt

i
:

) OH1;˛ŒE..nC 1/T /� �
h Z .nC1/T

nT
D.t/dt

i
:
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) OH1;˛ŒE..nC 1/T /� � E.nT/� E..nC 1/T /:

) E..nC 1/T /C OH1;˛ŒE..nC 1/T /� � E.nT/: ut

Proof (of Lemma 14.6)
We define H˛ D I � .I C OH1;˛/

�1. By Lemma 3.3 in [22] and Lemma 14.5
E.t/ � s.t/ where s.t/ satisfies the ODE.

st CH˛.s/ D 0; s.0/ D E.T /:

See Lemma 3.3 in [22] for the detailed proof. On the other hand, H˛.s/ has the
same asymptotic behavior at the origin as OH1;˛ , note the following

H˛ D I � .I C OH1;˛/
�1 D .I C OH1;˛/ ı .I C OH1;˛/

�1 � .I C OH1;˛/
�1

D OH1;˛ ı .I C OH1;˛/
�1:

Since OH1;˛ 2 C1Œ0;1/, we have OH1;˛.x/ D O.x/ at the origin. We use A  B to
represent that A and B have the same end behaviors. Then

.I C OH1;˛/  I ) OH˛ ı .I C OH˛/
�1  OH1;˛ ı I ) H˛  OH1;˛; x ! 0:

For a detailed discussion, see [21, Corollary 1. p. 1770]. By similar arguments, from
the definition

OH�1
1;˛ .x/ D C1T

#
TH�1

1;˛

h˛#
T
x
i

C C2T x;

and the fact that they are both convex at zero, we can see H˛  OH1;˛.x/ for x > 0
in the neighborhood of 0. ut
Proof (of Lemma 14.7)

Let H .y/ D R1
y

dx
H.x/

; y > 0. It is easy to see H is positive and decreasing

function on Œ0;1/ with d
dy
H .y/ D � dy

H.y/
. Thus

yt CH.y/ D 0 ) dy

H .y/
D �dt

) dH .y/ D dt

) H .y/� H .y0/ D t;

) y.t/ D H �1.H .y0/C t/:



300 I. Lasiecka and X. Wang

Similarly,

st C ˛s1� 1
˛ H.s

1
˛ / D 0 ) .s

1
˛ /t CH.s

1
˛ / D 0;

) s
1
˛ .t/ D H �1.H .s

1
˛

0 /C t/ D y.t C c/;

) s.t/ D y˛.t C c/;

with c D H .s
1
˛

0 / � H .y0/: ut
Proof (of Lemma 14.8) The above lemmas show that the energy is bounded by a
function s0.t/  y˛0.t/. It might contain a delay, but it makes no difference since
we are considering the asymptotic behavior.

To conclude the proof of Theorem 14.2, we adopt an iteration process to find a
sequence ˛k; k D 1; : : : ; mC 1 such that ˛0 < ˛1 < : : : < ˛m < 1 D ˛mC1 and the
corresponding controlling function, sk.t/  y˛k .t/.

Under Assumption (B)(1)–(2), we have

c.˛0; t/ D
Z t

0

g1�˛0 .t � s/f 2.t; s/ds

� 2E.0/

Z t

0

g1�˛0 .t � s/ds D 2E.0/

Z t

0

g1�˛0 .s/ds

� 2E.0/

Z 1

0

y1�˛0 .t/dt < 1:

This is the critical estimate to initialize the second part of Lemma 14.4. Then
by Lemma 14.6, E.t/ is driven by a function s.t/ which satisfies the differential
equation

st C ˛0s
1� 1

˛0 H.s
1
˛0 / D 0:

Thus Lemma 14.7 implies

E.t/ � s.t/ � Cy˛0.t/:

So we have the first improvement on our energy estimate. Getting the optimal decay
E.t/ � Cy.t/ is equivalent to say

st C ˛0s
1� 1

˛l H.s
1
˛l / D 0 (14.44)

with

˛l D 1;
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or to have
Z t

0

g1�˛l .t � s/f 2.t; s/ds < 1; (14.45)

with ˛l D 1, since (14.45) implies (14.44).
This can be done in finitely many steps. First we expect to pick ˛1 so that ˛0 <

˛1 � 1 and

c.˛1; t/ D
Z t

0

g1�˛1 .t � s/f 2.t; s/dt < 1:

Since f 2.t; s/ � E.t/CE.s/ � 2E.s/, it suffices to have
R t
0
y1�˛1 .t/E.s/dt < 1,

or to have
R t
0
y1�˛1 .t/y˛0 .s/dt < 1. Now Proposition 14.2 takes over and the

generated finite sequence Ik.t/ which bound c.˛k; t/ all the way until ˛m D 1. That
completes the proof.

The iteration will generate sequence ˛1 D 2˛0; ˛2 D 3˛0; ˛m D .mC 1/˛0 until
we have ˛m D .m C 1/˛0 > 1 for some m. Since ˛0 > 0, such a finite m exists,
thus we can reach the optimality by letting ˛m D 1 in m steps. ut
Corollary 14.1 Assume that H.s/ � jsjp�1s; p 2 Œ1; 2/ and consider Examples
given in Sect. 14.2. Then there exist positive constant c D c.E.T // , c1 D c1.E.T //

such that

E.t/ � s.t/

where s.t/ satisfies the following nonlinear ODE with some T0 > 0

st .t/C cH.c1s.t// D 0; t > T0; s.0/ D E.0/: (14.46)

The above result recovers optimal range of the parameter p 2 Œ1; 2/ for the decay
rates corresponding to the algebraic decay rates of relaxation kernels.

Acknowledgements Research of I. Lasiecka and X. Wang partially supported by DMS Grant
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Chapter 15
Inverse Problem for a Linearized
Jordan–Moore–Gibson–Thompson Equation

Shitao Liu and Roberto Triggiani

In memory of Alfredo Lorenzi: scholar, collaborator, friend

Abstract We consider an inverse problem for the linearized Jordan–Moore–
Gibson–Thompson equation, which is a third-order (in time) PDE in the original
unknown u that arises in nonlinear acoustic waves modeling high-intensity ultra-
sound. Both canonical recovery problems are investigated: (i) uniqueness and
(ii) stability, by use of just one boundary measurement. Our approach relies on
the dynamical decomposition of the Jordan–Moore–Gibson–Thompson equation
given in Marchand et al. (Math. Methods Appl. Sci. 35, 1896–1929, 2012), which
identified 3 distinct models in the new variable z. By using now z-model ]3,
we weaken by two units the regularity requirements on the data of the original
u-dynamics over our prior effort Liu and Triggiani (J. Inverse Ill-Posed Probl. 21,
825–869, 2013), which instead employed z-model ]1.

15.1 Physical Motivation of the Model

Classical models of nonlinear acoustics are the Kuznetsov’s equation [15, 21],
the Westervelt equation [14, 15, 17], and the Kokhlov–Zabolotskaya–Kuznetsov
(KZK) equation. Nonlinear acoustic wave propagation encompasses a wide range
of applications for medical and industrial use, such as high-intensity focused
ultrasound (HIFU) in lithotripsy, thermotherepy, ultrasound cleaning, sonochem-
istry, etc. The aforementioned mathematical models are second order in time
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and characterized by the presence of a viscoelastic damping term. These models
incorporate the classical Fourier Law for the heat flux. As is well known, this
law leads to the paradox of infinite speed of propagation of the solutions, which
may not be acceptable in several applications. Accordingly, to avoid this pathology,
several other constitutive relations for the heat flux have been proposed within the
derivation of the corresponding nonlinear acoustic model [12, 13]. Among these
is the Maxwell–Cattaneo Law, which has recently resurfaced in the modeling of
several physical phenomena. In the present context of nonlinear acoustic waves
modeling high-intensity ultrasound, replacement of the Fourier law by the Maxwell–
Cattaneo’s law yields a third order (in time) nonlinear equation, which is referred to
as the Jordan–Moore–Gibson–Thompson equation [12,13]. Its linearized version is
reported below.

Mathematical Model of the Linearized J–M–G–T Equation Let ˝ be an open
bounded domain in R

n, n � 2, with smooth boundary � (subject to further
assumptions to be specified below). The linearized third-order Jordan–Moore–
Gibson–Thompson PDE-equation—which arises in high-intensity ultrasound—is as
follows:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

�uttt C ˛.x/utt � c2�u � b�ut D 0 in Q D ˝ � Œ0; T � (15.1a)

u. � ; T
2
/ D u0; ut . � ; T

2
/ D u1; utt. � ; T

2
/ D u2 in ˝ (15.1b)

either
@u

@�
j˙ D 0 in ˙ D � � Œ0; T � (15.1c)

or else uj˙ D 0 in ˙ D � � Œ0; T �: (15.1d)

Here u.x; t/ is the velocity potential of the acoustic phenomenon; c (positive
constant) is the speed of sound; � is a positive constant accounting for relaxation;
b D ı C �c2, where ı is the diffusivity of sound, is a positive constant. Henceforth,
without further mention, we normalize � and set � D 1. Instead, the positive
coefficient ˛.x/ is allowed to depend on the space variable x 2 ˝ .

Mathematical Review A mathematical analysis of the u-problem (15.1a-b-c)
or (15.1a-b-d) was recently given in [16], in fact, for the fully nonlinear model,
by use of energy methods; and in [48] by use of a semi-group approach, where
all coefficients are constant. These references investigate the following preliminary
issues: well-posedness in natural function spaces, in particular on the space of finite
energy; asymptotic behavior; and, in the case of constant coefficients, a structural
decomposition as well as spectral analysis of the basic semi-group generator, with
sharp decay rate in terms of the data.

Goal of the Present Paper With the foundational issues being settled, in the
present paper we seek to investigate an inverse problem. This will amount to
the recovery (existence of recovery and stability of recovery) of the coefficient

.x/ D ˛.x/� c2

b
of both physical and mathematical relevance. To this end, we shall
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employ only one suitable boundary measurement, following our first effort [47]. In
addition, in the present paper, we shall seek optimal (minimal) assumptions on the
initial data. Indeed, our present requirements on the data weaken by two units those
imposed in [47]. This will be achieved by employing z-model ]3 in (15.28), (15.29),
rather than z-model ]1 in (15.25a-d), as anticipated in [47, Remark 5.1, p. 850]. See
however Theorem 15.5 below.

Remark 15.1 In model (15.1a-d) we regard t D T
2

as initial time. This is not
essential, because the change of independent variable t ! t � T

2
transforms t D T

2

to t D 0. However, this present choice is convenient in order to apply the Carleman
estimates established in [35].

Basic Assumption on the Coefficient ˛.x/ to be Identified In reference [48]
the coefficient ˛.x/ was assumed to be a constant ˛.x/ � const > c2

b
. This

assumption, or even just ˛.x/ � const, is however not needed in order to claim
semigroup-wellposedness and related regularity results as stated in [48]. The full
assumption ˛.x/ � const > c2

b
was only needed in carrying out the analysis of

(sharp) exponential decay of said semigroup, explicitly in terms of the coefficients
f˛; c; bg. In this paper the coefficient ˛.x/ is unknown and is the object of our
proposed inverse problem. Accordingly, we shall need to make throughout on ˛.x/
the following assumption (to be explained in Remark 15.2 below):

8̂
<
:̂
˛.�/ is a multiplier D.A

m
2 / ! D.A

m
2 /; or

˛ 2 M.D.A m
2 / ! D.A

m
2 //; [49]; m >

dim˝

2
:

(15.2)

Here, the operator A is .��/ with either Neumann boundary condition (B.C.)
or else with Dirichlet B.C. in (15.1a-d). Accordingly, condition (15.2) can be
reformulated as follows:8<

:
˛ 2 M.Hm.˝/ ! Hm.˝//; m >

dim˝

2
;

plus appropriate boundary compatibility conditions.
(15.3)

Explicit conditions of this type were already encountered and exploited in [46] and
the authors’ paper on which they are based such as [44, 45]. Regarding [46] we
may quote the following spots: Remark 5.5, Eq. (5.69b); and above all Eq. (5.136)
which is precisely condition (15.2) in the case of Dirichlet B.C. for the operator
A . More specifically, in the aforementioned case where A includes Dirichlet B.C.,
then boundary compatibility conditions to associate to (15.3) are the following:

@˛

@�

ˇ̌
ˇ̌
�

D 0 for dim˝ D 2I and in addition
@.�˛/

@�

ˇ̌
ˇ̌
�

D 0 for dim˝ D 3: (15.4)

Remark 15.2 For bounded domain˝ of class C0;1, a most useful and enlightening
description of the spaces of multipliers M.Hm.˝/ ! Hm.˝// is available
[49, Sect. 6.3.3, p. 251]. In particular, we invoke [49, Theorem 3, p. 252] in our
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present context of Eq. (15.3), with the following parameters/notation: p D 2,
pm D 2m > dim˝ (a condition a-fortiori satisfied by assumption (15.2)), l D m,
W m
2 .˝/ (defined in [49, p. 8]), so that W m

2 .˝/ D Hm.˝/ in our notation. We thus
obtain that the space of multipliersM.Hm.˝/ ! Hm.˝// in (15.3) coincides with
the space W m

2 .˝/ D Hm.˝/:

M.Hm.˝/ ! Hm.˝// � Hm.˝/; 2m > dim˝: (15.5a)

Thus, assumption ˛ 2 M.Hm.˝/ ! Hm.˝// in (15.3) becomes now checkable in
our present setting and then implies by (15.5a) that

˛ 2 Hm.˝/; moreover that ˛ 2 C.˝/ (15.5b)

by the usual embedding. Furthermore, a sufficient checkable condition for (15.3) to
hold true is

˛ 2 W m;1.˝/; m >
dim˝

2
: (15.5c)

Here below we shall focus mostly on the case of Neumann B.C. in (15.1a-
c), though relevant technicalities of the case of Dirichlet B.C. will also be noted
explicitly. Accordingly, in our treatment we write simply A to indicate the
Neumann case as in (15.17) below.

Main Results: Neumann B.C. (15.1a-b-c)

Theorem 15.1 (Uniqueness of Inverse Problem for u-system (15.1a-b-c) with
Neumann B.C.) Assume the preliminary geometric and analytic assumptions (A.1)
and (A.2) stated in Sect. 15.3 below and given in terms of a scalar function d.x/.
Let

T > T0 � 2
r

max
x2˝

d.x/: (15.6)

With reference to the u-problem (15.1a-c) with Neumann B.C., assume that the
unknown term ˛. � / satisfies assumption (15.2), equivalently assumption (15.3),
which is made checkable and explicit in Remark 15.2. Furthermore, let the initial
data possess the following regularity properties

u0; u1; u2 2 D.A
mC2
2 /�D.A mC1

2 /�D.A m
2 / � HmC2.˝/�HmC1.˝/�Hm.˝/;

m >
dim˝

2
; (15.7)

with m non-necessarily integer, and in addition satisfy the following condition

c2

b
u0 C u1 D 0; ju2.x/j D

ˇ̌
ˇ̌utt

�
x;
T

2

�ˇ̌
ˇ̌ � r0 > 0; x 2 ˝ (15.8)
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for some r0 > 0. Finally, if the solution to problem (15.1a-c) satisfies the additional
homogeneous boundary trace condition

c2

b
u.x; t/C ut .x; t/ D 0; x 2 �1; t 2 Œ0; T �; �1 D � n �0 (15.9)

over the observed part �1 (specified in assumption (A.1) of Sect. 15.3) of the
boundary � and over the time interval T as in (15.6), then in fact


.x/ D ˛.x/ � c2

b
� 0; i.e. ˛.x/ � c2

b
; in x 2 ˝: (15.10)

Remark 15.3 The regularity assumptions (15.2) and (15.7) imply that the solution
of the u-problem (15.1a-c) (with � � 1) has the regularity properties u; ut ; utt 2
L1.Q/ which is needed in the proof of Theorem 15.1. More precisely, (15.2)
and (15.7) imply (see Sect. 15.2)

fu; ut ; uttg 2 C.Œ0; T �IHmC2.˝/ �HmC1.˝/�Hm.˝//; (15.11)

continuously, where then the following embedding holds: Hm.˝/ ,! C.˝/ �
L1.˝/ since m > dim˝

2
.

Next, we provide the stability result of recovering 
.�/. This appears to require
an additional (though, in the context, reasonable) assumption: the coefficient ˛.�/,
equivalently 
.�/, is a-priori in a ball of the space Hm.˝/ of fixed but arbitrary
radiusR:

k
.�/kHm.˝/ � R; m >
dim˝

2
; hence 
 .and ˛/ in C.˝/: (15.12)

The reason will be noted below in Remark 15.4.

Theorem 15.2 (Stability of Inverse Problem for u-system (15.1a-c) with
Neumann B.C.) With reference to the u-problem (15.1a-c), assume proper-
ties (15.2), (15.7), (15.8), (15.12) and let T > T0. Then, there exists a constant
C depending on the problem data and on the constant R in (15.12) but not on the
unknown coefficient ˛.x/ (or 
.x/ D ˛.x/ � c2

b
), such that with �1 D � n �0, �0

as in (A.1) of Sect. 15.3, we have

k
kL2.˝/ � C

 ����
�
c2

b
u C ut

�
t

����
L2.�1�Œ0;T �/

C
����
�
c2

b
u C ut

�
tt

����
L2.�1�Œ0;T �/

!
:

(15.13)

Main Results: Dirichlet B.C. (15.1a-b-d)

Theorem 15.3 (Uniqueness of Inverse Problem for u-system (15.1a-b-d) with
Dirichlet B.C.) Assume the same hypotheses of Theorem 15.1, except that:
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(a) (15.46b) replaces now (15.46a) in assumption (A.1); and (b) the additional
Dirichlet homogeneous boundary trace condition (15.9) is replaced now by its
Neumann counterpart

c2

b

@u

@�
.x; t/C @ut

@�
.x; t/ D 0; x 2 �1; t 2 Œ0; T �; �1 D � n �0: (15.14)

Then, the same uniqueness conclusion (15.10) holds true.

Variations of the proof of Theorem 15.3 over that of Theorem 15.1 are noted in
Remark 15.8 at the end of Sect. 15.5.

Theorem 15.4 (Stability of Inverse Problem for u-system (15.1a-b-d) with
Dirichlet B.C.) Assume the same hypotheses of Theorem 15.2 except that (15.46b)
replaces now (15.46a) in assumption (A.1). Then the following double estimate
holds true with �1 D � n �0:

k
kH�
0 .˝/

� C

���� @@�
�
c2

b
u C ut

�
t

����
H�.0;T IL2.�1//

(15.15a)

for all 
 2 H�
0 .˝/, 0 < � � 1, � ¤ 1

2
, where the constant C depends on the

problem data and on the constant R in (15.12) but not on the unknown coefficient
˛.x/ (or 
.x/ D ˛.x/ � c2

b
);

c

���� @@�
�
c2

b
u C ut

�
t

����
H�.0;T IL2.�1//

� k
kH� .˝/ (15.15b)

for all 
 2 H�.˝/, 0 � � � 1, and all T > 0, now with m � 2.

Variations of the proof of Theorem 15.4 over that of Theorem 15.2 are noted in
Remark 15.9 at the end of Sect. 15.6.

Remark 15.4 (Orientation on the need of assumption (15.12)) Following the
change of variable and decomposition of the original Jordan-Moore-Gibson-
Thompson u-equation (15.1a), introduced in a critical way in [48], we shall reduce
the original inverse problem for such u-problem (15.1a) to an inverse problem for a
second-order hyperbolic equation in the new z-variable, z D c2

b
u C ut , see (15.23).

In the latter z-equation, however—unlike a ‘typical’ inverse problem—the RHS of
the equation (whether in Model ]1, Eq. (15.24); or Model ]2, Eq. (15.26); or Model
]3, Eq. (15.28)) depends on utt.
/, ut .
/, u.
/, respectively, rather than being
independent terms with respect to z. Thus, in particular, these RHS terms in the z-
equation and the initial conditions (I.C.) are linked (rather than being independent
as in a ‘typical’ inverse problem). This then complicates the inverse problem as
the map from the coefficient 
 to the solution of the z-problem is no longer linear
(see Sects. 15.5 and 15.6). This creates additional difficulties, particularly in the
compactness-uniqueness argument of Proposition 15.1, steps (iv) and (v), needed
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for the stability Theorem 15.2. It is to obtain (15.129), (15.130) on z.
n/ � z.
0/
and (15.134), (15.135) on zt .
n/� zt .
0/ that assumption (15.12) is invoked in step
(iv), Eq. (15.124), to obtain 
0 2 C.˝/, hence (15.127).

Literature To handle such z-problem, with either Neumann B.C. or Dirichlet B.C.,
we shall adapt and modify the techniques for both uniqueness and stability, just
under one suitable boundary measurement, that were employed in the book chapter
[46], while overcoming additional challenges for the stability result by means of the
additional assumption (15.12), as noted in Remark 15.4, by means also multiplier
theory [49]. These, in turn, were an improvement of [40] (Neumann) and [44]
(Dirichlet), where the object was the recovery (both uniqueness and stability) of
the damping coefficient of the equation. Instead, in references [39, 45], the aim was
to recover, in one shot, both damping and potential coefficients, again by use of just
one boundary measurement. For recovery of the coefficients from strongly coupled
hyperbolic and Schrödinger systems, we refer to Liu and Triggiani [38, 41–43].

All of the aforementioned references are critically based on a few basic technical
points: (1) use of the sharp Carleman estimates as in [35]; (2) optimal/sharp interior
and boundary regularity theory of second-order hyperbolic equations of Dirichlet
or Neumann type [22–24, 26–28, 54]; (3) use of multiplier theory [49]; (4) a
suitable post-Carleman estimate device introduced in [9, Theorem 8.2.2, p. 231]
(not available in the first edition [8]); (5) sharp controllability inequalities for either
the Neumann or the Dirichlet problem from [35], using also critically the boundary
trace result of [32] (generalizing [5, 25, 56, 57], in the canonical case).

There are various forms of ‘Carleman estimates’. They were introduced in [4]
for a 2-variable problem. The monographs [6, 7, 55] consider Carleman estimates
for compactly supported solutions. These are inadequate for control or inverse
problems, where a key role is played precisely by the traces of the solutions on
the boundary. Here we use the ones in [35] which, unlike prior literature, include
explicit boundary terms and apply to H1;1-solutions with suitable L2-boundary
traces, rather thanH2;2-solutions as in past literature. The use of Carleman estimates
for inverse problems was introduced in the pioneering work [3], to be followed by
[18], [20]. Pointwise Carleman estimates for unique continuation over-determined
problems have been studied intensely by the Novosibirski school, see [36]. The
pointwise Carleman estimates in [35] were inspired by Lavrentev et al. [36] in
the study primarily of the Neumann-control problems. With motivation coming
from control theory (continuous observability inequalities, stabilization inequalities,
global unique continuation for over-determined problems), Carleman estimates for
non-compactly supported solutions were introduced in [51–53] (with lower order
terms) in an abstract evolution setting, which stimulated the ad-hoc studies in [30]
(still with lower order terms) for second-order hyperbolic equations; [31] for first-
order hyperbolic equations, [29] for shells, etc.

Additional references for inverse problems based on Carleman estimates include
[9, 10] (Neumann), [2] (Dirichlet), [11] (Dirichlet), [59] (Dirichlet), the recent
review paper [19] and the references therein. Carleman estimates generalizing [35]
to Riemannian wave equations are given in [58], extending also the treatment of
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[33, 34] for control theory problems. For numerical treatments of inverse problems
we refer to the established text [20] as well as the review paper [19] and the recent
book [1].

A Generalization of the Global Uniqueness Result The following more general
global uniqueness result of any damping coefficient (˛.�/, or 
.�/; not only zero as
in Theorems 15.1 and 15.3) can be given. It starts with solutions u.
1/ and u.
2/,
corresponding to two damping coefficients 
1.�/ and 
2.�/, of problem (15.1a-d),
possessing the same I.C. fu0; u1; u2g, the same B.C. (either Dirichlet or Neumann,
respectively) and enjoying the same inverse problems data (either Neumann or
Dirichlet boundary traces on �1 � Œ0; T �, respectively). It then concludes that, in
fact, 
1.x/ � 
2.x/ in ˝ . The proof is a minor modification of the proof of
Theorem 15.1 or Theorem 15.3 (more precisely, of Theorem 15.3 or Theorem 1.6 in
[47]). This is so since it uses the counterpart of model ]1. Accordingly, it requires
initial data fu0; u1; u2g more regular by two units over the regularity (15.7) (that is,
it requires the same regularity as in [47, Eq. (1.7)]) and also the coefficients 
1.�/
and 
2.�/ will be sought in a class smoother by two units (that is, in the same class
of [47, Eq. (1.9)]). The authors wish to thank a referee for suggesting extending the
investigation to include the problem of Theorem 15.5 below.

Theorem 15.5 (Uniqueness of inverse problem for the u-system (15.1a-d) with
� � 1) Assume the preliminary geometric and analytic assumptions (A.1) in the
form (15.46a) or (15.46b) respectively, and (A.2) stated in Sect. 15.3. Let T be as
in (15.6). Assume that the damping coefficients ˛1.�/ and ˛2.�/ (equivalently 
i D
˛i � c2

b
, i D 1; 2) be in the class Hm.˝/ however now for m > dim˝

2
C 2. Let

u.
1/, u.
2/ be the corresponding solutions with same I.C.

u.
i /j T
2

D u0; ut .
i /j T
2

D u1; utt.
i /j T
2

D u2; i D 1; 2;

and satisfying (15.8) and the regularity in (15.7) however now withm > dim˝
2

C 2.
Let u.
1/, u.
2/ satisfy the same B.C.

@u.
1/

@�
j˙ D @u.
2/

@�
j˙ .resp. u.
1/j˙ D u.
2/j˙/

as well as the same corresponding additional inverse theory boundary conditions

c2

b
u.
1/C ut .
1/ D c2

b
u.
2/C ut .
2/ on �1 � Œ0; T �I

.resp.
c2

b

@u.
1/

@�
C @ut .
1/

@�
D c2

b

@u.
2/

@�
C @ut .
2/

@�
on �1 � Œ0; T �/:
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Then in fact


1.x/ � 
2.x/ in ˝:

The proof is given in Sect. 15.7.

15.2 First Step in the Proof: Reduction to a More Convenient
z-problem by a Change of Variable: Well-Posedness

Problem (15.1a-c) (with � D 1) can be embedded into the following abstract system
on the Hilbert space H :

uttt C ˛.x/utt C c2A u C bA ut D 0; on H (15.16)

along with the initial condition (I.C.) (15.1a-b), where A is a non-negative
(unbounded) self-adjoint operator on H . Namely,

H D L2.˝/; A D ��; D.A / D ff 2 H2.˝/ W @f
@�

j� D 0g: (15.17)

Then the u-problem (15.16) can be rewritten as a first-order problem in the variables
fu; ut ; uttg as

d

dt

2
4 u

ut
utt

3
5 D

2
4 0 I 0

0 0 I

�c2A �bA �˛.�/

3
5
2
4 u

ut
utt

3
5 D G˛

2
4 u

ut
utt

3
5 : (15.18)

Semigroup Well-Posedness and Regularity of Problem (15.18)

Theorem 15.6 Assume (15.2) on ˛.�/. Then the operator G˛ in (15.18) generates

an s.c. group eG˛t on the space Sm � D.A
mC2
2 / � D.A

mC1
2 / � D.A

m
2 /, m D

0; 1; 2 : : :. In particular, we have

fu0; u1; u2g 2 D.A
mC2
2 / � D.A

mC1
2 / � D.A

m
2 /

) fu; ut ; uttg D eG˛t fu0; u1; u2g 2 C.Œ0; T �ID.A mC2
2 / � D.A

mC1
2 / � D.A

m
2 //

) fut ; utt; utttg D G˛e
G˛t fu0; u1; u2g 2

C.Œ0; T �ID.A mC1
2 / � D.A

m
2 / � D.A

m�1
2 //

) futt; uttt; uttttg D G2
˛e
G˛t fu0; u1; u2g 2

C.Œ0; T �ID.A m
2 / � D.A

m�1
2 / � D.A

m�2
2 //

(15.19)
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continuously. As a matter of fact, the above relationships (15.19) hold true also
for m real positive. Henceforth, accordingly, m may be taken to be a real positive
number, in order to get sharp/optimal results.

Proof Step 1. Assume first that ˛.x/ � const. Then, Theorem 15.6 (for m D
0; 1) is given in [48, Theorems 2.1 and 2.2]: the operatorG˛ in (15.18) generates
a s.c. group in either of the spaces (recalling also the notation of [48])

S0 � U3 D D.A / � D.A
1
2 / � H I S1 � U4 D D.A

3
2 / � D.A / � D.A

1
2 /

(15.20)

(and, in fact, also on the spacesU1 � D.A
1
2 /�D.A

1
2 /�H andU2 � D.A /�

D.A / � D.A
1
2 /, see [48, Eqs. (2.30a) and (2.33a)]).

Step 2. The operator G0 obtained from G˛ by setting ˛.x/ � 0 satisfies Step 1.
Next, the operator

P˛ D
2
40 0 0

0 0 0

0 0 ˛.�/

3
5 is a bounded perturbation Sm ! Sm (15.21)

under the multiplier assumption (15.2) on ˛.�/, so that the first statement
in (15.19) holds true, from which the other two follow readily. ut
It is also convenient to rewrite (15.16) as follows

.ut C ˛.�/u/tt C bA

�
c2

b
u C ut

�
D 0 (15.22)

which then suggests–as in [48]–to introduce a new variable z:

z D c2

b
u C ut D .˛u C ut /� 
.�/uI zt D c2

b
ut C uttI 
.�/ D ˛.�/� c2

b
: (15.23)

By means of (15.23)—to be used in (15.22)—the original u-problem (15.16) is
transformed into the following z-problems. Three models can be extracted.

Model ]1:

ztt D �bA z � 
.�/utt.
/ (15.24)
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where u.
/ intends to emphasize that the solution u depends on the coefficient 
 .
The PDE-version is then, recalling (15.1a-c):

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

ztt D b�z � 
.x/utt.
/ in ˝ � Œ0; T � (15.25a)

z. � ; T
2
/ D c2

b
u0 C u1 in ˝ (15.25b)

zt . � ; T
2
/ D c2

b
u1 C u2 in ˝ (15.25c)

@z

@�
j˙ D 0 in ˙ D � � Œ0; T �: (15.25d)

The homogeneous Neumann boundary condition (B.C.) in (15.25a-d) follows
from the original B.C. for u in (15.1a-d), via (15.23) on z.

Model ]2 (Use utt D zt � c2

b
ut from (15.23) in (15.24))

ztt D �bA z � 
.�/zt C 
.�/c
2

b
ut .
/ (15.26)

whose PDE-version is then

(
ztt D b�z � 
.�/zt C 
.�/ c2

b
ut .
/ in ˝ � Œ0; T �

along with Eqs. (15.25b-c-d):
(15.27)

Model ]3 (Use ut D z � c2

b
u from (15.23) in (15.26))

ztt D �bA z � 
.�/zt C 
.�/c
2

b
z � 
.�/

�
c2

b

�2
u.
/ (15.28)

whose PDE-version is then

(
ztt D b�z � 
.x/zt C 
.x/ c

2

b
z � 
.x/. c2

b
/2u.
/ in ˝ � Œ0; T �

along with Eq. (15.25b-c-d):
(15.29)

Our analysis and corresponding results will depend on the model ]1, ]2, ]3 used.
In [47], we have considered the inverse problem corresponding to model ]1. In
this paper, however, following [47, Remark 5.1, p. 851], we shall concentrate on
model ]3. Model ]3, Eq. (15.29) has the advantage over Model ]1, Eq. (15.25a),
that the ‘forcing term’ involves u.
/ rather than utt.
/. Thus, the corresponding
inverse theory results of the present paper lowers the regularity requirements on the

data of the original u-dynamics by two space units: m > dim ˝
2

now as in (15.7),

rather than m > dim ˝
2

C 2 as in [47, (1.7)]. The presence of the terms z and zt
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in (15.29) are ‘benign’ with respect to the Carleman estimate of Sect. 15.4. as noted
in Remark 15.5 below.

Remark 15.5 We note that in passing from (15.25a) to (15.27) to (15.29), new
2-terms such as zt and z are introduced, while the RHS term 
.�/utt.
/ reduces its
time derivatives to 
.�/ut .
/ and 
.�/u.
/. From the point of view of the Carleman
estimates to be employed below, terms such as z, zt are accommodated and handled
at no extra effort. Then, model ]3 invoking only u.
/ would appear at least at the
outset, to be the one imposing minimal requirements of regularity of the original
u-dynamics (15.1a-d) [47, Remark 5.1, p. 851].

At any rate the above change of variable u ! z has led to a second-order (in time)
equation, indeed the wave equation problem (15.29). An important feature thereof is
that: the ‘forcing term’– say �
.x/. c2

b
/2u.
/ in (15.29); or 
.x/ c

2

b
ut .
/ in (15.27);

or �
.x/utt.
/ in (2.10a) is not independent on the z-problem, in particular on its
I.C., but actually forcing terms and z, hence I.C. are linked. This then implies that
the solution of the z-problems depends nonlinearly on 
 , see Eq. (15.76e). This fact
is a complication in the present inverse problem study, with respect to the usual
case of ‘linear inverse problems’, where forcing terms are chosen freely and I.C. are
independent, in fact the latter are homogeneous (zero).

In Sect. 15.6, we shall invoke (part of) the following result.

Theorem 15.7 Let ˛n.�/, n D 1; 2; : : : be a sequence of coefficients for prob-
lem (15.16) or (15.18) satisfying assumption (15.2) as well as (15.12). Furthermore,
assume that

˛n ! ˛0 in L2.˝/: (15.30)

Let the I.C. satisfy (recall (15.20))

Œu0; u1; u2� 2 U3 � S0 D D.A / � D.A
1
2 / � H (15.31)

(case m D 0 implied by (15.7)). Then, with reference to (15.18), the s.c. groups
eG˛n t and eG˛0 t , guaranteed on S0 � U3 by Theorem 15.6, satisfy:

eG˛n t

2
4u0

u1
u2

3
5 ! eG˛0 t

2
4u0

u1
u2

3
5 ;

2
4u0

u1
u2

3
5 2 U3 � S0 (15.32)

uniformly in t in bounded intervals; explicitly

kfu.t I˛n/; ut .t I˛n/; utt.t I˛n/g � fu.t I˛0/; ut .t I˛0/; utt.t I˛0/gkU3 ! 0;

(15.33a)
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in particular

ku.t I˛n/ � u.t I˛0/kD.A / ! 0; kut .t I˛n/ � ut .t I˛0/k
D.A

1
2 /

! 0 (15.33b)

uniformly in t in bounded intervals.

Proof We shall invoke the approximation Theorem as e.g. in [50, Theorem 4.5, p.
88]. To this end, recalling (15.18) and (15.21) we write by (15.30)

G˛n D G0CP˛n I G˛0 D G0CP0I on state space U3 � S0 D D.A /�D.A
1
2 /�H W

kP˛nxkS0 D k˛nx3kH DL2.˝/ � k˛nkL1.˝/kx3kH � pkxkS0 (15.34)

recalling (15.21) and assumption (15.12): k˛nkHm.˝/ � R, 2m > dim˝ , so that
Hm.˝/ ,! C.˝/ and k˛nkC.˝/ � Ck˛nkHm.˝/ � CR. If keG0tkL .U3/ � M0e

w0t ,
then

keG˛n tkL .U3/ � M0e
.w0CM0p/t ; kP˛nkL .U3/ � p; (15.35)

(uniformly in n) by [50, Theorem 1.1, p. 76]. Finally we apply [50, Theorem 4.5,
p. 88] with D there as D D Sm, so that D is dense, then by the definition (15.21)
in the state space U3 � S0 D D.A / � D.A

1
2 / � H as required. Thus, if x D

Œx1; x2; x3� 2 D, then we estimate and obtain by (15.30)

kG˛nx �G˛0xkU3 D kP˛nx � P˛0xkU3 D k.˛n � ˛0/x3kH DL2.˝/
� Ck˛n � ˛0kL2.˝/kx3kL1.˝/ ! 0 (15.36)

since x3 2 D.A
m
2 / ,! C.˝/ for m as in (15.2). The other assumptions in

[50, Theorem 4.5, p. 88] are satisfied and then conclusion (15.32) follows, of
which (15.33b) is a restatement via (15.18). ut
Theorem 15.8 Assume hypotheses (15.2) and (15.12). Then on the space Sm D
D.A

mC2
2 / � D.A

mC1
2 / � D.A

m
2 /, 2m > dim˝ , we have:

(a) the operator P˛n in (15.21) satisfies

kP˛nkL .Sm/ � R; uniformly in nI (15.37)

(b) consequently, the s.c. group on Sm generated by G˛n D G0 C P˛n satisfies for
some constantsM1, Qw1 > 0:

keG˛n tkL .Sm/ � M1e
Qw1t ; t � 0; uniformly in n: (15.38)



318 S. Liu and R. Triggiani

Equivalently, with reference to problem (15.18), 
n D ˛n � c2

b
,

kfu.t; 
n/; ut .t; 
n/; utt.t; 
n/gkSm � CT kfu0; u1; u2gkSm ; t 2 Œ0; T �I
(15.39)

in particular, since D.A
m
2 / � Hm.˝/ ,! C.˝/ under present assumption

2m > dim˝ ,

ku.�; 
n/kL1.Q/; kut .�; 
n/kL1.Q/; kutt.�; 
n/kL1.Q/ � CT;u0;u1;u2;R:

(15.40)

Proof (a) For x D fx1; x2; x3g 2 Sm, we return to (15.21) and estimate

kP˛nxkSm D k˛nx3kD.A m
2 /

� k˛nkM.D.A m
2 /!D.A

m
2 //

kx3kD.A m
2 /

(15.41)

D k˛nkHm.˝/kx3kD.A m
2 /

� Rkx3kD.A m
2 /

(15.42)

� RkxkSm; uniformly in n: (15.43)

In (15.41), we have invoked assumption (15.2) on ˛n, and in going to (15.42)
we have invoked consequence (15.5a), from which assumption (15.12)
yields (15.43). Thus (15.43) is established.

(b) As in the proof of Theorem 15.7, however now on the space Sm rather than
the space S0, if keG0tkL .Sm/ � M1e

w1t , then [50, Theorem 1.1, p. 76] yields
via (15.37)

keG˛n tkL .Sm/ � M1e
.w1CM1R/t ; t � 0 (15.44)

and (15.38) is established. Returning to problem (15.18), we obtain

������

2
4 u.t; 
n/

ut .t; 
n/
utt.t; 
n/

3
5
������
Sm

D
������G˛nt

2
4u0

u1
u2

3
5
������
Sm

� M1e
Qw1t
������

2
4u0

u1
u2

3
5
������
Sm

(15.45)

which yields then the desired uniform bound (15.39). ut

15.3 General Setting: Main Geometrical Assumptions

Following [56, Sect. 5], [25, 35], throughout this paper, we make the following
assumptions:

(A.1) Given the triple f˝;�0; �1g, @˝ D �0 [ �1, there exists a strictly convex
(real-valued) non-negative function d W ˝ ! R

C, of class C3.˝/, such that,
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if we introduce the (conservative) vector field h.x/ D Œh1.x/; : : : ; hn.x/� �
rd.x/, x 2 ˝ , then the following two properties hold true:

8̂
<̂
ˆ̂:

@d

@�
j�0 D rd � � D h � � D 0 on �0I in the Neumann case (15.46a)

@d

@�
j�0 D rd � � D h � � � 0 on �0I in the Dirichlet caseI (15.46b)

(ii) the (symmetric) Hessian matrix Hd of d.x/ [i.e., the Jacobian matrix Jh of
h.x/] is strictly positive definite on˝: there exists a constant � > 0 such that
for all x 2 ˝:

Hd .x/ D Jh.x/ D

2
64
dx1x1 � � � dx1xn
:::

:::

dxnx1 � � � dxnxn

3
75 D

2
66664

@h1

@x1
� � � @h1

@xn
:::

:::
@hn

@x1
� � � @hn

@xn

3
77775 � �I I

(15.47)

(A.2) d.x/ has no critical point on ˝:

inf
x2˝ jh.x/j D inf

x2˝ jrd.x/j D s > 0: (15.48)

Remark 15.6 Assumption .A:1/ D(15.46a) is due to the Neumann B.C. of the
hyperbolic problem to follow. It was introduced in [Tr.1, Sect. 5]. For the corre-
sponding Dirichlet problem the condition h � � D 0 in �0 in (15.46a) can be
relaxed to h � � � 0 in �0 as in (15.46b). Assumption (A.2) is needed for the
validity of the pointwise Carleman estimate in Sect. 15.4 below (it will imply that
the constant ˇ be positive, ˇ > 0, in estimate (15.56)–(15.57) below, [35, (1.1.15b),
(4.19)]). Assumption (A.2) can, in effect, be entirely dispensed with [35, Sect. 10]
by use of two vector fields. For sake of keeping the exposition simpler, we shall not
exploit this substantial generalization. Assumptions (A.1) and (A.2) hold true for
large classes of triples f˝;�0; �1g. One canonical case is that �0 be flat: here then
we can take d.x/ D jx � x0j2, with x0 collocated on the hyperplane containing
�0 and outside ˝ . Then h.x/ D rd.x/ D 2.x � x0/ is radial. Another case is
where �0 is either convex or concave and subtended by a common point; more
precisely see [35, Theorem A.4.1]; in which case, the corresponding required d. � /
can also be explicitly constructed. Other classes are given in [35]. See illustrative
configurations in the appendix of the present paper.
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15.4 First Basic Step of Proofs: A Carleman Estimate
and Continuous Observability/Regularities Inequalities
at the H 1 � L2-level [22, 35]

We recall from [35] a Carleman estimate and a continuous observability inequality
(COI), both at the H1 �L2-level, that play key roles in the proofs.

Pseudo-Convex Function. [35, p. 230] Having chosen, on the strength of
assumption (A.1), a strictly convex potential function d.x/ satisfying the prelim-
inary scaling condition min

x2˝
d.x/ D m > 0, we next introduce the pseudo-convex

function '.x; t/ W ˝ �R ! R
C of class C3 by setting for T > T0, as in (15.6), and

0 < a < b,

'.x; t/ D d.x/ � a

b

�
t � T

2

�2
I x 2 ˝; t 2 Œ0; T �I T 20 � 4max

x2˝
d.x/:

(15.49a)

By (15.49a), with T > T0, there exists ı > 0 such that for a suitable constant a < b

T 2 > 4max
x2˝

d.x/C 4ı; and thus
a

b
T 2 > 4max

x2˝
d.x/C 4ı: (15.49b)

Henceforth, let '.x; t/ be defined by (15.49a) with T and a chosen as above,
unless otherwise explicitly noted. Such function '.x; t/ has the following properties
[35, p. 230]:

(a) For the constant ı > 0 fixed in (15.49b), we have

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

'.x; 0/ � '.x; T / � max
x2˝

d.x/ � a

b

T 2

4
� �ı

uniformly inx 2 ˝I (15.50a)

'.x; t/ � '

�
x;
T

2

�
; for any t > 0 and any x 2 ˝: (15.50b)

(b) There are t0 and t1, with 0 < t0 <
T
2
< t1 < T , say, chosen symmetrically

around T
2

, such that

min
x2˝;t2Œt0;t1�

'.x; t/ � 	; where 0 < 	 < m D min
x2˝

d.x/; (15.51)

since '


x; T

2

� D d.x/ � m > 0, under present choice. Moreover, let Q.	/ be
the subset of ˝ � Œ0; T � � Q defined by [35, Eq. (1.1.19), p. 232]

Q.	/ D f.x; t/ W '.x; t/ � 	 > 0; x 2 ˝; 0 � t � T g: (15.52)
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The following important property of Q.	/ [35, Eq. (1.1.20), p. 232] will be
needed later in Sect. 15.5:

˝ � Œt0; t1� � Q.	/ � ˝ � Œ0; T �: (15.53)

Carleman Estimate at the H1 � L2-level. We next consider the following
general second-order hyperbolic equation

ytt ��y D F.y/C f .x; t/ in Q D ˝ � Œ0; T � (15.54a)

F.y/ D q1.x; t/y C q2.x; t/yt C q3.x; t/ � ry; f 2 L2.Q/ (15.54b)

q1; q2; jq3j 2 L1.Q/, so that

jF.y/j2 � CT Œy
2 C y2t C jryj2�; .x; t/ 2 Q: (15.54c)

The y-equation (15.54a) is at first considered without the imposition of
boundary conditions. We shall consider initially solutions y.x; t/ of (15.54a)
in the class

y 2 H2;2.Q/ � L2.0; T IH2.˝//\H2.0; T IL2.˝//: (15.55)

For these solutions the following Carleman estimate was established in [35,
Theorem 5.1, p. 255].

Theorem 15.9 Assume hypotheses (A.1) and (A.2) in Sect. 15.3. Let '.x; t/ be
defined by (15.49a) and f 2 L2.Q/ as in (15.54b).

(a) ([35, p. 255]) Let y be a solution of Eq. (15.54a) in the class (15.55). Then, the
following one-parameter family of estimates hold true, with � > 0 as in (15.47),
ˇ > 0 a suitable constant (ˇ is positive by virtue of (A.2), see Remark 15.6), for
all � > 0 sufficiently large, � > 0 small, and Ey.�/ defined in (15.59) below:

BTy j˙ C 2

Z T

0

Z
˝

e2�' jf j2dQ C C1;T e
2�	

Z T

0

Z
˝

y2dQ

� C1;�

Z
Q

e2�' Œy2t C jryj2�dQ

C C2;�

Z
Q.	/

e2�'y2dxdt � cT �3e�2�ıŒEy.0/C Ey.T /� (15.56)

C1;� D ��� � 2CT ; C2;� D 2�3ˇ C O.�2/� 2CT ; ˇ > 0: (15.57)
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Here ı > 0, 	 > 0 and 	 > �ı are the constants in (15.50a), (15.51), CT , cT
and C1;T are positive constants depending on T as well as d (but not on �). In
addition, the boundary terms BTy j˙ , ˙ D � � Œ0; T �, are given explicitly by

BTy j˙ D 2�

Z T

0

Z
�

e2�'


y2t � jryj2�h � �d� dt

C2�
Z T

0

Z
�

e2�'

"
2�2

 
jhj2 � 4c2

�
t � T

2

�2!

C�.� ��d � 2c/

#
y2h � �d� dt

C 8c�

Z T

0

Z
�

e2�'
�
t � T

2

�
yt
@y

@�
d� dt

C4�
Z T

0

Z
�

e2�' .h � ry/ @y
@�

d� dt

C 4�2
Z T

0

Z
�

e2�'

"
jhj2 � 4c2

�
t � T

2

�2
C �

2�

#
y
@y

@�
d� dt

(15.58)

where h.x/ D rd.x/, �.x/ D �d.x/� 2c � 1C k for 0 < k < 1 a constant.
Moreover, Q.	/ is the set defined in (15.52). The energy function Ey.t/ is
defined as

Ey.t/ D
Z
˝

Œy2.x; t/C y2t .x; t/C jry.x; t/j2�d˝: (15.59)

(b) ([35, Theorem 8.2, p. 266]) The validity of the Carleman estimate (15.56)–
(15.58) in (a) can be extended to the following class of finite energy solutions
of (15.54b)

8<
:
y 2 H1;1.Q/ D L2.0; T IH1.˝//\H1.0; T IL2.˝//I (15.60a)

yt 2 L2.0; T IL2.� //; @y
@�

2 L2.˙/ � L2.0; T IL2.� //: (15.60b)
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Neumann B.C.: Continuous Observability Inequality at the H1 � L2-level.
Consider the following Neumann problem, with F as in (15.54b):

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

ytt.x; t/ ��y.x; t/ D F.y/C f .x; t/ in Q D ˝ � Œ0; T �I (15.61a)

y

�
� ; T
2

�
D y0.x/I yt

�
� ; T
2

�
D y1.x/ in ˝I (15.61b)

@y

@�
.x; t/j˙ D 0 in ˙ D � � Œ0; T �: (15.61c)

Theorem 15.10 [35, Theorem 9.2, p. 269] Assume (A.1), (A.2) of Sect. 15.3. Let f ,
F satisfy (15.54b). Then, the following continuous observability inequality holds
true:

CT

�
ky0k2H1.˝/

C ky1k2L2.˝/
�

�
Z T

0

Z
�1

.y2 C y2t /d�1dt C kf k2
L2.Q/

; (15.62)

wherever the right-hand side is finite. Here T > T0, with T0 defined by (15.6), and
CT > 0 is a positive constant depending on T and �1 is defined by �1 D � n �0
with �0 in (15.46a).

For the COI with F � 0, we also refer to Lasiecka and Triggiani [25].
Dirichlet B.C.: Continuous Observability and Regularity Estimates at the

H1 �L2-level. Proceeding analogously, we obtain Theorem 15.11 below. Consider
the following problem

8̂
ˆ̂<
ˆ̂̂:

ytt.x; t/ D �y.x; t/C F.y/C f .x; t/ in Q D ˝ � Œ0; T �I (15.63a)

y

�
� ; T
2

�
D y0.x/I yt

�
� ; T
2

�
D y1.x/ in ˝I (15.63b)

y.x; t/j˙ D 0 in ˙ D � � Œ0; T �; (15.63c)

with initial conditions y0 2 H1
0 .˝/, y1 2 L2.˝/. F and f as in (15.54b). Then, its

solution satisfies

y 2 C.Œ0; T �IH1
0 .˝//; yt 2 C.Œ0; T �IL2.˝//; a-fortiori y 2 H1;1.Q/:

(15.64)

Theorem 15.11 (Counterpart of [35, Theorem. 9.2, p. 269], [22–24]) Assume
hypothesis (A.1), (A.2) of Sect. 15.3. For problem (15.63a-c), the following continu-
ous observability/regularity inequalities hold true:

cT

�
ky0k2H1

0 .˝/
C ky1k2L2.˝/

�
�
Z T

0

Z
�1

�
@y

@�

�2
d�1 dt C kf k2

L2.Q/
; T > T0

(15.65)
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Z T

0

Z
�1

�
@y

@�

�2
d�1 dt � CT

�
ky0k2H1

0 .˝/
C ky1k2L2.˝/

�
Ckf k2

L1.0;T IL2.˝//;8T >0:
(15.66)

Here, T0 is defined by (15.6) for the first inequality (15.65) (the second inequal-
ity (15.66) holds for all T > 0); �1, is the controlled or observed portion of the
boundary, with �0 D � n�1 satisfying (3.1D), and cT , CT are positive constants
depending on T .

For the regularity inequality (15.66) we refer to Lasiecka and Triggiani [23,24] and
[22, Theorem 2.1, p. 151]. For the COI (15.65) we refer, in the present context, also
to [5, 37, 56] with F � 0.

Remark 15.7 The COI (15.62) in the Neumann case and (15.65) in the Dirichlet
case, respectively may be interpreted also as follows: if problem (15.61a-c),
respectively (15.63a-c) has non-homogeneous forcing term f 2 L2.Q/ and
Dirichlet boundary traces y; yt 2 L2.˙1/, respectively Neumann boundary trace
@y

@�
j˙1 2 L2.˙1/, then necessarily the I.C. fy0; y1g must lie in H1.˝/ � L2.˝/,

respectively H1
0 .˝/ � L2.˝/. This will be used in Step 3 in Sect. 15.5 below, in

connection with the utt-overdetermined problems.

15.5 Uniqueness of Linear Inverse Problem
for the u-problem (15.1a-c): Proof of Theorem 15.1

Step 1. We return to the z-mixed problem (15.29) supplemented by the additional
assumed B.C. (15.9), that is,

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ztt D b�z � 
.x/zt C c2

b

.x/z � .c

2

b
/2
.x/u.
/ in ˝ � Œ0; T �I (15.67a)

z. � ; T
2
/ D c2

b
u0 C u1 D 0I zt

�
� ; T
2

�
D c2

b
u1 C u2 in ˝I (15.67b)

@z

@�
j˙ D 0; zj˙1 D 0 in ˙; ˙1 (15.67c)

under assumptions (15.7), (15.8) and Remark 15.2, which we rewrite for
convenience:

(
˛.x/; hence 
.x/ 2 M.D.A m

2 / ! D.A
m
2 //I u; ut ; utt 2 L1.Q/

c2

b
u0 C u1 D 0I in particular 
 2 L1.˝/ .Remark 15.2/

(15.68)

(We recall that a sufficient checkable condition for (15.68) to hold is: ˛ 2
W m;1.˝/, m >

dim˝

2
, along with appropriate boundary compatibility con-
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ditions). As a consequence, the COI (15.62) applied to the over-determined
z-problem (15.67a-c) with RHS D . c

2

b
/2
.x/u.
/ 2 L2.Q/ by (15.68) implies

that

zt

�
�; T
2

�
D c2

b
u1 C u2 2 L2.˝/I (15.69)

and then the over-determined problem (15.67a-c) satisfies a-fortiori the proper-
ties

z 2 H1;1.Q/ D L2.0; T IH1.˝//\H1.0; T IL2.˝//I BTzj˙ D 0

(15.70)

by recalling (15.67a-c) and assumption h � � D 0 on �0 by (15.46a) in (15.58)
to obtain BTzj˙ D 0. Thus, the Carleman estimates (15.56) are applicable
to the z-problem (15.67a-c) with F.z/ D �
.x/zt C c2

b

.x/z and f .x; t/ D

�. c2
b
/2
.x/u.
/ and yield via (15.70) on BTzj˙ D 0:

C1;�

Z T

0

Z
˝

e2�'Œz2t C jrzj2�dQ C C2;�

Z
Q.	/

e2�'z2dx dt

� Cb;c

Z T

0

Z
˝

e2�' j
uj2dQC CT;z e
2�	 C cT �

3e�2�ıŒEz.0/C Ez.T /�;

(15.71)

where we have set via (15.56) for fixed z D z.
/: CT;z D C1;T

Z T

0

Z
˝

z2dQ.

Step 2. In this step, we differentiate in time the z-mixed problem (15.67a-c). Thus
obtaining by use of the IC, hence�z. � ; T

2
/ D 0, u.�; T

2
/ D u0:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

.zt /tt D b�.zt /� 
.x/.zt /t C c2

b

.x/zt

�.c
2

b
/2
.x/ut .
/ in ˝ � Œ0; T �I (15.72a)

zt . � ; T
2
/ D c2

b
u1 C u2 in ˝I (15.72b)

.zt /t

�
� ; T
2

�
D �
.x/

�
c2

b
.
c2

b
u0 C u1/C u2

�

D �
.x/u2 in ˝I (15.72c)

@.zt /

@�
j˙ D 0; zt j˙1 D 0 in ˙; ˙1: (15.72d)
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This was noted in [47, Eq. (5.24), p. 850]. Eq. (15.72c) uses (15.8). Again the
COI (15.62) applied to the over-determined problem (15.72a-d) with the RHS D
�. c2

b
/2
.x/ut .
/ 2 L2.Q/ by (15.68) implies now for the I.C. that

c2

b
u1 C u2 2 H1.˝/I 
.x/u2 2 L2.˝/ (15.73)

so that the over-determined problem (15.72a-d) satisfies the properties, counter-
part of (15.70):

zt 2 H1;1.Q/I BTzt j˙ D 0: (15.74)

Thus, the Carleman estimates (15.56) are applicable to the .zt /-problem (15.72a-
d) with F.zt / D �
.x/.zt /t C c2

b

.x/zt and f .x; t/ D �. c2

b
/2
.x/ut .
/ this

time and yield the counterpart of (15.71):

C1;�

Z T

0

Z
˝

e2�'Œz2tt C jrzt j2� dQ C C2;�

Z
Q.	/

e2�'z2t dx dt

� Cb;c

Z T

0

Z
˝

e2�' j
ut j2dQ C CT;zt e
2�	 C cT �

3e�2�ıŒEzt .0/C Ezt .T /�:

(15.75)

Step 3. In this step, we differentiate in time, the zt -mixed problem (15.72a-d) one
more time, thus obtaining after two cancellations to obtain:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

.ztt/tt D b�.ztt/ � 
.x/.ztt/t C c2

b

.x/ztt

�.c
2

b
/2
.x/utt.
/ in QI (15.76a)

.ztt/. � ; T
2
/ D �
.x/u2 in ˝I (15.76b)

.ztt/t

�
� ; T
2

�
D b�.

c2

b
u1 C u2/� 
.x/u3.
/ in ˝I (15.76c)

@.ztt/

@�
j˙ D 0; zttj˙1 D 0 in ˙; ˙1I (15.76d)

zttt.�; T
2
/ D b�.

c2

b
u1 C u2/C 
.
u2 C c2

b
u2/: (15.76e)

To obtain (15.76e) we have used uttt.�; T2 / D u3.
/ D �.
 C c2

b
/u2 C

b�.c
2

b
u0 C u1/ from (1.1) with � D 1, evaluated at t D T

2
, and (15.8).

Again the COI (15.62) applied to the over-determined problem (15.76a-d), with
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RHS D �. c2
b
/2
.x/utt.
/ 2 L2.Q/ by (15.68) implies for the I.C., hence for the

solution that
�
.ztt

�
� ; T
2

�
; .ztt/t

�
� ; T
2

�	
2 H1.˝/�L2.˝/I ztt 2H1;1.Q/; BTztt j˙ D 0;

(15.77)

counterpart of (15.74). Thus, the Carleman estimates (15.56) are applicable to the
.ztt/-problem (15.76a-d) with F.ztt/ D �
.x/.ztt/t C c2

b

.x/ztt and f .x; t/ D

�. c2
b
/2
.x/utt.
/ this time and yield the counterpart of (15.71), (15.75):

C1;�

Z T

0

Z
˝

e2�'Œz2ttt C jrzttj2�dQ C C2;�

Z
Q.	/

e2�'z2tt dx dt

� Cb;c

Z T

0

Z
˝

e2�' j
uttj2dQ C CT;ztte
2�	 C cT �

3e�2�ıŒEztt.0/C Eztt.T /�:

(15.78)

Step 4. Adding up (15.71), (15.75), (15.78) together yields the combined
inequality

C1;�

Z
Q

e2�'

z2t C z2tt C z2ttt C jrzj2 C jrzt j2 C jrzttj2

�
dQ

C C2;�

Z
Q.	/

e2�'Œz2 C z2t C z2tt�dx dt

� Cb;c

Z T

0

Z
˝

e2�'
j
uj2 C j
ut j2 C j
uttj2

�
dQC ŒCT;z C CT;zt C CT;ztt � e

2�	

C cT �
3e�2�ı ŒEz.0/C Ezt .0/CEztt.0/C Ez.T /C Ezt .T /C Eztt.T /� :

(15.79)

We note that the energy terms Ezt .0/, Eztt.0/, Ezt .T / and Eztt.T / above
in (15.79) actually also depend on 
 . Next, we invoke one more time properties
u; ut ; utt 2 L1.Q/ from (15.68) (already critically used to arrive at (15.79)):

j
.x/uj � ku.
/kL1.Q/j
.x/jI j
.x/ut j � kut .
/kL1.Q/j
.x/jI
j
.x/uttj � kutt.
/kL1.Q/j
.x/j (15.80)
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in Q. Using (15.80) in (15.79) we arrive at

C1;�

Z
Q

e2�'

z2t C z2tt C z2ttt C jrzj2 C jrzt j2 C jrzttj2

�
dQ

C C2;�

Z
Q.	/

e2�'

z2 C z2t C z2tt

�
dx dt � QCb;c;u;T;z

� Z
Q

e2�' j
 j2dQ C e2�	

C �3e�2�ıŒEz.0/C Ezt .0/CEztt.0/C Ez.T /C Ezt .T /C Eztt.T /�

	

(15.81)

where QCb;c;u;T;z is a positive constant depending on b, c, T , z, u, hence on 
 .
Step 5. In this step, we follow the idea of a strategy proposed in [9, Theo-

rem 8.2.2, p. 231]. We evaluate (15.67a) at the initial time t D T
2

, and (for the
first time) use the vanishing z. � ; T

2
/ D 0, to obtain via the positivity hypothesis

in (15.8) on utt. � ; T
2
/:

ˇ̌
ˇ̌ztt

�
� ; T
2

�ˇ̌
ˇ̌ D j
.x/u2j � r0j
.x/j; (15.82)

j
.x/j � 1

r0

ˇ̌
ˇ̌ztt

�
x;
T

2

�ˇ̌
ˇ̌ x 2 ˝: (15.83)

Claim: Using (15.83) in the first integral term on the RHS of (15.81) yields,

Z
Q

e2�' j
 j2dQ D
Z T

0

Z
˝

e2�' j
 j2d˝ dt � T

r20

Z
˝

jztt.x; 0/j2d˝

C T

r20
.2c�T C 1/

Z
˝

Z T=2

0

e2�'.x;s/jztt.x; s/j2ds d˝

C T

r20

Z
˝

Z T=2

0

e2�'.x;s/jzttt.x; s/j2ds d˝: (15.84)

A proof of (15.84) can be found, for example, in [40, (4.22), p. 1648] or in [46,
Eq. (4.41)] and we omit the details here.

Step 6. We substitute (15.84) for the first integral term on the RHS of (15.81) and
obtain, after obvious majorizations,

C1;�

Z
Q

e2�'

z2t C z2tt C z2ttt C jrzj2 C jrzt j2 C jrzttj2

�
dQ

C C2;�

Z
Q.	/

e2�'

z2 C z2t C z2tt

�
dx dt
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� QCb;c;u;T;z
� ��

T

r20

�
.2T c� C 1/

Z
Q

e2�' jzttj2dQ

C
Z
Q

e2�' jztttj2dQC
Z
˝

jztt.x; 0/j2
�

C e2�	 C �3e�2�ıŒEz.0/C Ezt .0/CEztt.0/CEz.T /C Ezt .T /CEztt.T /�

	
:

(15.85)

We note again that the energy terms Ezt .0/, Eztt.0/, Ezt .T / and Eztt.T / above
in (15.85) actually also depend on 
 .

Step 7. From here, the proof proceeds as in past cases (see e.g. [40, Step 7, 8,
p. 1650] or [46, Eq. (4.46) through (4.53)]) using e2�' < e2�	 on Q n Q.	/
by (15.52), the property C1;� � � , C2;� � �3 in (15.57) for large enough � to
have

�2
Z
Q.	/

Œz2 C z2t C z2tt�dxdt � Cdata;

whereCdata is a constant only depend on the problem data but not on � . Therefore
by taking � ! 1 we finally obtain first

z D zt D ztt � 0 in Q.	/: (15.86)

Finally, invoking the property (15.53) that ˝ � Œt0; t1� � Q.	/ � Q, and that
T
2

2 Œt0; t1�, we obtain in particular from (15.72c) or (15.76a-b) and (15.86) that

ztt

�
x;
T

2

�
D �
.x/utt

�
x;
T

2

�
� 0; for all x 2 ˝: (15.87)

Recalling for the second time that by (15.8) jutt.x;
T
2
/j � r0, x 2 ˝ , we conclude

that


.x/ � 0 i.e. ˛.x/ � c2

b
in ˝ (15.88)

as desired. Thus, with this step the proof of Theorem 15.1 is complete. �
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Remark 15.8 (Variations of the above proof of Theorem 15.1 to obtain the proof of
Theorem 15.3). In Step 1, the counterpart of problem (15.67a-c) is now:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ztt D b�z � 
.x/zt C c2

b

.x/z � .c

2

b
/2
.x/u.
/ in ˝ � Œ0; T �I (15.89a)

z. � ; T
2
/ D c2

b
u0 C u1 D 0I zt

�
� ; T
2

�
D c2

b
u1 C u2 in ˝I (15.89b)

zj˙ D 0;
@z

@�
j˙1 D 0 in ˙; ˙1: (15.89c)

Next, instead of the COI (15.62) for the Neumann case, one invokes the
COI (15.65) of the Dirichlet case, as applied to problem (15.89a-c) and thus obtains
the same conclusion (15.70). Consequently, the same regularity z 2 H1;1.Q/ as
in (15.70) holds true now, while the boundary terms now satisfies BTzj˙ � 0, which
is the inequality in the right direction while invoking the Carleman estimate. This
then yields the same inequality (15.71). Similarly, in subsequent steps, one obtains:
BTzt j˙ � 0, BTztt j˙ � 0, rather than the conditions BTzt j˙ D 0, BTztt j˙ D 0, as
in (15.74) and (15.75). No other changes are needed.

15.6 Stability of Inverse Problem
for the u-problem (15.1a-d). Proof of Theorem 15.2

Step 1. Let u D u.
/ be the solution of problem in (15.1a-d) and let z D
z.
/ D c2

b
u C ut be the corresponding solution of problem (15.29), subject to

assumption (15.8) on z.�; T
2
/ D c2

b
u0 C u1 D 0, that is,

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ztt D b�z � 
.x/zt C c2

b

.x/z � .

c2

b
/2
.x/u.
/ in QI (15.90a)

z

�
� ; T
2

�
D 0I zt

�
� ; T
2

�
D c2

b
u1 C u0 in ˝I (15.90b)

@z

@�
j˙ D 0 in ˙ (15.90c)

to be repeatedly invoked below. Here 
 2 L1.˝/, a-fortiori, see Remark 15.2.
We set

v D v.
/ D zt .
/
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so that v satisfies the zt -problem obtained from differentiating problem (15.90a-
c), that is (this is (15.72a-d) without the over-determined B.C.)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

vtt D b�v � 
.x/vt C c2

b

.x/v � .

c2

b
/2
.x/ut .
/ in QI (15.91a)

v

�
� ; T
2

�
D c2

b
u1 C u2I vt

�
� ; T
2

�
D �
.x/u2.x/ in ˝I (15.91b)

@v

@�
j˙ D 0 in ˙: (15.91c)

By linearity we split v into two components

v D  C  (15.92)

where  satisfies the same problem as v, however with homogeneous ‘forcing
term’

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

psitt D b� � 
.x/ t C c2

b

.x/ in Q (15.93a)

 . � ; T
2
/ D v

�
� ; T
2

�
D c2

b
u1 C u2 in ˝ (15.93b)

 t. � ; T
2
/ D vt

�
� ; T
2

�
D �
.x/u2.x/ in ˝ (15.93c)

@ 

@�
j˙ D 0 in ˙ (15.93d)

where  satisfies the same problem as v, with homogeneous initial conditions

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

tt D b� � 
.x/t C c2

b

.x/ � .

c2

b
/2
.x/ut .
/ in Q (15.94a)



�
� ; T
2

�
D 0I t

�
� ; T
2

�
D 0 in ˝ (15.94b)

@

@�
j˙ D 0 in ˙: (15.94c)

Remark 15.9 With I.C. for the  -problem as assumed in (15.7), we can
apply the COI (15.62) and obtain a-fortiori: there exists a constant CT > 0

(independent of  ) such that

r20k
k2
L2.˝/

� k
.�/u2.�/k2L2.˝/ � C2
T

Z T

0

Z
�1

Œ 2 C  2t �d˙1 (15.95)
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(wherever the RHS is finite), where in the LHS of (15.95) we have recalled the
positivity assumption (15.8). Recalling (15.92) in (15.95), we then obtain by the
triangle inequality, with CT;r0 D CT

r0
, via also (15.92):

k
kL2.˝/
� CT;r0


k kL2.�1�Œ0;T �/ C k tkL2.�1�Œ0;T �/
�

� CT;r0

kv � kL2.�1�Œ0;T �/ C kvt � tkL2.�1�Œ0;T �/

�

� CT;r0

kvkL2.�1�Œ0;T �/ C kvtkL2.�1�Œ0;T �/ C kkL2.�1�Œ0;T �/ C ktkL2.�1�Œ0;T �/

�

� CT;r0

kztkL2.�1�Œ0;T �/ C kzttkL2.�1�Œ0;T �/ C kkL2.�1�Œ0;T �/ C ktkL2.�1�Œ0;T �/

�
:

(15.96)

Via (15.23), inequality (15.96) is the desired, sought-after stability esti-
mate (15.13) of Theorem 15.2, modulo (polluted by) the - and t -terms. Such
terms, which are nonlinear in 
.�/, will be next omitted by a compactness-
uniqueness argument, via a direct proof, in Proposition 15.1 below, of the
corresponding estimate (15.96) without such terms  and t . To carry this
through we need the following lemma.

Step 2. Lemma 15.12 Consider the -system (15.94a-c) with data 
.x/ 2
L1.˝/, see Remark 15.1, ut ; utt 2 L1.Q/ as showed in Remark 15.3 as
a consequence of assumptions (15.2), (15.7). Define the following nonlinear
operatorsK andK1

.K
/.x; t/ D .x; t/j˙1 W L2.˝/ ! L2.�1 � Œ0; T �/ (15.97)

.K1
/.x; t/ D t .x; t/j˙1 W L2.˝/ ! L2.�1 � Œ0; T �/ (15.98)

where  is the unique solution of problem (15.94a-c) depending nonlinearly in

.�/. Then

both K andK1 are compact operators. (15.99)

Proof Preliminaries.

(a) We shall invoke sharp (Dirichlet) trace theory results [26, 27], reproduced
in Appendix 2, for the Neumann hyperbolic problem (15.94a-c). More
precisely, regarding the -problem (15.94a-c) with zero I.C. and forcing term
. c

2

b
/2
.x/ut .
/, the following Dirichlet trace result hold true:
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From assumptions 
.x/ 2 L2.˝/, ut 2 L1.Q/ as implied from the
assumption (15.7) D (15.68), we get via part II of Theorem, Appendix 2:

�
c2

b

�2

.x/ut .x; t/ 2 L2.Q/ ) j˙ 2 Hˇ.˙/ continuouslyI

(15.100)

(b) similarly, we consider now the t -problem, obtained from differentiating
problem (15.94a-c) in time, thus with RHS D �. c2

b
/2 
.x/utt.
/; t .�; T2 / D

0; and .t /t .�; T2 / D �. c2
b
/2 
.x/u2 2 L2.˝/: With 
.x/ 2 L2.˝/ and

ut ; utt 2 L1.Q/ as implied from (15.7) D (15.68), and

.
c2

b
/2
.x/utt.x; t/ 2 L2.Q/; .c

2

b
/2
.x/ut .x; t/ 2 H1.0; T IL2.˝//;

we get


u2 2 L2.˝/;
�
c2

b

�2

.x/ut .x; t/ 2 H1.0; T IL2.˝//

) D1
t j˙ D t j˙ 2 Hˇ.˙/; (15.101)

continuously with ˇ the following constant [26, 27]:

ˇ D 3

5
; for a general˝I ˇ D 2

3
; if ˝ is a sphereI

ˇ D 3

4
� �; if ˝ is a parallelepiped: (15.102)

After these preliminaries, we can now draw the desired conclusions on the
compactness of the operatorsK and K1 defined in (15.97) and (15.98);

(c) Compactness of K . According to (15.100), it suffices to have ut 2 L1.Q/
in order to have that the nonlinear map


 2 L2.˝/ ! K
 j˙ D j˙ 2 Hˇ��.˙/ is compact; (15.103)

8 � > 0 sufficiently small, for then . c
2

b
/2
.x/ut .x; t/ 2 L2.Q/ as required,

by (15.100).

Compactness of K1. According to (15.101), it suffices to have utt 2 L1.Q/ in
order to have that the nonlinear map


 2 L2.˝/ ! K1
 j˙ D t j˙ 2 Hˇ��.˙/ is compact, (15.104)
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8 � > 0, sufficiently small, for then . c
2

b
/2
.x/utt.x; t/ 2 L2.Q/ as required

by (15.101). Hence Lemma 15.12 is proved. ut
Step 3. Lemma 15.12 will allow us to absorb (omit) the terms (nonlinear in 
.�/)

kK
 D kL2.�1�Œ0;T �/ and kK1
 D tkL2.�1�Œ0;T �/ (15.105)

in the RHS of estimate (15.96) by a compactness-uniqueness argument, as noted
below (15.96).

Proposition 15.1 Consider the z-problem (15.29) with T > T0 as in (15.6) under
assumptions (15.7), (15.8), so that estimate (15.96) as well as Lemma 15.12 hold
true.Then, the termsK
 D j˙1 andK1
 D t j˙1 measured in the L2.�1 � Œ0; T �/-
norm can be omitted from the RHS of inequality (15.96) (for a suitable constant
CT;data), so that the desired conclusion, equation (15.13) of Theorem 15.2, holds
true

k
k2
L2.˝/

� CT;data

�Z T

0

Z
�1

Œz2t C z2tt�d�1dt

	

� CT;data

( Z T

0

Z
�1

"�
c2

b
ut C utt

�2
C
�
c2

b
utt C uttt

�2#
d�1dt

)

(15.106)

for all 
 2 L2.˝/, with CT;data independent of 
 .

Proof Step (i). Suppose, by contradiction, that inequality (15.106) is false. Then,
there exists a sequence f
ng1

nD1, 
n 2 L2.˝/, such that

8<
:

(i) k
nkL2.˝/ � 1; n D 1; 2; : : : I (15.107a)

(ii) lim
n!1


kzt .
n/kL2.�1�Œ0;T �/ C kztt.
n/kL2.�1�Œ0;T �/
� D 0; (15.107b)

where z.
n/ solves problem (15.90a-c) with 
 D 
n:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

.z.
n//tt D b�z.
n/� 
n.x/zt .
n/ (15.108a)

Cc2

b

n.x/z.
n/� .

c2

b
/2
n.x/u.
n/ in QI (15.108b)

z.
n/. � ; T
2
/ D 0I .z.
n//t . � ; T

2
/ D c2

b
u1 C u2 in ˝I (15.108c)

@z.
n/.x; t/

@�
j˙ D 0 in ˙: (15.108d)
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In view of (15.107a), there exists a subsequence, still denoted by 
n, such that:


n converges weakly in L2.˝/ to some 
0 2 L2.˝/: (15.109)

Moreover, since the (nonlinear) operators K and K1 are both compact by the
Lemma 15.12, it then follows by (15.109) that we have strong convergence

lim
m;n!C1 kK
n �K
mkL2.�1�Œ0;T �/ D 0I (15.110a)

lim
m;n!C1 kK1
n �K1
mkL2.�1�Œ0;T �/ D 0: (15.110b)

Step (ii). On the other hand, consider the z.
n/ and z.
m/ problems corresponding
to (15.108a-d) and define the difference of their corresponding time derivatives

w D zt .
n/� zt .
m/ D v.
n/� v.
m/: (15.111)

Then w in (15.111) satisfies the following problem via (15.91a-c) on v D zt :

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

wtt D b�w � 
nwt C c2

b

nw � .
n � 
m/.zt /t .
m/ (15.112a)

Cc2

b
.
n � 
m/zt .
m/

�.c
2

b
/2.
nut .
n/� 
mut .
m// in QI (15.112b)

w. � ; T
2
/ D 0I wt . � ; T

2
/ D �.
n.x/ � 
m.x//u2.x/ in ˝I (15.112c)

@w.x; t/

@�
j˙ D 0 in ˙: (15.112d)

As in Step 1 we then decompose w into components w D w1 C w2 where w1
satisfies the same problem as w with homogeneous forcing term

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

w1tt D b�w1 � 
n.w1/t C c2

b

nw1 in QI (15.113a)

w1. � ; T
2
/ D 0I w1t . � ; T

2
/ D �.
n.x/ � 
m.x//u2.x/ in ˝I (15.113b)

@w1.x; t/

@�
j˙ D 0 in ˙ (15.113c)
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while w2 satisfies the same problem as w, with homogeneous initial conditions

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

w2tt D b�w2 � 
n.w2/t C c2

b

nw2 � .
n � 
m/.zt /t .
m/ (15.114a)

Cc2

b
.
n � 
m/zt .
m/

�.c
2

b
/2.
nut .
n/ � 
mut .
m// in QI (15.114b)

w2. � ; T
2
/ D w2t . � ; T

2
/ D 0 in ˝I (15.114c)

@w2.x; t/

@�
j˙ D 0 in ˙: (15.114d)

Again we apply the COI (15.62) for the w1-problem and get by the positivity
assumption (15.8)

k
n � 
mk2
L2.˝/

� C2
T;r0

Z T

0

Z
�1

Œw21 C w21t �d˙1: (15.115)

On the other hand, we readily see by comparing the -problem (15.94a-c) with
the w2-problem (15.114a-d)

(
w2 D .
n/ � .
m/I w2j˙1 D .
n/j˙1 � .
m/j˙1 (15.116a)

w2j˙1 D K
n �K
mI w2t j˙1 D K1
n �K1
m (15.116b)

from the definition of K and K1 in (15.97), (15.98). Therefore by the tri-
angle inequality we have starting from (15.115), and invoking w D w1 C
w2, (15.111), (15.116a-b):

k
n � 
mkL2.˝/ � CT;r0.kw1kL2.˙1/ C kw1tkL2.˙1//

� CT;r0.kwkL2.˙1/ C kwtkL2.˙1/ C kw2kL2.˙1/ C kw2tkL2.˙1//

� CT;r0.kzt .
n/ � zt .
m/kL2.˙1/ C kztt.
n/� ztt.
m/kL2.˙1//

C CT;r0kK
n �K
mkL2.˙1/ C CT;r0kK1
n �K1
mkL2.˙1/
� CT;r0kzt .
n/kL2.˙1/ C CT;r0kzt .
m/kL2.˙1/

C CT;r0kztt.
n/kL2.˙1/ C CT;r0kztt.
m/kL2.˙1/
C CT;r0kK
n �K
mkL2.˙1/ C CT;r0kK1
n �K1
mkL2.˙1/:

(15.117)
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It then follows from (15.107b) and (15.110) as applied to the RHS of (15.117)
that

lim
m;n!C1 k
n � 
mkL2.˝/ D 0: (15.118)

Therefore, f
ng is a Cauchy sequence in L2.˝/. By uniqueness of the limit,
recall (15.109), it then follows that

lim
n!1 k
n � 
0kL2.˝/ D 0: (15.119)

Thus, in view of (15.107a), then (15.119) implies

k
0kL2.˝/ D 1: (15.120)

Step (iii). Now consider the z.
n/-problem (15.108a-d) and its corresponding
z.
0/-problem, with 
0 as in (15.119), (15.120). Let

y.
n/ D z.
n/� z.
0/: (15.121)

Then, via (15.108a-d), y satisfies the following problem

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

ytt D b�y � 
nyt C c2

b

ny � .
n � 
0/zt .
0/ (15.122a)

Cc2

b
.
n � 
0/z.
0/� .

c2

b
/2.
nu.
n/� 
0u.
0// in QI (15.122b)

y. � ; T
2
/ D yt . � ; T

2
/ D 0 in ˝I (15.122c)

@y.x; t/

@�
j˙ D 0 in ˙: (15.122d)

As 
n 2 Hm.˝/ and 2m > dim˝ , by the usual embedding 
n 2 L1.˝/, as
noted in Remark 15.2. Moreover, as u, ut , utt 2 L1.Q/ as noted in Remark 15.3
and Sect. 15.2, we have z D c2

b
u C ut 2 L1.Q/ and zt D c2

b
ut C utt 2 L1.Q/.

Thus we have since also 
0 2 L2.˝/

.
n � 
0/zt .
0/C c2

b
.
n � 
0/z.
0/ �

�
c2

b

�2
.
nu.
n/ � 
0u.
0// 2 L2.Q/

and hence we can again apply the sharp trace theory results [26, 27] (recalled
in Appendix 2) for the y-problem (15.122a-d) as done in (15.100) for the
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-problem (15.94a-c) (both with zero I.C.) and obtain

ky.
n/kHˇ.˙/ � CT;data

k.
n � 
0/zt .
0/kL2.Q/ C k.
n � 
0/z.
0/kL2.Q/

Ck
n.�/u.
n/ � 
0.�/u.
0/kL2.Q/
�
: (15.123)

Step (iv). By assumption (15.12) we have that the elements 
n are in a fixed ball
of (arbitrary) radius R, in the space Hm.˝/:

k
nkHm.˝/ � R; n D 1; 2; � � � (15.124)

Hence, there exists a subsequence 
nj which is weakly convergent to some 
�
0 2

Hm.˝/:


nj ! 
�
0 weakly in Hm.˝/I 
�

0 2 Hm.˝/: (15.125)

By uniqueness of the limit, we then have


�
0 D 
0 2 Hm.˝/; hence 
0 2 C.˝/ (15.126)

as 2m > dim˝ by assumption (15.12). A-fortiori, 
0 is a multiplier L2.˝/ !
L2.˝/: 
0 2 M.L2.˝/ ! L2.˝//.

Step (v). We return to inequality (15.123). After adding and subtracting, and
recalling (15.126), we estimate

ky.
n/kHˇ.˙/ � CT;data

k.
n � 
0/kL2.˝/kzt .
0/kL1.Q/

Ck.
n � 
0/kL2.˝/kz.
0/kL1.Q/ C k
n � 
0kL2.˝/ku.
n/kL1.Q/

Ck
0.�/kL1.˝/ku.
n/� u.
0/kL2.Q/
�
: (15.127)

(We could have used the sharper norm k
0.�/kM.L2.˝/!L2.˝// instead of
k
0.�/kL1.˝/ recalling the line below (15.126)).
We now recall the results of Sect. 15.2: the uniform L1.Q/-bound on u.�; 
n/
from (15.40) of Theorem 15.8, and the L2.Q/-convergence result of Theo-
rem 15.7, via (15.119). For the third and fourth term on the RHS of (15.127),
they yield, respectively

ku.
n/kL1.Q/ � CT;u0;u1;u2 I lim
n!1 ku.
n/ � u.
0/kL2.Q/ D 0: (15.128)
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Using (15.119) and (15.128) on the RHS of (15.127), and recalling (15.121), we
conclude first that

lim
n!1 ky.
n/kHˇ.˙1/

D lim
n!1 kz.
n/j˙1 � z.
0/j˙1kHˇ.˙1/

D 0; (15.129)

next that

lim
n!1 kz.
n/j˙1 � z.
0/j˙1kC.Œ0;T �IL2.�1// D 0; (15.130)

since ˇ > 1
2
, so that Hˇ.0; T / embeds in C Œ0; T �.

Step (vi). We now consider the yt -problem, obtained from differentiating problem
(6.33) in time, thus with RHS D �.
n � 
0/ztt.
0/ C c2

b
.
n � 
0/zt .
0/ �

. c
2

b
/2.
nut .
n/ � 
0ut .
0// and I.C. yt .�; T2 / D 0, .yt /t .�; T2 / D .
0.x/ �


n.x//u2 2 L2.˝/ by recalling (15.121), (15.76a-b), (15.107a), (15.120).
Applying to such yt -problem Part II of Theorem, Appendix 2, we obtain

kyt .
n/kHˇ.˙/ � CT;data

k.
n � 
0/ztt.
0/kL2.Q/ C k.
n � 
0/zt .
0/kL2.Q/

Ck
n.�/ut .
n/ � 
0.�/ut .
0/kL2.Q/ C k.
n � 
0/u2kL2.˝/
�

(15.131)

counterpart of (15.101) for t . Proceeding now as in going from (15.123)
to (15.127), that is, adding and subtracting, we obtain (using again (15.126)):

kyt .
n/kHˇ.˙/ � CT;data

k.
n � 
0/kL2.˝/kztt.
0/kL1.Q/

Ck.
n � 
0/kL2.˝/kzt .
0/kL1.Q/ C k
n � 
0kL2.˝/kut .
n/kL1.Q/

Ck
0.�/kL1.˝/kut .
n/ � ut .
0/kL2.Q/ C k
n � 
0kL2.˝/ku2kL1.˝/

�
:

(15.132)

We again recall the results of Theorem 15.7 and 15.8 for the third and fourth term
on the RHS of (15.132), they yield, respectively

kut .
n/kL1.Q/ � CT;u1;u2;u3 I lim
n!1 kut .
n/� ut .
0/kL2.Q/ D 0: (15.133)

From (15.119), (15.133) used on the RHS of (15.132), and recalling (15.121),
we first conclude that

lim
n!1 kyt .
n/kHˇ.˙1/

D lim
n!1 kzt .
n/j˙1 � zt .
0/j˙1kHˇ.˙1/

D 0; (15.134)
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and next that

lim
n!1 kzt .
n/j˙1 � zt .
0/j˙1kC.Œ0;T �IL2.�1// D 0; (15.135)

since ˇ > 1
2

as in (15.130), as Hˇ.0; T / embeds in C Œ0; T �. Then, by virtue
of (15.107b), combined with (15.135), we obtain that

zt .
0/j˙1 � 0I or z.
0/j˙1 � function of x 2 �1, constant in t 2 Œ0; T �.
(15.136)

Step (vii). We return to problem (15.108a-d): with 
n 2 L2.˝/, z; zt 2 L1.Q/
as noted below (15.122a) and u 2 L1.Q/, Remark 15.3, thus forcing term in
L2.Q/ and initial ‘velocity’ c2

b
u1 C u2 2 L2.˝/. We then obtain the following

regularity results from [26, 27], recalled in Appendix 2, continuously:

fz.
n/; .z.
n//t g 2 C.Œ0; T �IH1.˝/ � L2.˝//I (15.137)

z.
n/j˙ 2 Hˇ.˙/; (15.138)

where ˇ is the constant in (15.102).
As a consequence of (15.119), we also have via (15.137), (15.138)
and (15.130), (15.134):

fz.
n/; .z.
n//t g ! fz.
0/; .z.
0//t g inC.Œ0; T �IH1.˝/�L2.˝//I (15.139)

z.
n/j˙ ! z.
0/j˙ in Hˇ.˙/: (15.140)

On the other hand, recalling the initial condition (15.108c), we have

z.
n/

�
x;
T

2

�
� 0; x 2 ˝; hence z.
n/

�
x;
T

2

�
� 0; x 2 �1; (15.141)

in the sense of trace inH
1
2 .�1/. Then (15.141) combined with (15.129), (15.130)

yields a-fortiori

z.
0/

�
x;
T

2

�
� 0; x 2 �1; (15.142)

and next, by virtue of (15.136), the desired conclusion,

z.
0/j˙1 � 0: (15.143)
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By (15.119), (15.139), (15.140) applied to (15.108a-d), we have that z.
0/
satisfies weakly the limit problem:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

ztt.
0/ D b�z.
0/� 
0.x/zt .
0/C c2

b

0.x/z.
0/ (15.144a)

�.c
2

b
/2
0.x/u.
0/ in QI (15.144b)

z.
0/

�
� ; T
2

�
D 0I zt .
0/

�
� ; T
2

�
D c2

b
u1 C u2 in ˝I (15.144c)

@z.
0/

@�
j˙ D 0 and z.
0/j˙1 D 0 in ˙; ˙1; (15.144d)

via also (15.143), where utt; uttt 2 L1.Q/, by assumption (15.7) D (15.68), as
noted in Remark 15.3 and Sect. 15.2. Moreover, the positivity assumption (15.8)
holds. Thus, the uniqueness Theorem 15.1 applies and yields


0.x/ � 0; x 2 ˝: (15.145)

Then (15.145) contradicts (15.120). Thus, assumption (15.107a-b) is false and
inequality (15.115) holds true. Proposition 15.1, as well as Theorem 15.2 are
then established. ut

Remark 15.10 (Variations of above proof of Theorem 15.2 to obtain the proof of
Theorem 15.4). In Step 1, the counterpart of problem (15.91a-c) is now

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

vtt D b�v � 
.x/vt C c2

b

.x/v � .

c2

b
/2
.x/ut .
/ in QI (15.146a)

v

�
� ; T
2

�
D c2

b
u1 C u2I vt

�
� ; T
2

�
D �
.x/u2.x/ in ˝I (15.146b)

vj˙ D 0 in ˙ (15.146c)

while, still with zt D v D  C  as in (15.92), the counterpart of prob-
lems (15.93a-d) and (15.94a-c) are

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

 tt D b� � 
.x/ t C c2

b

.x/ in Q (15.147a)

 . � ; T
2
/ D v

�
� ; T
2

�
D c2

b
u1 C u2 in ˝ (15.147b)

 t . � ; T
2
/ D vt

�
� ; T
2

�
D �
.x/u2.x/ in ˝ (15.147c)

 j˙ D 0 in ˙ (15.147d)
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and

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

tt D b� � 
.x/t C c2

b

.x/ � .

c2

b
/2
.x/ut .
/ in Q (15.148a)



�
� ; T
2

�
D 0I t

�
� ; T
2

�
D 0 in ˝ (15.148b)

j˙ D 0 in ˙: (15.148c)

In Step 2, we now invoke the COI (15.65) for the  -problem (15.147a-d), with
I.C. as in (15.7) and 
 2 L1.˝/ a fortiori from assumption (15.2). We obtain the
counterpart of (15.95):

r20k
k2
L2.˝/

� k
. � /u2. � /k2L2.˝/ � C2
T

Z T

0

Z
�1

�
@ 

@�

�2
d˙1; (15.149)

recalling the positivity assumption (15.8) on the LHS. Then (15.149) implies the
counterpart of (15.96)

k
kL2.˝/ � CT;r0

 ����@zt
@�

����
L2.�1�Œ0;T �/

C
����@@�

����
L2.�1�Œ0;T �/

!

D CT;r0

 ���� @@�
�
c2

b
u C ut

�
t

����
L2.�1�Œ0;T �/

C
����@@�

����
L2.�1�Œ0;T �/

!
:

(15.150)

Inequality (15.150) is the sought-after right-hand side inequality of Theorem 15.4
for � D 0, modulo (polluted by) the @

@�
j˙1 -term. It is at the level of absorbing

this term by a compactness-uniqueness argument that one needs to restrict the final
result to 
 2 H�

0 .˝/, 0 < � � 1, � ¤ 1
2

in order to use compactness as the

map 
 2 H�.˝/ ! @

@�
2 H�.˙1/, 0 � � � 1, � ¤ 1

2
is only continuous,

but not compact for the -problem (15.148a-c) with the Dirichlet B.C.. This fact
is a distinguished obstacle of the stability analysis for the Dirichlet B.C. case as
opposed to the Neumann B.C. case. For details we refer to [46, Sect. 5.3].

Sketch of proof of inequality (15.15b).

(a) Case � D 0. With reference to the variable z D c2

b
u C ut in (15.43), we shall

show that
����@zt
@�

����
L2.0;T IL2.�1//

� CT;R1 kfu0; u1; u2gkm k
kL2.˝/ (15.151)

where fu0; u1; u2g is measured in the HmC2.˝/ � HmC1.˝/ � Hm.˝/-norm
as in (15.7), denoted here by kfu0; u1; u2gkm.
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Proof of (15.151). Consider the zt -problem in (15.72a-c) in the present
Dirichlet case, i.e. with B.C. zt j˙ D 0 only, where by assumption

k
kC.˝/ � c1k
kHm.˝/ � c1R D R1; m >
dim ˝

2
� 1: (15.152)

(i) We estimate the forcing term in (15.72a-d)

�����
�
c2

b

�2

.�/ut .
/

�����
L2.0;T IL2.˝//

�
�
c2

b

�2
k
kL2.˝/kut .
/kL1.Q/ (15.153)

� Cb;c;R1k
kL2.˝/ kfu0; u1; u2gkm (15.154)

where fu0; u1; u2g is measured in the HmC2.˝/ � HmC1.˝/ � Hm.˝/-
norm, by appealing to Remark 15.3;

(ii) we next estimate the initial position in (15.72a-d), with m as in (15.152)

����zt

�
�; T
2

�����
H1.˝/

D
����c

2

b
u1 C u2

����
H1.˝/

� c2

b
kfu1; u2gkHmC1.˝/�Hm.˝/ I

(15.155)
(iii) finally we estimate the initial velocity in (15.72c)

����.zt /t
�

�; T
2

�����
L2.˝/

D k
.�/u2kL2.˝/ � k
kL2.˝/ku2kL1.˝/

� ck
kL2.˝/ ku2kHm.˝/ (15.156)

m as in (15.152). Finally, armed with estimates (15.154), (15.155),
(15.156) on the data, we invoke the regularity inequality in [22],
[27, Theorem 10.5.3.1, p. 946] to the aforementioned zt problem
with 
 uniformly bounded in L1.˝/ as in (15.152) and obtain
inequality (15.151).

(b) Case � D 1. We now show that with m � 2

����@ztt

@�

����
L2.0;T IL2.�1//

� CT;R1 kfu0; u1; u2gkm k
kH1.˝/ (15.157)

in the same HmC2.˝/ �HmC1.˝/ �Hm.˝/-norm for fu0; u1; u2g.
Proof of (15.157). We respect the same argument this time as applied to the

ztt-problem (15.76a-c) with B.C. only zttj˙ D 0.
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(i) as to the forcing term, we estimate

�����
�
c2

b

�2

.�/utt.
/

�����
L2.0;T IL2.˝//

�
�
c2

b

�2
k
kL2.˝/kutt.
/kL1.Q/

�
�
c2

b

�2
CR1k
kL2.˝/ kfu0; u1; u2gkm

(15.158)

in the HmC2.˝/ � HmC1.˝/ � Hm.˝/-norm for fu0; u1; u2g, see
Remark 15.3;

(ii) as to the initial position in (15.76a-b) we estimate via (15.5a)

����ztt

�
�; T
2

�����
H1.˝/

D k
.�/u2kH1.˝/

� k
kH1.˝/ku2kM .H1!H1/

� ck
kH1.˝/ku2kHm.˝/I (15.159)

(iii) for the initial velocity in (15.76e)

.ztt/t

�
�; T
2

�
D b�zt

�
�; T
2

�
C 
2u2 C c2

b

u2: (15.160)

We estimate first

�����zt

�
�; T
2

�����
L2.˝/

� Qc
����zt

�
�; T
2

�����
H2.˝/

D Qc
����c

2

b
u1 C u2

����
H2.˝/

� Qc c
2

b
kfu1; u2gkHmC1.˝/�Hm.˝/ (15.161)

m � 2; next in (15.160)

����
2u2 C c2

b

u2

����
L2.˝/

� Cb;ck
kL2.˝/k
kL1.˝/ku2kL1.˝/

� Cb;ck
kL2.˝/R1ku2kHm.˝/: (15.162)

Finally, estimates (15.158), (15.159), (15.162) in the data yield the final
estimate (15.157) by invoking again [22], [27, Theorem 10.5.3.1, p. 946] with

 uniformly bounded in L1.˝/ by (15.152). We finally interpolate between the
estimate (15.151) for � D 0 and the estimate (15.157) for � D 1, the latter with
m � 2.
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15.7 Proof of Uniqueness Theorem 15.5

Step 1. We start from the two problems

uttt.
i /C ˛.�/utt.
i /C c2A u.
i /C bA ut .
i / D 0; i D 1; 2I (15.163a)

u.
i /j T
2

D u0; ut .
i /j T
2

D u1; utt.
i /j T
2

D u2; i D 1; 2 (15.163b)

where A is .��/ with either Neumann or Dirichlet B.C.. Set

w D u.
1/ � u.
2/: (15.164)

Then, by adding and subtracting ˛2utt.
1/, one obtains that w satisfies

wttt C ˛2.�/wtt C c2A w C bA wt D .˛2.�/� ˛1.�//utt.
1/ (15.165)

rewritten as

.wt C ˛2w/tt C bA

�
c2

b
w C wt

�
D .˛2 � ˛1/utt.
1/: (15.166)

Setting

z D c2

b
w C wt D .˛2w C wt / � 
2w; 
2 D ˛2 � c2

b
(15.167)

we obtain after a cancellation

ztt C cA z D 
2.�/utt.
2/� 
1.�/utt.
1/: (15.168)

Equation (15.167) is the counterpart of model ]1 in the present case of non-zero
damping 
2.

Step 2. Under the assumed regularity properties, the argument of Sect. 15.5 can
be carried out (This was done in [47, Sect. 5] for model ]1). It leads to the
corresponding result

z D zt D ztt � 0 in Q.	/ (15.169)

in particular at T
2

, recalling (15.163b):

0 D zttj T
2

C A .zj T
2
/ D 
2utt.
2/j T

2
� 
1utt.
1/j T

2
D .
2 � 
1/u2: (15.170)
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By (15.8) as assumed, ju2.x/j � r0 > 0 in ˝ , hence (15.170) yields the desired
conclusion


1.x/ D 
2.x/ in ˝:

Theorem 15.5 is proved. �
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Appendix 1: Admissible Geometrical Configurations
in the Neumann B.C. Case

Here we present some examples in connection to the main geometrical assump-
tions (A.1), (A.2). We refer to Lasiecka et al. [35] for more details.

Example #1 (Any dimension � 2): �0 is flat.

measurement onΓ1x Ω

x0
Γ0

Γ1

Let x0 2 hyperplane containing �0, then.

d.x/ D kx � x0k2I h.x/ D rd.x/ D 2.x � x0/:

Example #2 (A ball of any dimension � 2): d.x/ in [35, Theorem. A.4.1, p. 301].

Γ0

Γ1
x0

Measurement on �1 > 1
2

circumference (as in the Dirichlet case), same as for
controllability.
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Example #3 (Generalizing Ex #2: a domain ˝ of any dimension � 2 with
unobserved portion �0 convex, subtended by a common point x0): d.x/ in [35,
Theorem. A.4.1, p. 301].

∇

Γ0 convex
Γ1

x0

Γ0 = (x) = level set
(x− x0) ·∇ ≤ 0 on Γ0

Example #4 (A domain ˝ of any dimension � 2 with unobserved portion �0
concave, subtended by a common point x0): d.x/ in [35, Theorem. A.4.1, p. 301].

Γ1

Γ0 concave
x0

Example #5 (dim D 2): �0 neither convex nor concave. �0 is described by graph

y D
(
f1.x/; x0 � x � x1; y � 0I
f2.x/; x2 � x � x1; y < 0;

f1; f2 logarithmic concave on x0 < x < x1, e.g., sin x, ��
2
< x < �

2
; cosx; 0 <

x < �

as the function sinx C 1 and cosx C 1 are lobarithmic concave on the
correspondingx-intervals. See [35, Fig. A.3, p. 290]. The corresponding function
d.x/ is given in [35, (A.2.7), p. 289].
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Appendix 2: Sharp Regularity Theory for Second-Order
Hyperbolic Equations of Neumann Type

Consider the following second-order hyperbolic equation with non-homogeneous
Neumann B.C g and I.C. fw0;w1g:

8̂
ˆ̂̂<
ˆ̂̂̂
:

wtt.x; t/ ��w.x; t/ D F.w/C f .x; t/ in Q D ˝ � Œ0; T �I
w . � ; 0/ D w0.x/I wt . � ; 0/ D w1.x/ in ˝I
@w

@�
.x; t/j˙ D g.x; t/ in ˙ D � � Œ0; T �

where the forcing term

f .x; t/ 2 L2.Q/;

and F.w/ is given by

F.w/ D q1.x; t/w C q2.x; t/wt C q3.x; t/ � rw;

subject to the following standing assumption on the coefficients: q1, q2, jq3j 2
L1.Q/, so that the following pointwise estimate holds true:

jF.w/j � CT Œw
2 C w2t C jrwj2�; .x; t/ 2 Q:

We first define the parameters ˛ and ˇ to be the following values:

8̂
ˆ̂<
ˆ̂̂:

˛ D 3
5

� �; ˇ D 3
5

W for a general smooth, bounded domain˝I
˛ D ˇ D 2

3
W for a sphere domain˝I

˛ D ˇ D 3
4

� � W for a parallelepiped domain˝

where � > 0 is arbitrary. Then we have the following sharp regularity results:

Theorem ([27, Theorem 1.2 (ii), (iii), 1.3, p. 290]) With reference to the above
w-mixed problem, the following regularity results hold true, with ˛ and ˇ defined
above:

(i) [27, Theorem 2.0, (15.21), (2.9), p. 123; Theorem A, p. 117; Theorem 2.1, p.
124]. Suppose we have f D 0, fw0;w1g 2 H1.˝/ � L2.˝/ and g 2 L2.˙/.
Then we have the unique solution w satisfies

w 2 H˛.Q/ D C.Œ0; T �IH˛.˝//\H˛.0; T IL2.˝//I wj˙ 2 H2˛�1.˙/:
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(ii) [27, Theorem 5.1, (5.4), (5.5), p. 149; Theorem C, p. 118; Theorem 7.1, p.
158]. Suppose now f 2 L2.Q/, fw0;w1g 2 H1.˝/ � L2.˝/ and g D 0. Then
we have

w 2 C.Œ0; T �IH1.˝//; wt 2 C.Œ0; T �IL2.˝//I wj˙ 2 Hˇ.˙/:
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Chapter 16
Solutions of Stochastic Systems Generalized
Over Temporal and Spatial Variables

Irina V. Melnikova, Uliana A. Alekseeva, and Vadim A. Bovkun

The paper is dedicated to the blessed memory of Alfredo
Lorenzi, brilliant mathematician and bright personality

Abstract The Cauchy problem for systems of differential equations with white
noise type random perturbations is considered as a particular case of the first
order abstract Cauchy problem with generators of R-semigroups in Hilbert spaces
and with Hilbert space valued random processes. A generalized Q-white noise
and cylindrical white noise are introduced as generalized derivatives of Q-Wiener
and cylindrical Wiener processes in special spaces of distributions; R-semigroups
generated by differential operators of the systems are defined; solutions generalized
over the temporal and spacial variables are constructed in spaces of type D 0.� 0/,
where topological spaces � 0 are chosen in dependence on singularities of solution
operators to the corresponding homogeneous systems.

16.1 Introduction and Setting of the Problem

Models of various evolution processes considered with regard to random pertur-
bations lead to problems for equations with inhomogeneities of white noise type
in infinite dimensional spaces. Among them, important for applications are the
first-order Cauchy problems with operators A being generators of different type
semigroups in a Hilbert spaceH and a white noise W with values in another Hilbert
space H :

X 0.t/ D AX.t/C B W .t/; t � 0; X.0/ D �; (16.1)

especially with differential operators A D A
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Let .˝;F ; P / be a random space. We consider the Cauchy problem for the
stochastic partial differential equation

@X.t; x; !/

@t
D A

�
i
@

@x

�
X.t; x; !/C B W .t; x; !/; t � 0; x 2 R

n; ! 2 ˝;

X.0; x; !/ D �.x; !/. The equations are understood here almost surely with respect
to P (Pa:s:). Further we usually omit ! and write the problem as follows

@X.t; x/

@t
D A

�
i
@

@x

�
X.t; x/C B W .t; x/; t � 0; X.0; x/ D �.x/; x 2 R

n;

(16.2)
still implying the equalities hold Pa:s:. White noise W , being informally defined in
the finite-dimensional case, is a process identically distributed with independent at
different moments t1, t2 random values, with zero expectation and infinite variation.
Because of the definition, a white noise has irregular properties and in the “classical
theory” stochastic equations are considered in an integral form with the stochastic
integral with respect to a Brownian motion being “a primitive” of W . The infinite-
dimensional Brownian motion is used to call a Wiener process. Then a white nose
can be defined as a generalized derivative of a Wiener process.

The operator of the equation is a matrix-operator A


i @
@x

� D ˚
Ajk
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��m
j; kD1

generating different type systems in the Gelfand–Shilov classification [6].Ajk


i @
@x

�
are linear finite orders differential operators with constant coefficients. The corre-
sponding homogeneous (deterministic) Cauchy problem:

@u.t; x/

@t
D A

�
i
@

@x

�
u.t; x/; t 2 Œ0; T �; x 2 R

n; u.0; x/ D f .x/;

(16.3)
is not well-posed in the classical sense. It is well-posed in a generalized sense,
precisely in spaces � 0 of generalized over x functions, determined by properties
of operator A
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�
, that is by properties of the system. Considered as an abstract

Cauchy problem, this problem has unbounded solution operators and A generates
an R-semigroup of operators in H .

By the reason of unboundedness of solution operators to (16.3) and white noise
singularities, we consider (16.2) as a generalized stochastic Cauchy problem with
W defined as the derivative of a Wiener processW in the sense of distributions over
time variable t and with values in appropriate spaces � 0. So, for each test function
' 2 D , we have a function of two variables h'.�/;W .�; x; !/i: for each x 2 R

n, it
is a random value with respect to ! 2 ˝ square integrable on ˝ with respect to P
and a Pa:s: function of x 2 R

n with properties which we will discuss later.
Stochastic problems (16.1) and (16.2) are of great interest from point of view

both theoretical study and applications. As we have mentioned above, the main
known approach to the investigation of the problems is studying them in the integral
form, where the inhomogeneity is considered as the stochastic Ito integral with
respect to a Wiener process (see e.g. [3,5,10]). In this framework weak R-solutions
of problems with A generating R-semigroups were obtained [9]. Generalized over
t solutions of the Cauchy problem (16.1) with white noise W and A generating
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integrated and convoluted semigroups were constructed [1]. Relations between
weak (weak regularized) solutions and generalized ones are shown in [7].

To obtain a solution to (16.2) in the case under consideration we need to construct
solutions generalized over several variables. In the present paper we propose to
consider the problem (16.2) in a sense of generalized functions over two variables
t and x: in spaces of type D 0.� 0/ for a topological space � 0; there are a lot of
questions here, even in finite dimensional case (see, e.g. [12]). On the way of
studying and solving the problem we construct a Q-white noise and a cylindrical
white noise, R-semigroups generated by different differential operators, spaces of
the type D 0.� 0/, and finally obtain generalized over t and x solutions in D 0.� 0/,
where topological spaces � 0 are chosen in dependence on singularities of solution
operators to (16.3). Operator B is supposed to be in L .H;H/ for the case of a
Q-white noise and B 2 LHS.H;H/ (Hilbert–Schmidt operators) for the case of a
cylindrical white noise.
R-semigroup technique for ill-posed deterministic Cauchy problems with the

Gelfand–Shilov operators A
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@x

�
firstly was used in [11] for construction of

regularizing algorithms with help of the generalized Fourier transform and a
regularizing functionK D K".	/; 	 2 R, defining an R-semigroup and depending
on a regularizing parameter " > 0. This technique turns out to be also useful for
solving the stochastic Cauchy problem (16.2): it makes possible to construct an
operator that defines generalized solutions of this problem via weak regularized
solutions, which in turn is determined by K D K.	/; 	 2 R, corresponding
to different types of systems in the Gelfand–Shilov classification and defining
correspondingR-semigroup.

16.2 Wiener Processes and White Noises in Hilbert Spaces

Let H be a separable Hilbert space and Q be a linear symmetric nonnegative trace
class operator in H.

Definition 16.1 An H-valued stochastic process fWQ.t/; t � 0g is called a Q-
Wiener process if

(QW1) WQ.0/ D 0 Pa.s. ;
(QW2) the process has independent incrementsWQ.t/ �WQ.s/, 0 � s � t , with

the normal distribution N .0; .t � s/Q/;
(QW3) WQ.t/ has continuous trajectories Pa.s.

Since Q is a nonnegative trace class operator, its eigenvectors fej g form an
orthonormal basis in H and TrQ D P1

jD1 	2j < 1, where Qej D 	2j ej . Then the
Q-Wiener process fWQ.t/; t � 0g is represented by the convergent in L2.˝IH/
series:

WQ.t/ D
1X
jD1

	j ˇj .t/ej ; t � 0;
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where ˇj .t/ are independent Brownian motions. Thus, an H-valuedQ-white noise
WQ can be defined as follows:

h'.�/;WQ.�/i WD �h' 0.�/;WQ.�/i; ' 2 D ; Pa.s.: (16.4)

Here WQ.�/ meansQ-Wiener process fWQ.t/; t � 0g continued by zero for t < 0.
As for a cylindrical Wiener process fW.t/; t � 0g in H, where Q D I and

Tr I D 1, that corresponds to 	2j D 1, it is formally defined by a divergent in
L2.˝IH/ series

P1
jD1 ˇj .t/ej DW W.t/, t � 0, Pa.s. [3, 10]. However, fW.t/; t �

0g can be treated as a Q1-Wiener process in a wider Hilbert space H1 � H with a
trace class operator Q1 W H1 ! H1 and can be represented by a series, convergent
L2.˝IH1/. Let us show it beginning with construction of H1 in such a way that
H D J.H1/, where J is a positive self-adjoint Hilbert–Schmidt embedding operator.
Define a norm on H1 WD J�1.H/ by kf kH1 WD kJf kH. Then fgj D J�1ej g is
an orthonormal basis in H1. Among all such operators J we choose one defined
on the basis as Jgj WD �j gj where, by properties of Hilbert–Schmidt operators,P1

jD1 �2j < 1, that is we construct H1 as closed linear span of the vectors fgj D
ej
�j

g. As a result, we obtain that fW.t/; t � 0g defined in H by the formal seriesP1
jD1 ˇj .t/ej is a Q1-Wiener process in H1 :

W.t/ D
1X
jD1

�j ˇj .t/gj ; t � 0; (16.5)

with zero expectation and covariation operator Q1 WD J 2 being a trace class
operator as the product of Hilbert–Schmidt operators. Thus, an H1-valued white
noise W .�/ in (16.1) can be defined similarly (16.5):

h'.�/;W .�/i WD �h' 0.�/;W.�/i; ' 2 D ; Pa.s.; (16.6)

where W.�/ means Wiener process (16.5) continued by zero for t < 0. In this
connection we can expand B 2 LHS.H;H/ to H1 as an operator from L .H1;H/.

Note, that the well known condition for existence of the stochastic integralR t
0
˚.s/dW.s/ with respect to a cylindrical Wiener process (see, e.g. [3, 10]) is

formally defined under the same conditions as with respect to a Q-Wiener process.

16.3 R-semigroups Generated by Differential Operators

Construction of R-semigroups is related to the homogeneous Cauchy prob-
lem (16.3). We consider it as a particular case of the deterministic abstract Cauchy
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problem

u0.t/ D Au.t/; t 2 Œ0; �/; u.0/ D f; (16.7)

in a Banach space H .

Definition 16.2 Let A be a closed linear operator and R be a bounded linear
operator in a Banach space H with densely defined R�1. A strongly continuous
by t family fS.t/; t 2 Œ0; �/; � � 1g of bounded linear operators in H is called
an R-semigroup generated by A if

S.t/Af D AS.t/f; t 2 Œ0; �/; f 2 domA; (16.8)

S.t/f D A

Z t

0

S.�/f ds C Rf ; t 2 Œ0; �/; f 2 H: (16.9)

The semigroup is called local if � < 1.

IfA generates anR-semigroup, then it commutes withR on domA and if in addition
AjR.domA/ D A, then

u.t/ D R�1S.t/f; f 2 R.domA/; (16.10)

is a unique solution of the Cauchy problem (16.7) and the problem is R-well-posed,
that is ku.t/k � CkR�1f k, t 2 Œ0; �/ (see, e.g. [2, 8, 13]).

Note that solution operators R�1S.t/ of the Cauchy problem (16.7) with the
generator of an R-semigroup are not defined on the whole H , as it takes place for
generators of C0 class semigroups; operators R�1S.t/ are defined only on R.H/
and are not bounded on this set. Thus u.t/, t 2 Œ0; T � is not stable with respect to
small changes of initial data in H .

Let us return to (16.3). We will show that A
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@x

�
, in dependence on its

properties, generates different R-semigroups in the space H D Lm2 .R
n/ WD

L2.R
n/ � � � � � L2.Rn/. Following [6], we apply the generalized Fourier transform

to the system (16.3) and consider the dual one:

@Qu.t; s/
@t

D A.s/Qu.t; s/; t 2 Œ0; T �; s 2 C
n: (16.11)

Here the matrix-function A.s/; s 2 C
n is the Fourier transform of A
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�
and

vector-function Qu.t/ D Qu.t; s/, s 2 C
n is the Fourier transform of u.t/ D u.t; x/,

x 2 R
n.

Let the functions �1.�/; : : : ; �m.�/ be characteristic roots of the matrix-operator
A.�/ in (16.11) and �.s/ WD max

1�k�mRe �k.s/, s 2 C
n. If p is the maximal order
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of the differential operatorsAjk
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@x

�
, then solution operators of (16.11) satisfy the

estimate [6] :

et�.s/ � ��etA.s/
��
m�m � C.1C jsj/p.m�1/et�.s/; t � 0; s 2 C

n; (16.12)

where k � km�m is the norm of the m � m matrix-function etA.s/ constructed as the

corresponding series for the matrix A.s/: etA.s/ D I C tA.s/C t 2A2.s/

2Š
C : : :

Definition 16.3 Let 	 D Re s. The system (16.3) is called

1) correct by Petrovsky if there exists such a C > 0 that �.	/ � C; 	 2 R
n;

2) conditionally-correct if there exist such constants C > 0, 0 < h < 1, C1 > 0

that �.	/ � C j	 jh C C1; 	 2 R
n;

3) incorrect if the function �.�/ grows for real s D 	 in the same way as for
complex ones:�.	/ � C j	 jp0 CC1; 	 2 R

n; where the number p0 WD inf f � W
j�.s/j � C�.1C jsj/�; s 2 C

ng is called a reduced order of system (16.3).

Theorem 16.1 Let � > 0. Let K.	/, 	 2 R
n, satisfy the conditions:

1. K.�/eTA.�/ 2 Lm2 .Rn/ �Lm2 .Rn/;
2. K.	/etA.	/ is a bounded matrix-function of .nC 1/ variables on Œ0; T � � R

n for
arbitrary T 2 .0; �/, that is

9C > 0 W kK.	/etA.	/km�m � C; t 2 Œ0; T �; 	 2 R
n:

Then the family of convolution operators

ŒS.t/f �.x/ WD GR.t; x/ 
 f .x/; t 2 Œ0; �/; x 2 R
n; (16.13)

where

GR.t; x/ WD 1

.2�/n

Z
Rn

e�i	xK.	/etA.	/ d	; t 2 Œ0; �/; x 2 R
n; (16.14)

forms a local R-semigroup in Lm2 .R
n/ with generator A
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�
and

Rf .x/ D 1

.2�/n

Z
Rn

e�i	xK.	/ Qf .	/ d	; x 2 R
n: (16.15)

Proof For the sake of simplicity we give the proof for n D 1.
First note that to prove operators S.t/; t 2 Œ0; �/ form an R-semigroup, it is

sufficient to prove all the properties of Definition 16.2 on arbitrary Œ0; T � � Œ0; �/.
So, take T 2 .0; �/. Since K.�/eTA.�/ satisfies condition (1) of the theorem, the
integral in (16.14)

1

2�

Z 1

�1
e�i	xK.	/etA.	/ d	; t 2 Œ0; T �;
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is convergent in Lm2 .R/ � Lm2 .R/. Moreover, this convergence is uniform with
respect to t 2 Œ0; T � and the obtained matrix-function GR.t; x/, called regularized
Green function, is defined. Since, in addition, the matrix-function K.	/etA.	/ is
bounded, the integral

Z 1

�1
e�i	xK.	/etA.	/ Qf .	/ d	; t 2 Œ0; T �; (16.16)

is an element of Lm2 .R/ for each Qf 2 Lm2 .R/.
Now we are ready to check that the family (16.13) forms a local R-semigroup

in Lm2 .R/. First, we verify the strong continuity property of the family fS.t/; t 2
Œ0; T �g: for each f 2 Lm2 .R/ and T < � we show that kS.t/f � S.t0/f k ! 0 as
t ! t0; t0 2 Œ0; T �.1

kS.t/f � S.t0/f k2 D
Z
R

���� 12�
Z 1

�1
e�i	xK.	/

h
etA.	/ Qf .	/

� et0A.	/ Qf .	/
�
d	

����
2

m

dx:

Let us split the inner integral into the three ones:

Z
j	 j�N

e�i	xK.	/etA.	/ Qf .	/ d	 �
Z

j	 j�N
e�i	xK.	/et0A.	/ Qf .	/ d	 C

C
Z

j	 j�N
e�i	xK.	/


etA.	/ � et0A.	/

� Qf .	/ d	: (16.17)

Here the functions hN .x; t/ WD
Z

j	 j�N
e�i	xK.	/etA.	/ Qf .	/ d	 and

gN .x; t/ WD
Z

j	 j�N
e�i	xK.	/


etA.	/ � et0A.	/� Qf .	/ d	

are elements of Lm2 .R/ for each t 2 Œ0; T � as the inverse Fourier transform of the
functions from Lm2 .R/

QhN .	; t/ D
�

0; j	 j � N;

K.	/etA.	/ Qf .	/; j	 j > N;

1Throughout this proof the norm k � k denotes the norm in Lm2 .R/. This means that kf k2 DPm
jD1

R
R

jfj .x/j2 dx D R
R

�Pm
jD1 jfj .x/j2

�
dx D R

R
kf .x/k2m dx, where k � km denotes the

norm of vector in C
m.
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and QgN .	; t/ D K.	/etA.	/ Qf .	/ � QhN .	; t/ � K.	/et0A.	/ Qf .	/ C QhN .	; t0/,
respectively. The integral (16.16) is convergent uniformly with respect to both x 2 R

and t 2 Œ0; T �, that provided by K.�/etA.�/ 2 Lm2 .R/ � Lm2 .R/ and Qf .�/ 2 Lm2 .R/.
Hence for any " > 0

khN .x; t/km < "=4; x 2 R; t 2 Œ0; T �;

by the choice ofN and the sum of absolute values of the first two integrals in (16.17)
is less than "=2. Now fix N . Since



e.t�t0/A.	/ � 1

� ! 0 as t ! t0 uniformly with
respect to 	 2 Œ�N;N �, we can take kgN .x; t/km < "=2; x 2 R; t 2 O.t0/: To
obtain the estimate for

kS.t/f � S.t0/f k2 D 1

4�2

Z
R

khN .x; t/ � hN .x; t0/C gN .x; t/k2mdx

we consider the difference hN .x; t/ � hN .x; t0/ DW �N.x; t; t0/, t; t0 2 Œ0; T �, as
a single function, then �N .�; t; t0/ 2 Lm2 .R/ and for a fixed N by the choice of t0,
k�N.x; t; t0/km < "=2, x 2 R. In these notations we have:

4�2kS.t/f � S.t0/f k2 �
Z
R

k�2
N .x; t; t0/km dxC

C 2

Z
R

k�N .x; t/gN .x; t; t0/km dx C
Z
R

kg2N .x; t/km dx:

On the way described above one can show that each of these three integrals is an
infinitesimal value. Really, the integrals over the infinite intervals jxj > M are small
by the choice ofM because of their uniform convergence with respect to t 2 Œ0; T �.
Integrals on compacts Œ�M;M� are small because the integrands are small, that is
provided by the sequential choice of M and t 2 O.t0/. This completes the proof
that operators of the family (16.13) are strongly continuous.

Next, we show that the obtained operators commute with A
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�
on f 2

domA
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�
. By properties of convolution, a differential operator may be applied

to any components of convolution, so we apply A
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�
to f 2 domA
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�
:

A

�
i
@

@x

�
ŒS.t/f �.x/ D GR.t; x/ 
 A

�
i
@

@x

�
f .x/ D S.t/A

�
i
@

@x

�
f .x/;

and obtain the equality (16.8) hold.
In conclusion, we show the R-semigroup equation (16.9). For an arbitrary f 2

domA
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�
consider the equality:

@

@t
ŒS.t/f �.x/ D @

@t
ŒGR.t; x/ 
 f .x/� D 1

2�

@

@t

Z 1

�1
e�i	xK.	/etA.	/ Qf .	/ d	:



16 Solutions of Stochastic Systems 361

To differentiate under the integral sign we apply the dominated convergence
theorem. Due to conditions on K.�/, the difference quotient is uniformly bounded
with respect to t 2 Œ0; T �:
����e�i	xK.	/

�
etA.	/ � et0A.	/

t � t0
�

Qf .	/
����
m

D

D
���e�i	xK.	/e.t0C�.t�t0//A.	/A.	/ Qf .	/

���
m

� C
���A.	/ Qf .	/

���
m

and the condition f 2 domA
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�
provides A.�/ Qf .�/ 2 Lm2 .R/. Hence the

conditions of the dominated convergence theorem hold and

@

@t
ŒS.t/f �.x/ D 1

2�

Z 1

�1
e�i	xK.	/etA.	/A.	/ Qf .	/ d	:

Taking into account that the inverse Fourier transform ofA.	/ Qf .	/ is A


i @
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�
f .x/

we obtain

@

@t
ŒS.t/f �.x/ D GR.t; x/ 
 A

�
i
@

@x

�
f .x/ D A

�
i
@

@x

�
ŒGR.t; x/ 
 f .x/� D

D A

�
i
@

@x

�
ŒS.t/f �.x/:

Integration with respect to t gives the equality

ŒS.t/f �.x/ � ŒS.0/f �.x/ D
Z t

0

A

�
i
@

@x

�
ŒS.�/f �.x/ d�:

Since A
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�
is closed in Lm2 .R/ and differentiable functions are dense there, the

equality holds for any f 2 Lm2 .R/ :

ŒS.t/f �.x/ � ŒS.0/f �.x/ D A

�
i
@

@x

�Z t

0

ŒS.�/f �.x/ d�; t 2 Œ0; T �:

Let operator R in Lm2 .R/ equal to S.0/, then by the strong continuity property,

Rf .x/ D 1

2�

Z 1

�1
e�i	xK.	/ Qf .	/ d	:

So, we have proved that operators (16.13) form in Lm2 .R/ the R-semigroup
generated by A
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with R defined by (16.15). ut
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Note that in [11], where as we mentioned in introduction, the R-semigroup
technique was related to Gelfand–Shilov systems, a proof of the R-semigroup
property was not given.

Corollary 16.1 If the system (16.3) is correct by Petrovsky, the function K.	/ D
1

.1C	2/d=2C1 satisfies the conditions of the theorem with d D p.m � 1/.

If the system (16.3) is conditionally-correct, we can chooseK.	/ D e�aj	 jh with
a > a0T , where a0 D a0.p;m;C1; C2/ is defined by the corresponding parameters
of Definition 16.3 and the estimate (16.12).

If the system (16.3) is incorrect, we can choose K.	/ D e�aj	 jp0 with a >

a0T , where a0 D a0.p;m;C1; C2/ is defined by the corresponding parameters of
Definition 16.3 and (16.12).

Remark 16.1 Let us note, that the inverse operator to R is determined by solving
the equation g.x/ D Rf .x/ D F�1ŒK.	/ Qf .	/�, that implies

R�1g.x/ D F �1
� Qg.	/
K.	/

�
; x 2 R

n:

16.4 The Space D 0.� 0/

Define the space D 0.� 0/ as the space L .D ; � 0/ of linear continuous operators from
D to � 0. Here D is the space of infinitely differentiable functions with compact
supports in R. � is a locally convex space and � 0 is its adjoint with the weak
topology, i.e. the topology corresponding to the convergence of a sequence on each
element of a test space. We assume D 0.� 0/ equipped with the strong topology, i.e.
that corresponding to the uniform convergence on bounded sets of D .

For the case of L.Schwartz space D 0 D L .D ;R/ the well known fact is that for
any compact K � R and any f 2 D 0 there exist such p 2 N0 and C > 0 that
jf .'/j � Ck'kp , where k'kp D supK
R

k'kK;p , ' 2 D . This is a reflection of
the structure of D 0 D T

K

S
p D

0
K;p , where the space DK;p consisting of all p times

differentiable functions with supports in the compact K � R is complete with the
norm

k'kK;p D sup
q�p

sup
t2K

j'.q/.t/j;

and D 0
K;p D L .DK;p;R/.

We prove a similar statement for D 0.� 0/.

Proposition 16.1 Let K � R be a compact set. For any f 2 D 0.� 0/ there exists
such p 2 N0 that for any bounded set B � DK;p the set f .B/ is bounded in � 0.

Proof Suppose the opposite: let for each p 2 N0 there exists such a set Bp bounded
in DK;p that f .Bp/ is not bounded in � 0, that is there exists a weak neighborhood
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V in � 0 such that �f .Bp/ 6� V for any � > 0. Thus, we obtain

8p 2 N0 9Bp � DK;p; 9V � � 0 W
�

8� > 0 9'� 2 Bp W �f .'�/ 62 V
�
:

Take � D 1
n

! 0, then 1
n
'n ! 0 in DK;p because 'n are from a bounded set.

Therefore 1
n
f .'n/ D f .

'n
n
/ ! 0 in � 0 weakly, that is on each element of � . But

we have a weak neighborhood V in which there no elements of this sequence. This
contradiction ends the proof. ut

Due to the proposition, we obtain the structure theorem in the introduced space
similarly considered in [4].

Theorem 16.2 Let U 2 D 0.� 0/ and G � R ba an open bounded set. Then there
exist a continuous function f W R ! � 0 and an integer m 2 N0 such that for any
' 2 D with supp' � G

U.'/ D f .m/.'/:

Proof LetK D G and " > 0. DenoteK" D ft 2 R W �.t;K/ � "g and let p be that
provided by Proposition 16.1 for K" and U . We extend U to DK";p by continuity
and save after it the same notation. Then for any bounded set B � DK";p the set
U.B/ is bounded in � 0.

Let

�.t/ D
(

tpC1

.pC1/Š ; t � 0;

0; t < 0:

The function is obviously p times continuously differentiable. Take � 2 D with
support in K", t 2 R and consider �t .s/ WD �.s/�.t � s/; s 2 R: The function �t .�/
is p times continuously differentiable and supp�t 	 K", hence �t 2 DK";p for each
fixed t 2 R. In addition the function is continuous with respect to parameter t 2 R,
therefore f .t/ WD U.�t/; t 2 R; is a well defined continuous function with values
in � 0. This function f defines a regular functional with values in � 0:

Z
'.t/f .t/ dt D

Z
'.t/U.�t/ dt; ' 2 D :

Considering this integral as the limit of Riemann sums, we arrive at the equality

Z
'.t/U.�t/ dt D U

�Z
'.t/�t dt

�
;

where
R
'.t/�t dt D R

'.t/�.s/�.t � s/ dt D �.s/
R
'.t/�.t � s/ dt is in DK";p as

a function of s.
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To complete the proof we choose �.s/ D 1 for s 2 K , take ' 2 D , supp' 2 G
and find the generalized derivative of order p C 2 from f :

f .pC2/.'/ WD .�1/pC2f .'.pC2// D .�1/pC2
Z
'.pC2/.t/f .t/ dt D

D .�1/pC2U
�
�.s/

Z
'.pC2/.t/�.t � s/ dt

�
:

Integrating by parts p C 1 times, we obtain

Z
'.pC2/.t/�.t � s/ dt D .�1/pC1

Z
' 0.t/�.pC1/.t � s/ dt D

D .�1/pC1
Z
t�s
' 0.t/ dt D .�1/pC2'.s/:

Then

f .pC2/.'/ D .�1/pC2U


�.s/.�1/pC2'.s/

� D U.'/;

since � � 1 in G . ut

16.5 Solving the Problem in Spaces D 0.� 0/

Now return to the stochastic Cauchy problem (16.2). We defined a Hilbert space
valued process W , being a Q-white noise or a cylindrical white noise by (16.4)
or (16.6) as the generalized derivative of the corresponding Wiener process W.t/.
Therefore, the problem (16.2) is understood in the generalized sense over t , this
means that for each ' 2 D , � 2 domA



i @
@x

� � Lm2 .R
n/ and x 2 R

n

h'.t/; X 0
t .t; x/i D h'.t/; A

�
i
@

@x

�
X.t; x/iC'.0/�.x/CBh'.t/;W 0

t .t; x/i; Pa:s::
(16.18)

Since W is not generally a regular distribution (over t), X is not a regular
distribution too. Since the differential operator A



i @
@x

�
generates the R-semigroup

fS.t; �/; t 2 Œ0; �/g in Lm2 .R
n/ defined by (16.13), the unique solution of

the homogeneous Cauchy problem corresponding to (16.2), exists for any � 2
R


domA



i @
@x

��
and can be found as follows:

R�1S.t; x/�.x/ D R�1 ŒGR.t; x/ 
 �.x/� D F �1
"
K.	/etA.	/ Q�.	/

K.	/

#
D

D F �1
h
etA.	/ Q�.	/

i
DW G.t; x/ 
 �.x/:
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Here, since A generally generates an R-semigroup, not a C0-class semigroup, the
Green function G.t; �/ is a generalized function with respect to x 2 R

n in an
appropriate space � 0 depending on properties of the system (that is on properties
of R-semigroup), the convolution of G with initial data � is well-defined for
� 2 R 
domA



i @
@x

��
.

Nevertheless, we need to define the convolution with the stochastic inhomo-
geneity to obtain a solution of (16.2), this inhomogeneity generally is not in the
indicated set of well-posedness and we need to construct the convolution on the
whole Lm2 .R

n/. This forces to consider the generalized over t problem (16.18) in a
generalized sense with respect to x 2 R

n, i.e. in a space � 0.
Thus, we arrive at the problem: for each ' 2 D ,  2 �

h .x/; h'.t/; X 0
t .t; x/ii D h .x/; A

�
i
@

@x

�
h'.t/; X.t; x/ii C

C'.0/h .x/; �.x/i C h .x/; Bh'.t/;W 0
t .t; x/ii; Pa:s:: (16.19)

Here the notation X.t; x/ means that distribution X.�; �/ acts on '.t/ by the first
argument and on  .x/ by the second one.

Theorem 16.3 Let W be a Q-white noise or a cylindrical white noise. Let A


i @
@x

�
generate a local R-semigroup fS.t; �/; t 2 Œ0; �/g in Lm2 .R

n/ and AR�1S.t; �/ W
Lm2 .R

n/ ! � 0 is a bounded operator for each t 2 Œ0; �/. Then

X.t; x/ D R�1S.t; x/�.x/CR�1S.t; x/ 
 BW .t; x/; � 2 Lm2 .Rn/; (16.20)

solves (16.19) in D 0.� 0/.

Proof Begin with definition the first term of the prospective solution (16.20).
Property (16.10) of R-semigroups and boundness of AR�1S.t; �/ from Lm2 .R

n/ into
� 0 imply that

h .x/;R�1S.t; x/�.x/i D h .x/;G.t; x/ 
 �.x/i;  2 �;

is a continuous and differentiable function of t , hence we can consider a regular
generalized function over D :

h'.t/; h .x/;R�1S.t; x/�.x/ii D
Z
'.t/h .x/;G.t; x/ 
 �.x/i dt D

D
Z
'.t/h .x/;R�1S.t; x/�.x/i dt; ' 2 D :
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Replacing the last integral by the integral sums, we obtain

X
'.ti /h .x/;R�1S.ti ; x/�.x/i�ti D h .x/;

X
'.ti /R

�1S.ti ; x/�.x/�ti i:

Since the left side of the equality has the limit, the right one has too. Passing to the
limit, we obtain representation of R�1S.t; x/�.x/ in D 0.� 0/:

h .x/; h'.t/; R�1S.t; x/�.x/ii D h'.t/; h .x/;R�1S.t; x/�.x/ii D

D
Z
'.t/h .x/;G.t; x/ 
 �.x/i dt; ' 2 D ;  2 �: (16.21)

Now define the second term in (16.20). The convolution with respect to t of
generalized functions on D is defined via convolution of their primitives. Hence we
obtain

h'.t/; h .x/;R�1S.t; x/ 
 BW 0
t .t; x/ii D �h' 0.t/;

Z t

0

h .x/;R�1S.t � h; x/

�BW.h; x/i dhi:

As above, h .x/;R�1S.t � h; x/BW.h; x/i is a continuous and differentiable
function with respect to t , hence it defines a regular functional on D . Using the
definition of generalized derivative, replacing integrals by Riemann sums due to
linearity property of the considered functionals, we obtain

h'.t/; h .x/;R�1S.t; x/ 
 BW 0
t .t; x/ii D

D �
Z
' 0.t/

Z t

0

h .x/;R�1S.t � h; x/BW.h; x/i dh dt D

D h .x/; h�' 0.t/;
Z t

0

R�1S.t � h; x/BW.h; x/ dhii D

D h .x/; h�' 0.t/; R�1S.t; x/ 
 BW.t; x/ii
D h .x/; h'.t/; R�1S.t; x/ 
 BW 0

t .t; x/ii;

and get the representation of R�1S.t; x/ 
 BW 0
t .t; x/ in D 0.� 0/:

h .x/; h'.t/; R�1S.t; x/ 
 BW 0
t .t; x/ii

D h'.t/; h .x/;R�1S.t; x/ 
 BW 0
t .t; x/ii

D �h' 0.t/;
Z t

0

h .x/;G.t � h; x/ 
 BW.h; x/i dhi:
(16.22)
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Now verify that the defined generalized function (16.20) satisfies (16.19):

h .x/; h'.t/; X 0
t .t; x/ii D �h .x/; h' 0.t/; X.t; x/ii D

D �h .x/; h' 0.t/; R�1S.t; x/�.x/

CR�1S.t; x/ 
 BW 0
t .t; x/ii D

D �h .x/; h' 0.t/; R�1S.t; x/�.x/ii
�h .x/; h' 0.t/; R�1S.t; x/ 
 BW 0

t .t; x/ii: (16.23)

Due to (16.21) and properties of a solution of the homogeneous Cauchy problem,
for the first term in the right-hand side we have

�h .x/; h' 0.t/; R�1S.t; x/�.x/ii D �h' 0.t/; h .x/;G.t; x/ 
 �.x/ii D

D h'.t/; d
dt

h .x/;G.t; x/ 
 �.x/ii
C'.0/h .x/;G.0; x/ 
 �.x/i D

D h .x/; A
�
i
@

@x

�
h'.t/; G.t; x/ 
 �.x/ii

C'.0/h .x/; �.x/i D

D h .x/; A
�
i
@

@x

�
h'.t/; R�1S.t; x/�.x/ii

C'.0/h .x/; �.x/i:

Using (16.22), the definition of generalized derivative, properties of solutions of the
homogeneous Cauchy problem, properties of R-semigroups and convolutions, and
replacing integral by Riemann sums due to linearity of the functional for the second
term of (16.23) we get

�h .x/; h' 0.t/; R�1S.t; x/ 
 BW 0
t .t; x/ii D

D h' 00.t/;
Z t

0

h .x/;R�1S.t � h; x/BW.h; x/i dhi D

D �h' 0.t/; h .x/;R�1S.0; x/BW.t; x/ii �

�h' 0.t/;
Z t

0

d

dt
h .x/;G.t � h; x/ 
 BW.h; x/i dhi D

D h .x/; h'.t/;BW 0
t .t; x/ii C

Ch .x/; A
�
i
@

@x

�
h'.t/; R�1S.t; x/ 
 BW 0

t .t; x/ii:
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Joining both parts of (16.23) we obtain

h .x/; h'.t/; X 0
t .t; x/ii D h .x/; A

�
i
@

@x

�
h'.t/; R�1S.t; x/�.x/ii C

C'.0/h .x/; �.x/i
Ch .x/; h'.t/;BW 0

t .t; x/ii C h .x/;

A

�
i
@

@x

�
h'.t/; R�1S.t; x/ 
 BW 0

t .t; x/ii D

D h .x/; A
�
i
@

@x

�
h'.t/; X.t; x/ii C '.0/h .x/; �.x/i C

Ch .x/; h'.t/;BW 0
t .t; x/ii;

that completes the proof. ut
Remark 16.2 Note that the proof of uniqueness for the linear stochastic equation is
not so easy as for the deterministic one, even in the basic case ofC0 class semigroups
[3]. In the paper [9] we proved that a weak regularized solution is unique. In [7] is
proved the relationship between weak (weak regularized) and generalized solutions.
Based on these results the uniqueness of the obtained generalized solutions can be
proved.

In conclusion we define spaces � 0 for each class of systems under consideration in
accordance with Gel’fund–Shilov classification given in Definition 16.3.

These spaces provide operators R�1S.t; �/ D G.t; �/
 to be bounded ones
from Lm2 .R

n/ into � 0 for t 2 Œ0; T �. This holds if dual operators eA.�/t


as well

as A.�/eA.�/t and A2.�/eA.�/t� are bounded operators of multiplication from Lm2 .R
n/

into e� 0 defined as Fourier transforms of spaces � 0 : e� 0 D F Œ� 0�.
On the base of results from [6] we obtain the following spaces e� 0 and � 0:

1) for systems correct by Petrovsky e� 0 D S 0, the well-known space of tempered
distributions. In this case � 0 D S 0;

2) for conditionally-correct systems e� 0 D S 0̨ with ˛ D ˛.h/, where S 0̨ is adjoint
to the space S˛ . The space S˛ (˛ � 0) consists of all infinitely differentiable
functions '.�/ of argument x 2 R satisfying inequalities:

jxk'.q/.x/j � Cqa
kkk˛; k; q 2 N0; x 2 R;

with constants a D a.'/ and Cq D Cq.'/ (kk˛ D 1 as k D 0). In particular,
S0 D D . In this case � 0 D .S˛/0, where .S˛/0 is adjoint to the space S˛ .
The space S˛ (˛ � 0) consists of all infinitely differentiable functions '.�/ of
argument x 2 R satisfying to the inequalities

jxk'.q/.x/j � Ckb
qqqˇ; k; q 2 N0; x 2 R; (16.24)

with some constants b D b.'/, Ck D Ck.'/. (For q D 0 we suppose qqˇ D 1.);
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3) for incorrect systems e� 0 D W 0
M;a with functionM.�/ chosen with respect to p0,

whereW 0
M;a is adjoint to the space WM;a. The space WM;a is defined as follows.

Let �.�/ be an increasing continuous function on Œ0I 1/ and let �.0/ D 0,
lim
�!1�.�/ D 1. Set

M.x/ WD
Z x

0

�.�/ d�; x � 0; M.x/ WD M.�x/; x < 0:

Then M.�/ increases at infinity faster than any linear function. The space WM;a

consists of all infinitely differentiable functions '.�/ of argument x 2 R

satisfying for any ı > 0 the inequalities

ˇ̌
'.q/.x/

ˇ̌ � Cq; ı e
�M..a�ı/x/; x 2 R; q 2 N0;

with some constantsCq;ı D Cq;ı.'/. The functions fromWM decrease at infinity
faster than any exponent of type e�ajxj. In this case � 0 D .W ˝;1=a/0, where˝.�/
is dual by Young to M.�/ [6].
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Chapter 17
Recovering the Reaction Coefficient in a Linear
Parabolic Equation

Gianluca Mola

The results are devoted in memory of Alfredo Lorenzi, my
mentor and friend

Abstract We study the inverse problem consisting in the identification of the
reaction constant in a linear parabolic equation under quadratic overdeterminating
conditions, which can be local and nonlocal with respect to the time variable. The
results we provide concern the well-posedness and the stability of the solutions
under singular limit of the parameters. The argument is constructive, and relies on
an approximation scheme that computes the solutions. This extends and deepens our
previous investigations on the same problem.

17.1 Introduction

As it is well-known, the linear parabolic reaction-diffusion equation

@tu ��u D � u (17.1)

prescribed in the bounded and smooth domain ˝ � Rd and endowed with
homogeneous boundary conditions, admits globalL2-well-posedness for all the real
values of the reaction coefficient �, supposed to be a known constant parameter.
More precisely, it is possible to show that, if u.�; 0/ 2 L2.˝/, then for any arbitrary
T > 0 there exists a unique (weak) solution

u 2 C.Œ0; T �IL2.˝//\ L2.0; T IH1.˝//\H1.0; T IH�1.˝//;
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to the above problem, for all given �. This will be called the standard direct
problem. We stress that the corresponding proof (cf., for instance [7]) is constructive,
and relies on a suitable finite-dimensional approximation of the problem—the
Faedo-Galerkin scheme—which can also be applied for computer-based numerical
simulations.

Nevertheless, assuming a datum as given, roughly speaking, means that it can
be measured. On the other hand, in practical cases, measurements can be extremely
difficult, or too expensive, to be performed. This is the motivation for considering
as unknown one parameter, or more, appearing in a mathematical model (like, in
our present case, constant coefficient �), along with the “solution” u. Thus, aiming
for recovering well-posedness results, it is necessary to feed the entry data of the
problem with suitable overdeterminating conditions. This is the inverse problem.

In the recent paper [10] we successfully study the inverse problem consisting in
the identification of parameter � in equation (17.1) (together with u), under the
additional measurement of the norm of u in the “final” instant t D T ; that is,
considering the optimal regularity for the solution of the associated direct problem,
we require

˛

Z
˝

ju.x; T /j2dx C ˇ

Z T

0

d�

Z
˝

jru.x; �/j2dx D �; (17.2)

where ˛; ˇ � 0, ˛ C ˇ > 0 and � > 0 are given constants. The main idea we
develop consists in introducing the functional M of the form

M .u/ D
1

2

Z
˝

ju.x; T /j2dx � 1

2

Z
˝

ju.x; 0/j2dx C
Z T

0

d�

Z
˝

jru.x; �/j2dx

Z T

0

d�

Z
˝

ju.x; �/j2dx

that is readily seen, by the standard energy identity, to compute the constant � in
terms of u ¤ 0. Then, the inverse problem of recovering u and � is modified in
the following way: find a function u W ˝ � Œ0; T � ! R fulfilling the (nonlinear)
equation

@tu ��u D M .u/ u in ˝ � .0; T /; (17.3)

endowed with the same initial-boundary conditions prescribed in the standard direct
problem, and fulfilling the additional constraint (17.2).

Once again, we stress that equation (17.3) is not a differential (forward or
backward) equation, due to the nonlocal and noncausal nature of the functional
M .u/, which requires the knowledge of the global dynamic on the whole interval
Œ0; T �, and—to the best of our knowledge—seems to have no general results to lay
on. Nevertheless, in [10] we proved that the same approximation scheme as the
standard direct problem can be adapted to the new one, thus leading to existence
and uniqueness of the couple .u; �/ under the further regularity assumption u.�; 0/ 2
Hs.˝/, for some s > 0. Those techniques will be fully explained and extended in
the course of the paper (cf. Sect. 17.3).
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Also, it is important to notice that the above techniques have been introduced on
the abstract equation

u0.t/C Au.t/ D M .u/A	u.t/; t 2 .0; T /;

where u is a vector-valued function in an (abstract) Hilbert space H , A W D.A/ !
H is an unbounded closed linear operator as well as its fractional power A	 ,
	 < 1, and M is a nonlocal functional defined on the domain C.Œ0; T �IH/ \
L2.0; T ID.A1=2//, with u ¤ 0 (see Sect. 17.2). In this setting, the additional datum
reads

˛ku.T /k2 C ˇ

Z T

0

kA1=2u.�/k2d� D �:

This formulation of the problem lets to prove the same statements in a wider class
of applications such as, for instance, the fourth-order parabolic equations.

The aims of the present paper are twofold. The first one, which is preparatory for
the second, consists into generalizing the well-posedness results in [10], in the same
abstract setting, under the extended additional condition

˛kAq=2u.T0/k2 C ˇ

Z T2

T1

kAr=2u.�/k2d� D �; (17.4)

that allows measurements of any energy level (q; r 2 R) in arbitrary time-instant
T0 2 .0; T � and time-interval ŒT1; T2� 	 Œ0; T �. The second aim, that is the main
goal of the paper, is the one to deduce informations about the qualitative behavior of
u and � as the given data approaches values that can be related to some meaningful,
possibly singular, state of our problem. To this purpose, we point out that the
additional measurement (17.4) is allowed to degenerate to one summand only in
the limiting cases

• ˇ D 0: ˛kAq=2u.T0/k2 D � instantaneous measurement at T0;

• ˛ D 0: ˇ

Z T2

T1

kAr=2u.�/k2d� D � nonlocal measurement on ŒT1; T2�.

Focusing on the second case, we now observe that, if we choose ˇ D .T2 � T1/
�1

and q D r D s, then the formal limiting relation holds

1

T2 � T1
Z T2

T1

kAs=2u.�/k2d� ! kAs=2u.T0/k2 as T1 � T2 ! 0

when T1 ! T0 and T2 ! T0. That is, the interval ŒT1; T2� is shrinking to the
singleton fT0g, as we shall assume from now on. This means, roughly speaking, that
the instantaneous measurement can be approximated by an averaged integral one in
the same energy norm kAs=2 � k (s 2 R), provided that the related solution—if it
exists and is unique—is regular enough.
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Thus, if we denote by .w; !/ the solution to our inverse problem with instanta-
neous additional data, and by .v; �/ the one related to the integral data, it is natural
to expect that, if T2�T1 ! 0 and the respective data are close, then v and w (as well
as � and !) will be close, in the proper function spaces. This can be considered as
an extension of the usual continuous dependence on the data, in the more involved
case when the model is modifying its shape by transforming a nonlocal datum into
a localized one, with respect to the time variable. We shall call such a process as
the singular limit, and its rigorous statement is the main task of this paper. For our
purposes, the datum we are interested in transforming under a singular limit process
is the overdeterminating condition, which is the main feature of the inverse problem.
We also point out that considering additional data which are localized with respect to
the space variable requires a different approach and will be analyzed in forthcoming
papers.

It is useful to point out that the problem of recovering unknown function-
parameters entering a parabolic problem has been widely studied. In particular, we
can quote the contribution of Cannon and DuChateau in [5], where a time-dependent
coefficient is identified in the space of Hölder-continuous functions, under a linear
(integral) overdeterminating condition, by means of fixed-point techniques. Also,
in papers [2, 6, 19] the existence of numerical solutions for problem of this kind
have been investigated, and convergence results have been established for time-
approximation schemes. It is important to mention that, in all of these cases, the
underlying domain˝ is either a segment, either a rectangle. The main advantage of
using space-approximations consists in the fact that both analytical and numerical
results can be proven even for more complicate geometries for the domain ˝ .
Moreover, the approach we propose concerns the existence of weak solutions, other
than classical ones, which as well as in direct problems—allow to deal with more
general sets of initial data.

Besides, it is also useful to recall our recent contribution [11], which is concerned
with the identification of the unknown constant diffusion coefficient � > 0, along
with u and � as above, in the same abstract Cauchy problem

u0.t/C �Au.t/ D � u.t/; t 2 .0; T /; u.0/ D u0;

when u fulfills two “final time” overdeterminating conditions

kAr=2u.T /k2 D ' and kAs=2u.T /k2 D  .r ¤ s/

provided that the data u0, and ';  > 0 satisfy proper a priori limitations.
Furthermore, in [15] the identification of the diffusion coefficient solely is studied
in the case of vanishing reaction coefficient.

We conclude this introduction by mentioning that, to the best of our knowledge,
there are only few papers (see [1, 4, 9, 12, 14, 18]) where a constant rather than a
function is identified. Nevertheless, the statement of singular limits in the field of
inverse problems appears to be new in literature.
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17.1.1 Plan of the Paper

In Sect. 17.2 we introduce the basic notations on the abstract setting and we state
rigorously the problem we shall investigate as well as the main results of the paper
(i.e. the well-posedness and the singular limit). In Sect. 17.3 we prove the well-
posedness results by constructing the suitable finite-dimensional approximation
scheme. Section 17.4 is devoted to study the behavior of the singular limit. Finally,
in Sect. 17.5 we provide two concrete applications, which generalize the one devised
in the introduction. The appendix is devoted to exploit some remark on sequence of
implicit defined functions that we use in the previous sections.

17.2 Preliminaries

Let H be a (real) separable Hilbert space endowed with the scalar product h�; �i and
the related norm k � k. Let also A W D.A/ ! H be a self-adjoint (unbounded)
operator. We shall also require A to be strictly positive, i.e. hAu; ui � �1kuk2 for
some �1 > 0 and for all u 2 D.A/. Under the further assumption that D.A/ is
compactly embedded in H , we recall that by means of the spectral decomposition
theorem (see [17] for details), there exist two sequences

fhng1
nD1 � D.A/ (eigenfunctions) and f�ng1

nD1 � .0;1/ (eigenvalues);

where the set of hn forms an orthonormal complete system in H , i.e.

H1 D
1[
nD1

Hn; Hn D spanfh1; : : : ; hng

is dense in H with hhi ; hj i D ıi;j , and 0 < �1 � �2 � : : : � �n�1 � �n " 1 as
n ! 1, such that

Ahn D �nhn; n � 1:

Next we define the fractional positive powers A	 by the formula

A	u D
1X
nD1

�	nhu; hnihn; 	 � 0

on the domain

D.A	/ D
(

u 2 H W
1X
nD1

�2	n jhu; hnij2 < 1
)
:
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In order to state the proper formulation of our identification problem, we introduce
the family of Hilbert spaces V	 D D.A	=2/, 	 � 0, endowed with the scalar product
hA	=2�; A	=2�i and the related norm k � k	 D hA	=2�; A	=2�i1=2. Finally, we define the
spaces V�	 with a negative index as V�	 D .V	/

�, 	 � 0 as well as the fractional
negative powers A�	 by the formula

A�	u D
1X
nD1

��	
n hu; hnihn; 	 � 0;

on the domain V�2	 (cf., in particular, Sect. 17.3.3). Notice also that, as Ar is an
isomorphism of Vs onto Vs�r for all s; r 2 R, then for all r < s, Vs is compactly
embedded in Vr . Moreover, the following Poincaré-type inequality holds

�s�r1 kuk2r � kuk2s ; u 2 Vs: (17.5)

In the course of our investigation, we shall also use the following interpolation
inequality (see [11, Lemma 2.3])

Lemma 17.1 Let a < b < c and u 2 Vc . Then there holds

kukb � kuk c�b
c�a
a kuk b�a

c�a
c :

On account to the functional setting above introduced, we can state the rigorous
abstract formulation of the general inverse problem we aim at investigating. From
now on we set T0 > 0, T1 < T2 and q; r 2 R. Then we have

Inverse problem Find a vector-valued function u W Œ0; T � ! H and a real number
� fulfilling the abstract Chaucy problem

u0.t/C Au.t/ D �A	u.t/; t 2 .0; T /; u.0/ D u0;

and the additional constraint

˛ku.T0/k2q C ˇ

Z T2

T1

ku.�/k2rd� D � (17.6)

where u0, ˛; ˇ � 0 (˛ C ˇ > 0) and � > 0 are given.



17 Recovering the Reaction Coefficient in a Linear Parabolic Equation 377

17.2.1 Weak Formulation and Well-Posedness

We can now define the real functional M , which, as discussed in the introduction,
computes the constant �. We define the continuous functional

M .u/ D
1

2
ku.T /k2� � 1

2
ku.0/k2� C

Z T

0

ku.�/k21C�d�
Z T

0

ku.�/k2	C�d�
(17.7)

on the domain u 2 C.Œ0; T �IV�/ \ L2.0; T IV1C�/, u ¤ 0. It is important to notice
that, although functional M depends on the particular choice of �, in the following
we shall prove that its value computed in a solution of Problem P do not depend on
� (see Remarks 17.1 and 17.2).

We are now in a position to state the weak formulation of our problem as

Problem P Find a function u W Œ0; T � ! Vs (s 2 R) that fulfills the equation

hu0; hi C hA1=2u; A1=2hi D M .u/hA	=2u; A	=2hi; 8 h 2 V1Cs; a:e: t 2 .0; T /
(17.8)

the initial datum u.0/ D u0 and the additional condition (17.6).

Then, we state the existence result in the next

Theorem 17.1 Let 	 < 1 and s � q, s > r � 1. Then, for all u0 2 Vs , u0 ¤ 0 and
all � > 0 there exists

u 2 C.Œ0; T �IVs/\ L2.0; T IV1Cs/\H1.0; T IV�1Cs/

solving Problem P.

Moreover, the solution u depends continuously on the initial data, as stated in the
next theorem, which, as a byproduct, proves the uniqueness of the solution.

Theorem 17.2 For u0;j 2 Vs , u0;j ¤ 0 and �j > 0 .j D 1; 2/, define uj be the
corresponding solution to Problem P devised in Theorem 17.1. Then

ku1.t/ � u2.t/k2s C
Z t

0

ku1.�/� u2.�/k21Cs Cku0
1.�/ � u0

2.�/k2�1Cs
�
d�

� C � 
ku0;1 � u0;2k2s C j�1 � �2j
�

for all t 2 Œ0; T �, where C is a positive constant depending on the parameters
s; 	; T0; T1; T2 and on the data u0;j ; �j .
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Notice that the above well-posedness theorems generalize the ones in [10],
where the additional condition is the same as (17.6) under the restrictions on the
measurement times T0 D T2 D T and T1 D 0, and on the regularity parameters
q D s and r D s C 1, with s > 0. Furthermore, it is important to mention that the
results provided by Theorems 17.1 and 17.2 hold also in the limiting case s D q,
which requires a nontrivial improvement of the techniques devised in [10].

17.2.2 Main Results: The Singular Limit

We now state the main result in the paper; that is, the regular behaviour of the
solutions under the singular limit. To this purpose, we denote by v and w the
solutions to Problem P, originating by the nonvanishing initial data

v.0/ D v0 and w.0/ D w0

and fulfilling, respectively, the additional conditions

1

T2 � T1
Z T2

T1

kv.�/k2sd� D �v and kw.T0/k2s D �w:

We recall that for every v0; w0 2 Vs and �v; �w > 0 existence and uniqueness
of v and w, along with the regularity therein stated, is ensured by Theorems 17.1
and 17.2, under the choices

for v W

8̂
<̂
ˆ̂:

˛ D 0;

ˇ D .T2 � T1/�1;
r D s;

for w W

8̂
<̂
ˆ̂:

˛ D 1;

ˇ D 0;

q D s:

(17.9)

Then, we are in a position to state our theorems.

Theorem 17.3 Let v and w as above. Then

v ! w strongly in C.Œ0; T �IVs/ \L2.0; T IV1Cs/\H1.0; T IV�1Cs/

as

v0 ! w0 in Vs; �v ! �w and T1; T2 ! T0:

The next step consists into deepening the convergence result above stated by
displaying a continuous dependence estimate. To this purpose, we define

!0 D kw.T0/k21Cs
kw.T0/k2	Cs

;
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and we show that, whenever ! D M .w/ is different from the singular value !0,
then the convergence in Theorem 17.3 is of Lipschitz-type with respect to the data.
More precisely

Theorem 17.4 Under the assumption

! D M .w/ ¤ !0

there exists a positive constant K (depending on the parameters s; 	; T0; T1; T2 and
on the data v0;w0; �v; �w, but independent of T2 � T1) such that the estimate

kv.t/ � w.t/k2s C
Z t

0

kv.�/ � w.�/k21Cs C kv0.�/ � w0.�/k2�1Cs
�
d�

� K � 
kv0 � w0k2s C j�v � �wj C T2 � T1
�

is fulfilled for all t 2 Œ0; T �.
Notice that, due to the parabolic nature of our problem, both numbers kw.T0/k1Cs

and kw.T0/k	Cs are finite. Therefore, it is not possible to exclude a priori that the
equality ! D !0 can be verified. We also stress that, in this case, establishing some
weaker regularity result for the convergence v ! w (possibly, of Hölder-type) is
still an open problem that will be analyzed in the future.

17.3 Well-Posedness

We now provide a constructive proof of Theorems 17.1 and 17.2. In order to achieve
the assertion, following the main idea in [10], we shall adapt a Faedo-Galerkin
(finite-dimensional) approximation scheme to our problem.

17.3.1 The Finite-Dimensional Problem

We set

un.t/ D
nX
iD1

vi .t/vi ;

where un D .v1; : : : ; vn/ W Œ0; T � ! R
n is an unknown vector-valued function. We

also define xn D .x1; : : : ; xn/, having set the compact notation xi D hu0; hi i (i.e.
xn is the vector whose coordinates are the coefficients of the projection of u0 on the
finite-dimensional subspace Hn D spanfh1; : : : ; hng). Notice that condition u0 ¤ 0
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implies that, eventually, xn ¤ 0. Accordingly, we define N D N.u0/ D minfn �
1 W xn ¤ 0g.

Then, the approximate problem reads

Problem Pn Find a function un W Œ0; T � ! Hn that fulfills the equation

hu0
n; hi C hA1=2un; A1=2hi D M .un/hA	=2un; A	=2hi; 8 h 2 Hn; (17.10)

for almost every t 2 .0; T /, the initial datum

un.0/ D
nX

iDN
xi hi ;

and the additional condition

˛kun.T0/k2q C ˇ

Z T2

T1

kun.�/k2rd� D �:

The first step towards our main results consists in proving the next

Theorem 17.5 Let 	 < 1 and let n � N . Then, for all initial data xn ¤ 0 and all
� > 0 there exists a unique

un 2 C1.Œ0; T �IHn/

solving to problem Pn.

Choosing h D hi , i D 1; : : : ; n in (17.10), problem Pn can be equivalently stated
as: find a function un D .v1; : : : ; vn/ 2 C1.Œ0; T �IRn/ fulfilling the vector equation

u0
n.t/C Anun.t/ D �nA

	
nun.t/; 8t 2 .0; T /;

where we setAn D diag.�1; : : : ; �n/ (diagonal matrix) and�n D M .un/, the initial
datum un.0/ D xn and the additional condition

˛

nX
iDN

�
q
i jvi .T0/j2 C ˇ

nX
iDN

�ri

Z T2

T1

jvi .�/j2d� D �: (17.11)

In order to prove Theorem 17.5, we use the well-known exponential representa-
tion formula on Œ0; T �

un.t/ D e.�AnC�nA	n/txn D
�
x1 e

.��1C�n�	1 /t ; : : : ; xn e.��nC�n�	n/t
�
:
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Then, by replacing the expressions for ui .t/ in (17.11), we have

˛

nX
iDN

�
q
i x

2
i e

2.��iC�n�	i /T0 C ˇ

nX
iDN

�ri x
2
i

Z T2

T1

e2.��iC�n�	i /�d� D �:

Therefore, we can prove the existence of a solution of the finite-dimensional
problem if we can find (at least) one real solution �n of the equation

˛ �n.�/C ˇ  n.�/ D �; � 2 R; (17.12)

for all fixed � > 0, having set

�n.�/ D
nX

iDN

�
q
i x

2
i e

2.��iC��	i /T0 and  n.�/ D
nX

iDN

�ri x
2
i

Z T2

T1

e2.��iC��	i /�d�:

Notice that the functions �n and  n above introduced, as it is apparent, depend also
on the given data xn and Tk (k D 0; 1; 2), without stressing in the notation. Such
dependences will play a fundamental role in the following (cf. Sects. 17.3.4 and
17.4).

The proof of next lemma is straightforward

Lemma 17.2 Let xn ¤ 0, T0 > 0 and T1 < T2 to be fixed. Then the real functions
�n and  n are positive, smooth and strictly increasing on R. Moreover

�n.�/ ! C1 and  n.�/ ! C1 as � ! C1

and

�n.�/ ! 0C and  n.�/ ! 0C as � ! �1:

As an immediate consequence of Lemma 17.2, we deduce that for any � > 0
there exists of a unique �n D �n.q; r; 	; T0; T1; T2; xn; �/ solution to equa-
tion (17.12). Thus, by setting �n as the constant in the exponential representation
formula above, we have constructed a solution to problem Pn. Thus, Lemma 17.5 is
proved.

Remark 17.1 As, by definition,�n D M .un/ in problem Pn, then uniqueness result
of the solution to equation (17.12) implies that functional M is independent on the
choice of �, if calculated in un.
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17.3.2 A Priori Estimates

We first provide an upper bound for the sequence f�ng, that can be proved as in (cf.
[10, Lemma 3.4]). We have

Lemma 17.3 Let �n, for n � N D minfn � 1 W xn ¤ 0g be the solution to
equation (17.12). Then �n is monotone nonincreasing. In particular, �n satisfies

�n D M .un/ � �N ; 8 n � N:

Thanks to the upper limitation provided by Lemma 17.3, the proof of the next
result and can be easily recovered by standard arguments.

Lemma 17.4 The function un exploited in Theorem 17.5 satisfies the estimate

kun.t/k2s C
Z t

0

kun.�/k21Cs C ku0
n.�/k2�1Cs

�
d� � cs; 8 t 2 Œ0; T �;

where the positive constant cs depends on s; 	; T0; T1; T2; u0 and �, but is indepen-
dent of n.

17.3.3 Passage to the Limit

The last step in order to prove Theorem 17.1 consists in showing that un tends in a
proper sense to a suitable function u, which is a solution to problem P. First, starting
from the estimate in Lemma 17.4, we invoke the weak compactness theorem, to
deduce (up to subsequences) the limit relations

un
w�! u in L1.0; T IVs/; un

w! u in L2.0; T IV1Cs/;
u0
n

w! u0 in L2.0; T IV�1Cs/

as n ! 1, for some u 2 L1.0; T IVs/\L2.0; T IV1Cs/\H1.0; T IV�1Cs/. Now,
notice that the embedding V1Cs ,! Vs is compact, then we can apply the classic
compactness result due to J. Simon (see [16, Corollary 4]) to get un ! u strongly
in C.Œ0; T �IVs/ which, as s � q, implies kun.T0/kq ! ku.T0/kq . Also, under
limitation s > r � 1, the same argument yields un ! u strongly in L2.0; T IVr/,
and therefore we have

R T2
T1

kun.�/k2rd� ! R T2
T1

ku.�/k2rd� . This proves that u
fulfills (17.6). Moreover, by setting � < s in the definition (17.7) of M .un/ (which,
as pointed out in Remark 17.2, is independent of �), it is immediate to deduce
M .un/ ! M .u/. Thus, we are left to prove that u fulfills equation (17.8) and the
initial datum u.0/ D u0. This can be done by integrating the equation over .0; T /
and using the convergence stated above.
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This concludes the proof of Theorem 17.1. ut
Remark 17.2 Since the sequence �n D M .un/ is independent on the choice of �
then its limit � D M .u/ enjoys the same property.

17.3.4 Uniqueness

We aim at proving the continuous dependence estimate provided in Theorem 17.2
and once again our proof relies on the finite-dimensional approximation of the
solutions. Back to equation (17.12), we need to exploit the dependence of its
solution�n on xn (as the one on � is trivial). For this purpose, we invoke the implicit
function theorem, to deduce the relation

rxn�n D �rxn .˛�n C ˇ n/

@� .˛�n C ˇ n/
;

having set the notation rxn D .@x1 ; : : : ; @xn/. First notice that

@��n.�/ D 2T0

nX
iDN

�
	Cq
i x2i e

2.��iC��	i /T0

and

@� n.�/ D 2

nX
iDN

�	Cr
i x2i

Z T2

T1

�e2.��iC��	i /�d�:

Consequently, limiting the above sums to the first summand only, we deduce the
lower bound

@� Œ˛�n.�/C ˇ n.�/� � 
.�/jxN j2; (17.13)

having set


.�/ D 2˛T0�
	Cq
N e2.��NC��	N /T0 C 2ˇ

Z T2

T1

�e2.��NC��	N /�d� > 0:

Analogously, we see that for all i D N; : : : ; n there holds

@xi �n.�/D 2�
q
i xi e

2.��iC��	i /T1 and @xi  n.�/D 2�ri xi

Z T2

T1

�e2.��iC��	i /�d�:
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As the sequence ��n C ��	n is eventually negative, then the (continuous and
positive) function

ı.�/ D 2

�
max
i�N

�
˛2�

q
i e
4.��iC��	i /T0 C ˇ2�ri

Z T2

T1

�e2.��iC��
	
i /�d�

	�1=2

is well-defined and, consequently, we deduce

jrxn Œ˛�n.�/C ˇ n.�/�j � ı.�/jxnj: (17.14)

Finally, collecting (17.13) and (17.14) with � D �n, we deduce the upper bound

jrxn�nj � c.�n/jxN j�2jxnj;

for some continuous and positive function c which is independent of n. Then, by
setting xj;n D .xj;1; : : : ; xj;n/ ¤ 0 and �j > 0 (j D 1; 2), the corresponding
solution �j;n to equation (17.12) fulfills the estimate

j�1;n � �2;nj � C.jx1;n � x2;nj C j�1 � �2j/;

for positive constant C independent of n. Moreover, as C depends continuously on
�j;n and xj;n, the above estimate con passes to the limit as n ! 1, to yield

jM .u1/ � M .u2/j2 � C2

ku0;1 � u0;2k2 C j�1 � �2j

�
:

Then, Theorem 17.2 can be proven by standard methods, following [10, Sect. 4].

Remark 17.3 Notice that the Lipschitz constant C appearing in the continuous
dependence estimate in Theorem, 17.2 which have been constructed above can be
computed as

C D max

�
ı.�1/


.�1/

ku0;1k
jxN1;1j2

;
ı.�2/


.�2/

ku0;2k
jxN1;2j2

	 2

where Nj D Nj.xj / D minfi D 1; : : : ; n W xi;j ¤ 0g (j D 1; 2). In particular, we
stress that the behavior of such a quantity may be singular as u0;j ! 0 in Vs . This is
not surprising, as the problem P makes no sense for a vanishing initial datum, due
to the definition of functional M . Nevertheless, if we choose M > 0 large enough
such that

M�1 � jxj;Nj j � jxj j � M;

then C turns out to be uniformly bounded by M6.



17 Recovering the Reaction Coefficient in a Linear Parabolic Equation 385

17.3.5 The Special Case ˇ D � D 0

It is worth to mention that, in the case when ˇ D 0 and 	 D 0, then the unique
solution �n to equation (17.12) con be explicitly computed by the expression

�n D 1

2T0
ln

�
˛�1�Pn

iD1 �si x2i e�2�i T0

�
:

Consequently, as n ! 1, we recover the representation formula

� D 1

2T0
ln

�
˛�1�P1

nD1 �sn x2n e�2�nT0

�
:

17.4 The Singular Limit

In this section we prove the convergence results provided by Theorems 17.3
and 17.4. This will be done by deducing further properties of the solutions of
equation (17.12) that will let, using the approximation scheme constructed in the
previous section, to deduce the assertions. This will require a few steps.

From now and till the end of this section, we shall denote by c a generic positive
constant, independent of T2 � T1, which may vary line to line.

Moreover, whenever necessary, we shall always assume to work within the regu-
larization scheme provided by the constructive Faedo-Galerkin method, devised in
Sect. 17.3. Such a remark is crucial, in order to make rigorous the formal derivation
of most of the estimates in what follows (see, in particular, the multiplication
argument in the proof of Lemma 17.7).

Step 1. Setting the measurement instant T0 2 .0; T /, for the sake of simplicity,
we choose

T1 D T0 � " and T2 D T0 C "

for any " > 0 small enough, as we shall assume from now on. Consequently, we
introduce the auxiliary function w" as the solutions to Problem P, originating by
the initial datum w0 and fulfilling the additional condition

1

2"

Z T0C"

T0�"
kw".�/k2sd� D �w;

where w0 ¤ 0 and �w > 0 are the same as in Sect. 17.2.2. Coherently, we set the
short notation !" D M .w"/. Next, we need to deduce some information on the
behavior of !" as " ! 0C that will play an important role in the sequel. Recalling
that ! D M .w/, then we have
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Lemma 17.5 Let ! and !" be as above. Then !" ! ! as " ! 0C.

More is true. In fact, if !0 is the same constant as in the statement of Theorem 17.4,
then

Lemma 17.6 Let ! ¤ !0. Then the estimate

j! � !"j � c � "

is fulfilled for every small enough ".

We mention that the same results as in Lemmas 17.5 and 17.6 (with minor
modifications of the proofs) hold also in the cases when the integral condition
consists in the measurement of one among the quantities

1

"

Z T0C"

T0

kw".�/k2sd�;
1

"

Z T0C2"

T0C"
kw".�/k2sd�;

and

1

"

Z T0�"

T0�2"
kw".�/k2sd�;

1

"

Z T0

T0�"
kw".�/k2sd�

thus leading to the general case. Notice also that, in the two latter expressions, T0 is
also allowed to assume the final value T .

We now shall prove Lemma 17.5. In the curse of the proof, a crucial role is played
by the convergence results that are stated in the appendix.

Proof (of Lemma 17.5) In order to prove the claim, we exploit the regularization
scheme constructed in Sect. 17.3. To this purpose, we define wn and w";n to be,
respectively, the approximations of w and w" in the subspace Hn and, accordingly,
we set

!n D M .wn/ and !";n D M .w";n/:

Then, following Sect. 17.3.1, we recall that !n and !";n are the unique solutions to
the nonlinear equations (cf. equation (17.12))

�n.�/ D �w and  n.�/ D �w; � 2 R;

where, accordingly to the choices our data in (17.9), we have

�n.�/D
nX

iDN
�si x

2
i e

2.��iC��	i /T0 and n.�/D 1

2"

nX
iDN

�si x
2
i

Z T0C"

T0�"
e2.��iC��	i /�d�;



17 Recovering the Reaction Coefficient in a Linear Parabolic Equation 387

having posed, by convenience, xi D hw0; hi i and N D N.w0/ D minfn � 1 W
xn ¤ 0g. Notice immediately that, as the summand functions in the definition
of  n are continuous, then, by the mean value theorem, we deduce the identity
 n.�/ D �";n.�/ for all �, where we define

�";n.�/ D
nX

iDN
�si x

2
i e

2.��iC��	i /T"

for some T0 � " < T" < T0 C ". We now introduce the sequence of functions ˚n
and its uniform limit ˚ on the compact set Œ0; T � � Œ! � 1; ! C 1�, defined by

˚n.�; �/ D
nX

iDN
�si x

2
i e

2.��iC��	i /� and ˚.�; �/ D
1X
nDN

�sn x
2
n e

2.��nC��	n/� :

Since ˚.T0; !/ D �w and the maps � 7! ˚n.�; �/ and � 7! ˚.�; �/ are
continuous and monotone increasing for any fixed � , then ˚n and ˚ are readily
seen to fulfill conditions (i) and (ii) of Theorem A in the appendix. Therefore, there
exist continuous functions

fn; f W Œ0; T � ! Œ! � 1; ! C 1�

uniquely solving, respectively, the implicit equations

˚n.�; fn.�// D �w and ˚.�; f .�// D �w on Œ0; T �;

such that fn converges pointwise to f on Œ0; T �, as n ! 1. Moreover, as ˚n is
monotone increasing, by Theorem B in the appendix we deduce that the convergence
is uniform. Since, by construction

˚n.T"; �/ D �";n.�/ and ˚n.T0; �/ D �n.�/;

recalling that (see Lemma 17.2) !n D ��1
n .�w/ and !";n D ��1

";n .�w/, we have

!";n D fn.T"/ and !n D fn.T0/:

Thus, by uniformity

lim
"!0C

!" D lim
"!0C

�
lim
n!1!";n

�
D lim

n!1

�
lim
"!0C

!";n

�
D lim

n!1!n D !:

This proves the assertion. ut
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Proof (of Lemma 17.6)
Relying on the argument introduced in the previous proof, we now need to exploit

an estimate from below of

@�˚n.�; �/ D 2�

nX
iDN

�	Cs
i x2i e

2.��iC��	i /� � 2

nX
iDN

�1Csi x2i e
2.��iC��	i /� ;

which holds uniformly in n and in a neighborhood of .T0; !/. To this purpose, notice
that

@�˚n.�; �/ D 0 if and only if � D

nX
iDN

�1Csi x2i e
2.��iC��	i /�

nX
iDN

�	Cs
i x2i e

2.��iC��	i /�
:

Moreover, by definition of w, we learn that for any � 2 .0; T � there holds

nX
iDN

�1Cs
i x2i e

2.��iC��	i /� ! kw.�/k21Cs and
nX

iDN

�	Cs
i x2i e

2.��iC��	i /� ! kw.�/k2	Cs

as n ! 1 and � ! !. We now recall that, applying the standard parabolic
smoothness results (see [13, Chap. 4]), it is possible to prove the further regularity
w 2 C..0; T �; V1Cs/, thus implying

kw.�/k1Cs ! kw.T0/k1Cs and kw.�/k	Cs ! kw.T0/k	Cs as � ! T0:

Consequently, letting n ! 1, � ! ! and � ! T0, and by means of the main
assumption of Theorem 17.4 (i.e. ! ¤ !0 D kw.T0/k21Cs=kw.T0/k2	Cs), we deduce

@�˚n.�; �/ ! 2!kw.T0/k2	Cs � 2kw.T0/k2	Cs ¤ 0:

Then, there exist N0 � N and a neighborhoodN.T0; !/ such that

@�˚n.�; �/ ¤ 0 8 n � N0 and 8 .�; �/ 2 N.T0; !/:

Therefore, we are finally led to the lower bound

c0 D 1

2
� inf
.�;�/2N.T0;!/

 
inf
n�N0

ˇ̌
ˇ̌
ˇ@�

 
nX

iDN
�si x

2
i e

2.��iC��	i /�
!ˇ̌
ˇ̌
ˇ
!
> 0;

so that, setting � D T" we get

j�n.�/ � �";n.�/j � c0";
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which, choosing n � N0 and " small enough, implies

j��1
n .�w/ � ��1

";n .�w/j D j!n � !";nj � c�1
0 ":

This, passing to the limit as n ! 1, yields the limitation

j! � !"j � c�1
0 "

that concludes the proof. ut
Step 2. We now have to study, in the proper function spaces, the behavior of

function w", as " ! 0C. This is done in the next

Lemma 17.7 The next estimate

kw.t/�w".t/k2sC
Z t

0

kw.�/ � w".�/k21Cs C kw0.�/ � w0
".�/k2�1Cs

�
d� � c�j!�!"j

is fulfilled for all t 2 Œ0; T � and for every small enough ".

Proof First, notice that function w � w" fulfills the variational equation

h.w � w"/0; hi C hA1=2.w � w"/; A1=2hi D (17.15)

.! � !"/ hA	=2w; A	=2hi C !"hA	=2.w � w"/; A	=2hi;

for all h 2 Vs and a.e. t 2 .0; T /. Then, setting h D As.w � w"/ in (17.15), we
deduce

1
2
d
dt kw.t/ � w".t/k2s C kw.t/ � w".t/k21Cs D (17.16)

.! � !"/ hA.	Cs/=2w.t/; A.	Cs/=2Œw.t/ � w".t/�i C !"kw.t/ � w".t/k2	Cs :

We now proceed in estimating the right-hand side summands in the above equality.
Using inequality (17.5) and bounds provided in Lemma 17.4, we easily get

.! � !"/ hA.	Cs/=2w.t/; A.	Cs/=2Œw.t/ � w".t/�i

� j! � !"j kw.t/k	Cskw.t/ � w".t/k	Cs

� �1�	1 j! � !"j kw.t/k1Cskw.t/ � w".t/k1Cs

� c j! � !"j2 kw.t/k21Cs C 1

4
kw.t/ � w".t/k21Cs :
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Concerning the second summand, as from Lemma 17.5 we learn that j!"j � c, then
using interpolation Lemma 17.1, we learn

!"kw.t/�w".t/k2	Cs � j!"jkw.t/�w".t/k2.1�	/s kw.t/�w".t/k2	1Cs ; if 0 < 	 < 1

and

!"kw.t/ � w".t/k2	Cs � ��2	
1 j!"jkw.t/ � w".t/k2s ; if 	 � 0;

so that, by the Young’s inequality, we get

!"kw.t/ � w".t/k2	Cs � ckw.t/ � w".t/k2s C 1

4
kw.t/ � w".t/k21Cs :

Summing up, back to (17.16), we get the differential inequality

d

dt
kw.t/�w".t/k2sCkw.t/�w".t/k21Cs � ckw.t/�w".t/k2sCc j! � !"j2 kw.t/k21Cs ;

(17.17)

that, by means of the Gronwall lemma, yields

kw.t/ � w".t/k2s � c

�Z t

0

kw.�/k21Csd�
�

j! � !"j2 � cj! � !"j; (17.18)

having used the integral bound in Lemma 17.4 and the relation w.0/ D w".0/ D
w0. Moreover, integrating both members of inequality (17.17) on .0; t/ and using
again (17.18), we easily obtain

Z t

0

kw.�/ � w".�/k21Csd� � cj! � !"j:

Finally, setting h D A�1Cs.w0 � w0
"/ in (17.15) and integrating on .0; t/, the above

inequalities allow, similarly, to recover the integral estimate

Z t

0

kw0.�/� w0
".�/k2�1Csd� � cj! � !"j;

which completes the proof. ut
Step 3. Finally, we are in a position to prove Theorems 17.3 and 17.4. To this

purpose, we use bounds provided by Theorem 17.2 and Lemma 17.7, to deduce

kv.t/ � w.t/k2s � kv.t/ � w".t/k2s C kw.t/ � w".t/k2s
� c


kv0 � w0k2s C j�v � �wj C j! � !"j
�
;
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whereas the same control holds for the term

Z t

0

kv.�/ � w.�/k21Cs C kv0.�/ � w0.�/k2�1Cs
�
d�:

Therefore, recalling that in our notations 2" D T2 � T1, then the assertions of
Theorems 17.3 and 17.4 immediately follows from Lemmas 17.5 and 17.6. This
completes the proof. ut

Remark 17.4 Concerning the Lipschitz Constant K , as it is apparent from Step
3 in the previous proof, it can be chosen by the sum of C (constant appearing in
Theorem 17.2) and constant c of Lemma 17.7. As a consequence, it displays the
same singular behavior with respect to v0 and w0 devised in Remark 17.3.

17.5 Applications

We now display concrete applications of our abstract results by applying Theo-
rems 17.1, 17.2, 17.3 and 17.4 to the parabolic initial-boundary value problems
devised in the introduction, once properly stated. To this purpose, in the following,
we denote by ˝ 	 R

d (d � 1) a bounded domain with regular boundary @˝ , with
normal direction n D .n1; : : : ; nd / and outward normal derivative @n at x 2 @˝ .
Then, we define the basic space as L2.˝/, endowed with the usual scalar product
h�; �i and norm k � k. As usual, we shall denote by Hs.˝/ the Hilbertian Sobolev
space with real exponent s.

17.5.1 Second-Order Parabolic Equations

Denote by A
 , for 
 2 Œ0; 1�, the realization of Laplace operator �� in L2.˝/ on
the domains, respectively

D.A
/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

H2.˝/\H1
0 .˝/; 
 D 0 .Dirichlet/;˚

u 2 H2.˝/ W 
 @nu
C.1 � 
/ c u D 0 on @˝g ; 
 2 .0; 1/ .Robin/;˚

u 2 H2.˝/ W @nu D 0 on @˝ andR
˝

u.x/dx D 0
�
; 
 D 1 .Neumann/

where c is a continuous and strictly positive function on @˝ . Thanks to the above
definitions, it is standard matter to check that A
 fulfills requirements of Sect. 17.2,
and denote by �n.
/ its n-th eigenvalue. Also, it is worth to mention that, when s
is positive, the subspaces V 


s D D.As
 / (previously defined in the abstract setting)
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admit the following representations (cf. [8, Theorem 8.1])

V 0
s D

(
Hs.˝/; s 2 .0; 1=2/;
Hs.˝/\H1

0 .˝/; s > 1=2;

V 

s D

(
Hs.˝/; s 2 .0; 3=2/;
fu 2 Hs.˝/ W 
@nu C .1 � 
/u D 0 on @˝g ; s > 3=2;

and

V 1
s D

( ˚
u 2 Hs.˝/ W R

˝
u.x/dx D 0

�
; s 2 .0; 3=2/;˚

u 2 Hs.˝/ W @nu D 0 on @˝ and
R
˝

u.x/dx D 0
�
; s > 3=2:

In either cases, notice that the norm in V 

s is the one in Hs.˝/.

Thus, assuming 	 < 1, v0; w0 W ˝ ! R and �v; �w > 0 to be given, we state the
following second-order inverse problems, which generalize the ones in introduction.

Problem 1 Find the function v W ˝ � Œ0; T � ! R and the real constant � such that
the following parabolic initial-boundary value problem is satisfied

8̂
<̂
ˆ̂:

@tv.x; t/C A
v.x; t/ D � A	
 v.x; t/; .x; t/ 2 ˝ � .0; T /;
v.x; 0/ D v0.x/; x 2 ˝;

 @nv.x; t/C .1 � 
/ c.x/ v.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;

along with the global measurement

1

T2 � T1

Z T2

T1

kv.�; �/k2Hs.˝/d� D �v:

And, taking an instantaneous additional measurement

Problem 10 Find the function w W ˝ � Œ0; T � ! R and the real constant ! such
that the following parabolic initial-boundary value problem is satisfied

8̂
<̂
ˆ̂:

@tw.x; t/C A
w.x; t/ D ! A	
w.x; t/; .x; t/ 2 ˝ � .0; T /;
w.x; 0/ D w0.x/; x 2 ˝;

 @nw.x; t/C .1 � 
/ c.x/w.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;

along with the instantaneous measurement

kw.�; T0/k2Hs.˝/ D �w:
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Then, abstract Theorems 17.1–17.4 yield

Theorem 17.6 Let v0; w0 2 V 

s n f0g and �v; �w > 0. Then there exist the couples

.v; �/; .w; !/ 2 
C.Œ0; T �IV 

s /\ L2.0; T IV 


1Cs/\H1.0; T IV 

�1Cs/

� � R;

unique (weak) solutions to Problems 1 and 10, respectively, depending continuously
on the data .v0; �v/ and .w0; �w/. Moreover, as

v0 ! w0 in Hs.˝/; �v ! �w and T2 � T1 ! 0

there holds

v ! w strongly in C.Œ0; T �IV 

s /\L2.0; T IV 


1Cs
/\H1.0; T IV 


�1Cs
/ and � ! !:

Furthermore, under the assumption

! ¤
kw.�; T0/k2H1Cs .˝/

kw.�; T0/k2H	Cs .˝/

;

the above convergence is of Lipschitz-type.

For the sake of computations, we point out the following concrete representations
of the fractional power operator A	
 , when

• 	 D 0, then A0
u D u on the domain L2.˝/. Recalling Sect. 17.3.5, in this case
! in Problem 10 can be explicitly computed by the formula therein provided. For
example, in the one-dimensional case˝ D Œ0; L�, the Dirichlet problem (
 D 0),
as it is well-known, yields

�n D �2L�2n and hn.x/ D
p
2L�1 sin



�L�1nx

�
; x 2 Œ0; L�:

Thus, we have

! D 1

2T0
ln

�
L2s�w

�2s
P1

nD1 n2s x2n e�2�2L�2n2T0

�

and, as a consequence

w.x; t/ D
p
2L�1 e!t

1X
nD1

xn e
��2L�2n2t sin



�L�1nx

�
; .x; t/ 2 Œ0; L�� Œ0; T �;

where, following the previous notations, for any n � 1 we define

xn D
p
2L�1

Z L

0

w0.x/ sin


�L�1nx

�
dxI
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• 	 D �1, then A�1

 u D R

˝
G .�; y/u.y/dy on the domain H�1.˝/, G being the

Green function associated to the homogeneous Poisson problem ��h D u in˝ ,
h 2 V 


2 .

17.5.2 Fourth-Order Parabolic Equations

Relying on the notations introduced in the previous Subsection, for any 
; ı 2 Œ0; 1�
we define the operator B
;ı D A
 ı Aı (composition of operators), on the domain

D.B
;ı/ D ˚
u 2 D.A
/ W � u 2 D.Aı/

�
;

which can be explicitly represented, following the representations of D.A
/ and
D.Aı/. Even in this case, B
;ı is positive and self-adjoint, and its eigenvalues

are �n.
/ � �n.ı/. Furthermore, the intermediate spaces V 
;ı
s D D.Bs


;ı/ can be

represented starting from V


s and V ı

s . Here, we point out that the norm in V 
;ı
s is the

same as in H2s.˝/.
Consequently, the fourth-order inverse problems in introduction can be general-

ized to the following

Problem 2 Find the function v W ˝ � Œ0; T � ! R and the real constant � such that
the following parabolic initial-boundary value problem is satisfied

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@t v.x; t/C B
;ıv.x; t/ D � B	

;ıv.x; t/; .x; t/ 2 ˝ � .0; T /;

v.x; 0/ D v0.x/; x 2 ˝;

 @nv.x; t/C .1 � 
/ c.x/ v.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;
ı @n�v.x; t/C .1 � ı/ c.x/�v.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;

along with the global measurement

1

T2 � T1

Z T2

T1

kv.�; �/k2
H2s.˝/

d� D �v:

And
Problem 20 Find the function w W ˝ � Œ0; T � ! R and the real constant ! such that
the following parabolic initial-boundary value problem is satisfied

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

@tw.x; t/C B
;ıw.x; t/ D ! B	

;ıw.x; t/; .x; t/ 2 ˝ � .0; T /;

w.x; 0/ D w0.x/; x 2 ˝;

 @nw.x; t/C .1 � 
/ c.x/w.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;
ı @n�w.x; t/C .1 � ı/ c.x/�w.x; t/ D 0; .x; t/ 2 @˝ � .0; T /;
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along with the instantaneous measurement

kw.�; T0/k2H2s.˝/
D �w:

Once again, Theorems 17.1–17.4 yield

Theorem 17.7 Let v0; w0 2 V 
;ı
s n f0g and �v; �w > 0. Then there exist the couples

.v; �/; .w; !/ 2
�
C.Œ0; T �IV 
;ı

s /\ L2.0; T IV 
;ı
1Cs/ \H1.0; T IV 
;ı

�1Cs/
�

� R;

unique (weak) solutions to Problems 2 and 20, respectively, depending continuously
on the data .v0; �v/ and .w0; �w/. Moreover, as

v0 ! w0 in Hs.˝/; �v ! �w and T2 � T1 ! 0

there holds

v ! w strongly in C.Œ0; T �IV 
;ı
s /\L2.0; T IV 
;ı

1Cs
/\H1.0; T IV 
;ı

�1Cs
/ and � ! !:

Furthermore, under the assumption

! ¤
kw.�; T0/k2H2.1Cs/.˝/

kw.�; T0/k2H2.	Cs/.˝/

;

the above convergence is of Lipschitz-type.

Even for the fourth-order problems, we distinguish the immediate case

• 	 D 1=2, then B1=2


;ı u D A
u D ��u on the domain V 

2 , that corresponds to a

parabolic modification of the plate equation.

17.5.3 Further Remarks

We conclude this section by recalling that, following [10, Sect. 5] all the applications
so far devised can be generalized to the wider family of differential operators on ˝
of the second-order

A .x; @x/ D �
dX

i;jD1
@xi


ai;j .x/@xj

�C a0.x/

and fourth-order

B.x; @x/ D
dX

i;j;k;lD1
@xi @xj


bi;j;k;l .x/@xk @xl

� �
dX

i;jD1
@xi

bi;j .x/@xj

�C b0.x/;
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provided that coefficients fulfill suitable assumptions, which ensure that their
realizations in L2.˝/ are positive and self-adjoint.
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Appendix: Sequences of Implicit Defined Functions

Here we need to exploit some fact regarding implicit functions that is of use
in the paper (cf. Sect. 17.4). In particular, we shall investigate the pointwise and
the uniform convergence of sequences of implicit defined functions, under the
assumption that the generator maps are converging, in some sense.

Let X 	 R
d and ˛; ˇ be continuous functions on X such that ˛.x/ < ˇ.x/.

Define

X D ˚
.x; y/ 2 R

dC1 W x 2 X and ˛.x/ � y � ˇ.x/
�
:

We shall prove the next

Theorem A Let Fn; F W X ! R be continuous functions such that

(i) Fn converges pointwise to F on X , as n ! 1;
(ii) the maps y 7! Fn.x; y/ and y 7! F.x; y/ are (strictly) increasing for any

x 2 X .

Then, for every c 2 .ImF /ı and for every large enough n, there exist continuous
functions fn; f W X ! R uniquely solving, respectively, the implicit equations

Fn .x; fn.x// D c and F .x; f .x// D c on X

such that fn converges pointwise to f on X , as n ! 1.

Furthermore, by requiring that Fn is monotone, we can obtain more informations
on fn and its mode of convergence to f , as we state in

Theorem B Under the assumptions of Theorem A, if the sequence fFn.x; y/g is
increasing for any .x; y/ 2 X , then ffn.x/g is decreasing for any x 2 X . In this
case, the convergence to f is uniform on every compact subset of X .

Preliminary Fact

Here we need to point out one property of the uniform convergence that will be
useful in the following.
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Proposition 1 Let fn a sequence of continuous functions uniformly convergent to
f on a compact intervalK , as n ! 1. If

T
n Imfn D fcg, then f � c identically

on K .

Proof Let an and bn, respectively, minimum and maximum points of fn in K , and
suppose that, up to subsequences an ! a and bn ! b for some a; b 2 K . By
uniformity, we see that, as n ! 1

fn.an/ � fn.x/ � fn.bn/ implies f .a/ � f .x/ � f .b/ 8x 2 K:

Moreover, assumption

\
n

Imfn D
\
n


fn.an/; fn.bn/

� D fcg

yields lim
n!1fn.an/ D f .a/ D lim

n!1fn.bn/ D f .b/ D c. This concludes the proof.
ut

Previous Results

The next results will play a fundamental role in the course of our investigation. As
the former is well-known, the latter can be found in [3, Theorem 1].

Lemma 1 Let fn be a sequence of functions on a compact interval K , pointwise
converging to a continuous function f on K , as n ! 1. If f is increasing, then
the convergence is uniform on K .

Lemma 2 Let fn be a sequence of invertible functions on an interval I , uniformly
converging to a continuous function f on I , as n ! 1. If f is invertible, then the
sequence f �1

n converges uniformly to f �1 on any sub-interval of
T
n Imfn.

Proof of Theorem A

We are now in a position to prove Theorem A.

Step 1. We show that the requirement c 2 .ImF /ı implies that, eventually, c 2
.ImFn/

ı. In fact, choose a positive ı such that .c � ı; c C ı/ � ImF , and let
.x�; y�/ 2 F �1..c � ı; c// and .xC; yC/ 2 F�1..c; c C ı//. Then, by (i), for
any large enough n there holds

c � ı < Fn.x�; y�/ < c < Fn.xC; yC/ < c C ı;

which, by continuity of Fn, implies c 2 .ImFn/ı.
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Step 2. By the implicit function theorem, existence, uniqueness and continuity of
fn and f for n large enough are consequence of assumption (ii).

Step 3. Using (ii) again, by Lemma 1, we deduce that Fn.x; �/ converges uni-
formly to F.x; �/ on Œ˛.x/; ˇ.x/�. Also, by monotonicity, c 2 .ImFn.x; �//ı
and c 2 .ImF.x; �//ı. Now, suppose fcg D T

n ImFn .x; �/, then Proposition
1 implies that F .x; �/ is constant on Œ˛.x/; ˇ.x/�, leading to a contradiction.
Consequently, it is possible to choose a positive ıx (depending on x but
independent of n) small enough so that

.c � ıx; c C ıx/ �
\
n

ImFn .x; �/ :

Step 4. We need to prove that fn converges to f pointwise onX . To this purpose,
let x 2 X to be fixed. As the maps F�1

n .x; �/ and F�1.x; �/ are well-defined
and continuous on the domains ImFn .x; �/ and ImF .x; �/, respectively, we can
apply Lemma 2 to deduce that F�1

n .x; �/ converges uniformly to F�1.x; �/ on
.c � ıx; c C ıx/. This, yields, in particular

fn.x/ D F�1
n .x; �/.c/ ! F�1.x; �/.c/ D f .x/;

as n ! 1 for any fixed x, which concludes the proof. ut

Proof of Theorem B

In order to prove that fn is monotone decreasing in n, consider the identity

0 D FnC1.x; fnC1.x// � Fn.x; fn.x// D

D
h
FnC1.x; fnC1.x// � FnC1.x; fn.x//

i
C
h
FnC1.x; fn.x// � Fn.x; fn.x//

i
:

As, by the monotonicity of Fn, the second summand in the above expression is
nonnegative, there holds

FnC1.x; fnC1.x// � FnC1.x; fn.x//:

This, again by (ii), yields fnC1.x/ � fn.x/ for any x 2 X .
Finally, ifK is a compact subset ofX , then the convergence of fn to f is uniform

on K as a straightforward consequence of Dini’s Lemma. ut
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Chapter 18
Lp-Theory for Schrödinger Operators
Perturbed by Singular Drift Terms

Noboru Okazawa and Motohiro Sobajima

Dedicated to the memory of late Professor Alfredo Lorenzi

Abstract Our concern is the essential m-accretivity in Lp.RN / .1 < p < 1; N 2
N/ of the minimal realization of second-order elliptic operator with strongly singular
drift termAp;minu D ��uCbjxj�2.x �r/uCVu, where b 2 R is a constant and V 2
L
p
loc.R

N n f0g/ is bounded below by the inverse-square potential: V.x/ � c0jxj�2
with a new critical constant c0 D c0.b; p;N / 2 R. Namely, we shall generalize the
result on the Schrödinger operators (that is, Ap;min with b D 0) due to Kalf, Walter,
Schmincke and Simon in Edmunds and Evans (Spectral Theory and Differential
Operators, The Clarendon Press, Oxford, 1987) (p D 2) and Okazawa (Jpn. J. Math.
22, 199–239, 1996) (p 2 .1;1/) to that on the general case of Ap;min with b ¤
0. The proof is based on those techniques in singular perturbation of m-accretive
operators and resolvent-positivity together with Kato’s inequality. These ideas in
operator theory are summarized in Okazawa (Jpn. J. Math. 22, 199–239, 1996).

18.1 Introduction and Result

In this paper we consider the following second-order elliptic operator in Lp D
Lp.RN / (1 < p < 1 and N 2 N) with a strongly singular drift term:

8̂
<
:̂
.Ap;minu/.x/ WD ��u.x/C b

jxj2 .x � r/u.x/C V.x/u.x/;

D.Ap;min/ WD C1
0 .R

N n f0g/;
(18.1)
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where b 2 R is a constant and V 2 L
p
loc.R

N n f0g/ is a real-valued function. Our
concern is the essential m-accretivity of Ap;min in Lp . Here we discuss it under the
following lower bound on V :

V.x/ � c0.b; p;N /

jxj2 a:a: x 2 R
N n f0g (18.2)

for a new critical value c0 D c0.b; p;N / 2 R.
In particular, if b D 0, then Ap;min is nothing but a Schrödinger operator. In this

case it is well-known that if p D 2 and V satisfies (18.2) with

c0.0; 2;N / WD �N.N � 4/

4
;

then A2;min is nonnegative and essentially selfadjoint. This is known as the Kalf-
Walter-Schmincke Simon theorem (see Edmunds and Evans [1, Theorem VII.4.2]
or Reed and Simon [11, Theorem X.11]). The result depends essentially on both of
Hardy’s and Rellich’s inequalities. In fact, on the one hand, �c0.0; 2;N / D N.N �
4/=4 is known as the best constant of the classical Rellich inequality:

N.N � 4/

4

��� u

jxj2
���
L2

� k�ukL2; u 2 H2.RN /; N � 5I

in this connection note that the modified Rellich inequality holds for every N 2 N:

N.N � 4/
4

Z
RN

juj2
.jxj2 C "/2

dx � Re
Z
RN

.��u/u

jxj2 C "
dx; u 2 H2.RN /; " > 0

(see Okazawa et al. [10, Lemma 3.3] in which the original proof in Okazawa [7] is
simplified). On the other hand, the nonnegativity ofA2;min is verified by the classical
Hardy inequality

.N � 2/2

4

Z
RN

juj2
jxj2 dx �

Z
RN

.��u/u dx; u 2 H2.RN /; N � 3:

It is worth noticing that the positive difference .N � 2/2 � N.N � 4/ D 4 implies
that

c0.0; 2;N / D max
n
� .N � 2/2

4
;�N.N � 4/

4

o
D �N.N � 4/

4
:

Later, Okazawa [8] generalized the essential selfadjointness of A2;min to the
essential m-accretivity of Ap;min (1 < p < 1). More precisely, it is stated as
follows:
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Theorem 18.0 ([8, Theorem 4.1]) Let p 0 be the Hölder conjugate of p 2 .1;1/.
For N 2 N define ˛N .p/ and ˇN .p/ respectively as followsW

˛N .p/ WD � .p � 1/.N � 2/2

p2
D �N � 2

p
� N � 2

p 0 ;

ˇN .p/ WD � .p � 1/N.N � 2p/
p2

D �
�N
p

� 2
�N
p 0 :

Assume that V 2 Lploc.R
N n f0g/ satisfies

V.x/ � c0.0; p;N /

jxj2 a:a: x 2 R
N n f0g

with c0.0; p;N / WD maxf˛N .p/; ˇN .p/g. Then �� C V with domain C1
0 .R

N /

.Ap;min with b D 0/ is essentially m-accretive in Lp .

It seems that this theorem determines the critical value c0.0; p;N / completely.
In a way similar to the case of p D 2 the result depends again on Lp-versions of
modified Hardy’s and Rellich’s inequalities both. In terms of the family f.jxj2 C
"/�1I " > 0g of Yosida approximations to the inverse-square potential jxj�2 they
are respectively stated as follows: for u 2 W 2;p.RN / and " > 0,

� ˛N .p/
Z
RN

jujp
jxj2 C "

dx � Re
Z
RN

.��u/ u jujp�2 dx; (18.3)

�ˇN .p/
Z
RN

jujp
.jxj2 C "/p

dx � Re
Z
RN

.��u/ u jujp�2

.jxj2 C "/p�1 dx: (18.4)

The original proof of (18.4) in [8] is simplified in Maeda and Okazawa [5]. The
inequality (18.3) represents the accretivity of Ap;min with b D 0 (cf. (18.19) below),
while (18.4) implies the separation property of the approximate operator �� C
c.jxj2 C "/�1:

k�ukLp C
��� u

jxj2 C "

���
Lp

� C.c/
�����u C c

jxj2 C "
u
���
Lp
; u 2 W 2;p.RN /;

whereC.c/ WD 1C.1Cc/.c�ˇN .p//�1 for c > ˇN .p/. This ensures the closedness
and maximality of ��C cjxj�2 in Lp; note that D.jxj�2/ WD fu 2 Lp I jxj�2u 2
Lpg.

By virtue of the scaling argument the essentialm-accretivity ofAp;min with b ¤ 0

can be also dealt with under condition (18.2), possibly, with a new critical value.
However, there is no previous work on this problem with b ¤ 0.
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In this context the purpose of this paper is to present a sharp condition for the
essential m-accretivity of Ap;min. More precisely, we give the new critical value
c0 D c0.b; p;N / for the essential m-accretivity of Ap;min with b ¤ 0.

Theorem 18.1 For p 2 .1;1/, N 2 N and b 2 R define two new constants
˛N;b.p/ and ˇN;b.p/ as

˛N;b.p/ WD �N � 2

p

�N � 2
p 0 � b

�
;

ˇN;b.p/ WD �
�N
p

� 2
��N
p 0 � b

�
;

respectively. Assume that V 2 Lploc.R
N n f0g/ satisfies

V.x/ � c0.b; p;N /

jxj2 a:a: x 2 R
N n f0g;

with c0.b; p;N / WD maxf˛N;b.p/; ˇN;b.p/g. Then Ap;min is essentially m-accretive
in Lp .

The formal adjoint of the differential expression

A WD ��C bjxj�2.x � r/C V.x/

is given by

B WD �� � bjxj�2.x � r/C V.x/ � b.N � 2/jxj�2:

Therefore Theorem 1.1 implies that Bp 0;min WD B with D.Bp 0;min/ WD C1
0 .R

N n
f0g/ is essentially m-accretive in Lp

0

if V 2 Lp 0

loc.R
N n f0g/ satisfies

V.x/ � b.N � 2/

jxj2 � maxf˛N;�b.p 0/; ˇN;�b.p 0/g
jxj2 :

Noting that b.N � 2/C ˛N;�b.p 0/ D ˛N;b.p/, we obtain the following

Corollary 18.1 Let ˛N;b.p/ and ˇN;b.p/ be as in Theorem 18.1. Assume that

V 2 Lploc.R
N n f0g/\ L

p 0

loc.R
N n f0g/ (18.5)

satisfies

V.x/ � c1.b; p;N /

jxj2 a:a: x 2 R
N n f0g (18.6)
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with

c1.b; p;N / WD maxf˛N;b.p/; ˇN;b.p/; b.N � 2/C ˇN;�b.p 0/g:

Then Bp 0;min is essentially m-accretive in Lp
0

and the adjoint of Bp 0;min is equal to
.Ap;min/Q, the closure of Ap;min W .Bp 0;min/

� D .Ap;min/Q, where Ap;min is defined by
(18.1) in which V satisfies (18.5) and (18.6).

Remark 18.1 The equality ˇN;b.p/ D b.N � 2/ C ˇN;�b.p 0/ holds if b D
N.p 0�1 � p�1/.

18.2 Preliminaries

First we prepare several inequalities related to the relative boundedness of jxj�1r
with respect to ��C cjxj�2 in Lp (1 < p < 1).

Lemma 18.1 Let " > 0:

(a) if 1 < p � 2, then for every u 2 W 2;p.RN /,

��� ru

.jxj2 C "/1=2

���2
Lp

� p 0p
��� u

jxj2 C "

���2
Lp

C p 0k�ukLp
��� u

jxj2 C "

���
Lp

I
(18.7)

(b) if 2 < p < 1, then for every u 2 W 2; p.RN /,

��� ru

.jxj2 C "/1=2

���2
Lp

� p
��� ru

.jxj2 C "/1=2

���
Lp

��� u

jxj2 C "

���
Lp

C
1C .p � 2/N 2Hp

�k�ukLp
��� u

jxj2 C "

���
Lp
;

(18.8)

where Hp is the constant in the Calderón-Zygmund estimate W
��� @2u

@xj @xk

���
Lp

� Hpk�ukLp ; Hp WD
�

tan.�=2p/ when 1 < p � 2;

cot.�=2p/ when 2 � p < 1:

(18.9)

Proof (a) First we prove (18.7) when 1 < p � 2. Applying the same argument as
in the proof of [12, Lemma 3 ] in which we set

ajk D ıjk .the Kronecker delta/; F � 0D�; V .x/D�p.x/Dp .jxj2C"/�1;
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we can verify that

���
� p

jxj2 C "

�1=2ru
���2
Lp

� p

p � 1
���.��/u C p

jxj2 C "
u
���
Lp

��� p

jxj2 C "
u
���
Lp

� p

p � 1
�
p2
��� u

jxj2C"
���2
Lp

Cp k�ukLp
��� u

jxj2C"
���
Lp

�
:

Hence, dividing both sides by p, we obtain (18.7).
(b) Next we assume 2 < p < 1. Then integration by parts gives

��� ru

.jxj2 C "/1=2

���p
Lp

D
Z
RN

ru � jrujp�2ru

.jxj2 C "/p=2
dx

D �
Z
RN

u div
� jrujp�2ru

.jxj2 C "/p=2

�
dx

D �
Z
RN

jrujp�2 u .�u/

.jxj2 C "/p=2
dx � .p � 2/Re

Z
RN

jrujp�4 u hD2uru;rui
.jxj2 C "/p=2

dx

�p Re
Z
RN

jrujp�2 u .x � r/u
.jxj2 C "/p=2C1

dx;

where h�; �i denotes the usual hermitian product over CN andD2u is the N �N
matrix given by

D2u WD
� @2u

@xj @xk

�
j k
;

kD2uk.Lp/N�N � N2 max
1�j; k�N

��� @2u

@xj @xk

���
Lp
: (18.10)

Using Hölder’s inequality, we see that

��� ru

.jxj2 C "/1=2

���p
Lp

� k�ukLp
��� ru

.jxj2 C "/1=2

���p�2

Lp

��� u

jxj2 C "

���
Lp

C.p � 2/kD2uk.Lp/N�N

��� ru

.jxj2 C "/1=2

���p�2

Lp

��� u

jxj2 C "

���
Lp

Cp
��� ru

.jxj2 C "/1=2

���p�1

Lp

��� u

jxj2 C "

���
Lp
:
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Hence we have

��� ru

.jxj2 C "/1=2

���2
Lp

� p
��� ru

.jxj2 C "/1=2

���
Lp

��� u

jxj2 C "

���
Lp

C
�
k�ukLp C .p � 2/kD2uk.Lp/N�N

���� u

jxj2 C "

���
Lp
:

Finally, in view of (18.10), the well-known Calderón-Zygmund estimate (18.9)
applies to give (18.8) (for the constantHp see Iwaniec and Martin [2] or [3]).

ut
Remark 18.2 Let 2 < p < 1. Then we see from (18.8) that for u 2 W 2;p.RN /,

��� ru

.jxj2 C "/1=2

���
Lp

� p
��� u

jxj2 C "

���
Lp

C
1C .p � 2/N 2Hp

�1=2k�uk1=2Lp
��� u

jxj2 C "

���1=2
Lp
:

(18.11)

The computation is done by completing the square (as in (18.24) below).

Corollary 18.2 Let p 2 .1;1/. Then for a fixed " > 0, .jxj2C"/�1.x �r/ is .��/-
bounded with .��/-bound 0, that is, for any � > 0 there exists C D C.�; "/ > 0

such that

��� .x � r/u
jxj2 C "

���
Lp

� �k.��/ukLp C C.�; "/kukLp ; u 2 W 2;p.RN /: (18.12)

Proof Let u 2 W 2;p.RN /. Then we note that (18.7) and (18.11) are roughly unified
as

��� ru

.jxj2 C "/1=2

���
Lp

� k1

��� u

jxj2 C "

���
Lp

C 2k2k�uk1=2Lp
��� u

jxj2 C "

���1=2
Lp
: (18.13)

Since j.x � r/uj � .jxj2 C "/1=2jruj, we see from (18.13) that

��� .x � r/u
jxj2 C "

���
Lp

�
��� ru

.jxj2 C "/1=2

���
Lp

� k1

"
kukLp C 2k2p

"
k�uk1=2Lp kuk1=2Lp

� �k.��/ukLp C "�1.k1 C k22�
�1/kukLp :

Setting C.�; "/ WD "�1.k1 C k22�
�1/, we obtain (18.12). ut
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18.3 The Family of Operators with Special Structure

In this section we consider second-order elliptic operators in Lp with special form,
that is, operators of scale-invariant structure:

8̂
<
:̂
Tp.c/u.x/ WD ��u.x/C b

jxj2 .x � r/u.x/C c

jxj2 u.x/;

D.Tp.c// D D.Tp/ WD W 2;p.RN / \D.jxj�2/:

The proof of the main theorem is based on

Proposition 18.1 Let c � c0 D c0.b; p;N /. Here c0.b; p;N / is the same constant
as in Theorem 18.1. Then Tp.c/ is m-accretive in Lp when c > c0, while Tp.c0/
is essentially m-accretive on D.Tp/. Let QTp.c/ denote the closure of Tp.c/. Then
C1
0 .R

N n f0g/ is a core for QTp.c/ in both cases and QTp.c/ has a positive resolvent,
that is,

.1C Tp.c//ŒC
1
0 .R

N n f0g/C� D L
p
C; c � c0;

where C1
0 .R

N n f0g/C and LpC are the positive cones in the respective spaces.

To prove Proposition 18.1 we introduce a family fTp;"g">0 D f��CRp;"g">0 of
operators approximate to Tp.c/ in Lp , where

8̂
<
:̂
Rp;"u.x/ WD b

jxj2 C "
.x � r/u.x/C c

jxj2 C "
u.x/C "

.1C b=2/2

.jxj2 C "/2
u.x/;

D.Rp;"/ WD W 1;p.RN /:

(18.14)

Since D.Tp; "/ D D.��/ D W 2; p.RN /, it follows from (18.12) that the
approximate operator Tp; " D �� C Rp;" is closed in Lp (see Kato [4, Theorem
IV.1.1]). When p � 2, it is not so difficult to verify the accretivity of Tp; ". In fact,
let u 2 C1

0 .R
N /. Then we have

Re
Z
RN

.��u/ Nu jujp�2 dx

� .p � 1/

Z
RN

ˇ̌rju.x/jˇ̌2ju.x/j.p�2/=2 dx

� .N � 2/2
p 0p

Z
RN

ju.x/jp
jxj2 C "

dx C N2 � 4

p 0p
"

Z
RN

ju.x/jp
.jxj2 C "/2

dx; (18.15)
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Re
Z
RN

.x � r/u
jxj2 C "

Nu jujp�2 dx

D �N � 2

p

Z
RN

ju.x/jp
jxj2 C "

dx � 2

p
"

Z
RN

ju.x/jp
.jxj2 C "/2

dx: (18.16)

These are the modified versions of [8, Lemma 2.2] and [10, Lemma 3.1]; the second
terms (multiplied by ") on the right-hand sides are new. When 1 < p < 2, ju.x/jp�2
may be approximated by .ju.x/j2 C ıe�jxj2 /�.2�p/=2, ı > 0 :

Re
Z
RN

Nu .��u/

.juj2Cıe�jxj2 /.2�p/=2
dx � I.ı/C.p � 1/

Z
RN

jru.x/j2
.ju.x/j2Cıe�jxj2 /.2�p/=2

dx;

where

I.ı/ WD 2 .2� p/Re
Z
RN

ıe�jxj2u.x/.x � r/u.x/
.ju.x/j2 C ıe�jxj2 /.4�p/=2

dx D O.ı.p�1/=2/ .ı # 0/:

Therefore we need to compute a little bit more carefully.

Lemma 18.2 Let 1 < p < 2. Then for u 2 C1
0 .R

N / and " > 0 one has

(a) (Accretivity of �� with error term).

Re
Z
RN

.��u/ Nu jujp�2 dx D lim
ı # 0

Re
Z
RN

Nu .��u/

.juj2 C ıe�jxj2 /.2�p/=2
dx

� .N � 2/2

p 0p

Z
RN

ju.x/jp
jxj2 C "

dx C N2 � 4

p 0p
"

Z
RN

ju.x/jp
.jxj2 C "/2

dx � lim
ı#0

J.ı/;

(18.17)

where J.ı/ is given by

J.ı/ WD 2.N � 2/

p 0 J1.ı/C .N � 2/2

p 0p
J2.ı/;

Jk.ı/ WD
Z
RN

ıe�jxj2 jxj2.jxj2 C "/�k

.ju.x/j2 C ıe�jxj2 /.2�p/=2
dx D O.ı p=2/ .ı # 0/ .k D 1; 2/I

(b) (Accretivity of .jxj2 C "/�1.x � r/ with error term). Let J1.ı/ be as in (a). Then

Re
Z
RN

u.x/.x � r/u.x/
.jxj2 C "/.ju.x/j2 C ıe�jxj2 /.2�p/=2

dx
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D �N � 2

p

Z
RN

.juj2 C ıe�jxj2 /p=2

jxj2 C "
dx

� 2
p
"

Z
RN

.juj2 C ıe�jxj2 /p=2

.jxj2 C "/2
dx C J1.ı/: (18.18)

Here we can understand the meaning of extra term multiplied by " in the
definition of Rp; "u. In fact, the above-mentioned computation shows that for u 2
C1
0 .R

N /,

Re
Z
RN

.Tp; "u/Nujujp�2 dx � M1

Z
RN

jujp
jxj2 C "

dx CM2 "

Z
RN

jujp
.jxj2 C "/2

dx;

(18.19)

where M1 and M2 are computed by (18.17), (18.18) and the remaining inequalities
(18.15), (18.16) :

M1 WD c � ˛N;b.p/ D .N � 2/2
p 0p

� N � 2

p
b C c;

M2 WD N2

p 0p
C
�
1C b

2
� 2

p

�2 D N2 � 4
p 0p

� 2

p
b C

�
1C b

2

�2 � 0:

Since C1
0 .R

N / is a core for ��, it follows from (18.19) that Tp; " D ��CRp;" is
accretive in Lp if M1 � 0. For an fixed " > 0 the basic properties of the operator
Tp;" are summarized as follows:

Lemma 18.3 Let " > 0 be fixed and 1 < p < 1. If c � ˛N;b.p/, then Tp; " D
��CRp; " is m-accretive in Lp . Moreover, the resolvent of Tp; " is positive.

Proof To prove the maximality of closed and accretive operator Tp;" put

Au WD ��u for u 2 D.A/ WD W 2;p.RN /;

Bu WD Rp; "u for u 2 D.B/ WD W 1;p.RN /:

Then the pair ofA andB withD.A/ � D.B/ satisfies the assumption of [7, Lemma
3.1]. Namely, for all t 2 Œ0; 1�,AC tB D .1� t/.��/C tTp; " is closed and accretive
in Lp . Therefore the maximality of A C B D Tp; " (t D 1) is reduced to that of
A D �� (t D 0).

Since Tp; " is m-accretive in Lp , the resolvent-positivity is equivalent to the
dispersivity: hTp;"u; .uC/p�1iLp;Lp 0 � 0 for all u 2 W 2; p.RN /. The dispersivity
of �� is nothing but the positivity of et�. Therefore it suffices to show that
˙.jxj2 C "/�1.x � r/ is dispersive in real Lp-spaces. But the computation is
quite similar to that for accretivity as was done in [8, Lemma 2.6] (see also
Wong-Dzung [13]; note that the boundedness of the potential in [13] is later removed
by Miyajima and Okazawa [6, Theorem 4.1]). ut
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Lemma 18.4 Let " > 0 be fixed and 1 < p < 1. If c > ˇN;b.p/, then one has

��.jxj2 C "/�1u
��
Lp

� 

c � ˇN;b.p/

��1��Tp; "u��Lp 8 u 2 W 2;p.RN / (18.20)

and hence
��.jxj2 C "/�1=2ru

��
Lp

� K1

��Tp; "u��Lp 8 u 2 W 2;p.RN /; (18.21)

where K1 is written as

K1 WD

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

p 0jbj Cp
p 0Œ p C jcj C .1C b=2/2 �

c�ˇN;b.p/ C
s

p 0
c�ˇN;b.p/ .1 < p � 2/;

p CK2jbj Cp
K2Œ jcj C .1C b=2/2 �

c�ˇN;b.p/ C
s

K2

c�ˇN;b.p/ .2 < p < 1/:

(18.22)

Here K2 WD 1C .p � 2/N 2Hp is the constant in Lemma 2.1(b).

Proof It suffices to prove (18.20) and (18.21) both on C1
0 .R

N /. Let u 2 C1
0 .R

N /.
Then in a previous paper Okazawa et al. [9] we have computed the accretivity of
Tp; " in weighted Lp-spaces. In particular, employing [9, Lemma 2.3 with .˛; ˇ; c/
replaced with .2.p � 1/; b;�c/] and then applying Hölder’s inequality, we have

.c � ˇN;b.p//
��� u

jxj2 C "

���p
Lp

� Re
Z
RN

.Tp; "u/ u jujp�2

.jxj2 C "/p�1 dx

� kTp; "ukLp
��� u

jxj2 C "

���p�1
Lp

:

This yields (18.20). Next we prove (18.21). To this end we replace�u in (18.7) and
(18.8) with �Tp;"u together with the remainder term Rp;"u defined by (18.14) :

�u D �Tp; "u CRp;"u: (18.23)

First we consider the case with p 2 .2;1/. Put K2 D 1C .p � 2/N 2Hp as in the
statement of this lemma. Then we see from (18.8) that

��� ru

.jxj2C"/1=2
���2
Lp

� p
��� ru

.jxj2C"/1=2
���
Lp

��� u

jxj2C"
���
Lp

CK2k�ukLp
��� u

jxj2C"
���
Lp

� .pCK2jbj/
��� ru

.jxj2C"/1=2
���
Lp

��� u

jxj2C"
���
Lp

CK2

��Tp; "u��Lp
��� u

jxj2C"
���
Lp

CK3

��� u

jxj2C"
���2
Lp
;
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whereK3 WD K2Œ jc j C .1C b=2/2 �. By completing the square we have

���� ru

.jxj2 C "/1=2

���
Lp

� p CK2jbj
2

��� u

jxj2 C "

���
Lp

�2

� K2

��Tp; "u��Lp
��� u

jxj2 C "

���
Lp

CK3

��� u

jxj2 C "

���2
Lp

C .p CK2jbj/2
4

��� u

jxj2 C "

���2
Lp

(18.24)

which implies that

��� ru

.jxj2 C "/1=2

���
Lp

�
p
K2

��Tp; "u��1=2Lp
��� u

jxj2 C "

���1=2
Lp

C
p CK2jbj C
p
K3

���� u

jxj2 C "

���
Lp
:

Finally, applying (18.20) to the right-hand side, we obtain (18.21) with the constant
K1 > 0 given as in (18.22).

Next we consider the case with p 2 .1; 2 �. In the same way as above we see
from (18.7) and (18.23) that

���� ru

.jxj2 C "/1=2

���
Lp

� p 0jbj
2

��� u

jxj2 C "

���
Lp

�2

� p 0��Tp; "u��Lp
��� u

jxj2 C "

���
Lp

CK4

��� u

jxj2 C "

���2
Lp

C .p 0jbj/2
4

��� u

jxj2 C "

���2
Lp
;

whereK4 WD p 0Œ pCjc j C .1Cb=2/2�. This leads us to (18.21) withK1 > 0 given
as in (18.22).

This completes the proof of (18.21) for all p 2 .1;1/. ut
Now we are in a position to give a proof of Proposition 18.1.

Proof (of Proposition 18.1) The proof is divided into two cases.

The first case (i): c � ˛N;b.p/ and c > ˇN;b.p/. First we show that Tp;" is m-
accretive in Lp and has a positive resolvent. Note that the first-order (drift) term
is well-defined onD.Tp/, that is, D.Tp/ � D.jxj�2.x � r// as a consequence of
Lemma 18.1. Let u 2 D.Tp/. Then it is easily seen that

Tp;"u ! Tp.c/u ." # 0/:
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This implies by (18.19) that

Re
Z
RN

.Tp.c/u/Nujujp�2 dx � .c � ˛N;b.p//

Z
RN

jxj�2jujp dx 8 u 2 D.Tp/:

Thus Tp.c/ is accretive in Lp if c � ˛N;b.p/. To prove the maximality of Tp.c/
let f 2 Lp . Then we see by Lemma 18.3 that there exists a family fu"I " > 0g �
W 2;p.RN / such that

u" C Tp;"u" D f; ku"kLp � kf kLp : (18.25)

Moreover, u" � 0 (for every " > 0) if f � 0. By virtue of (18.9) and Lemma 18.4
we have

ku"kW 2; p.RN / C
��� u"

jxj2 C "

���
Lp

� C1.ku"kLp C k�u"kLp /C
��� ru"
.jxj2 C "/1=2

���
Lp

C
��� u"

jxj2 C "

���
Lp

� C2kf kLp : (18.26)

Thus there exist a subsequence fu"ng � fu"g and u 2 W 2; p.RN / such that

u"n ! u weakly .n ! 1/ in W 2;p.RN /:

Furthermore, (18.26) implies that u 2 D.Sp/ (� D.Tp/) and the equation

u C Tp.c/u D u C .��/u C b jxj�2.x � r/u C c Spu D f

holds as the limit of (18.25), where Sp WD jxj�2. This proves the maximality of
Tp.c/ with c > ˇN;b.p/. Letting " # 0 in (18.20), we have a necessary estimate
in the second case (ii):

kSpukLp � .c � ˇN;b.p//
�1kTp.c/ukLp ; u 2 D.Tp/; c > ˇN;b.p/:

(18.27)

Additionally, if f � 0 in (18.25) then the locally weak compactness of LpC in
Lp implies that u D w-lim u"n � 0. This finishes the proof of m-accretivity and
resolvent-positivity of Tp.c/ when c � ˛N;b.p/ and c > ˇN;b.p/.

Next we prove that C1
0 .R

N n f0g/ is a core for Tp.c/. Define a new norm on
D.Tp/ as

jjjwjjj WD kwkLp Ck�wkLp C
��� w

jxj2
���
Lp
; w 2 D.Tp/ D W 2;p.RN /\D.jxj�2/I
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this is equivalent to the graph norm of Tp.c/. Then it is proved in [8, Lemma 4.8]
that C1

0 .R
N n f0g/ is dense in W 2; p.RN / \D.jxj�2/ with respect to the norm

jjj � jjj. Hence it suffices to show that for every u 2 C1
0 .R

N n f0g/,

m1.kukLp CkTp;min.c/ukLp / � jjjujjj � m2.kukLp CkTp;min.c/ukLp /; (18.28)

where Tp;min.c/ is the restriction of Tp.c/ to C1
0 .R

N n f0g/:

Tp;min.c/ WD Tp.c/jC1
0 .R

N n f0g/; c � c0:

Let u 2 C1
0 .R

N n f0g/. Then proceeding in the same way as in the proof
of (18.26), we can prove the second inequality in (18.28) with m2 D 2C2.
Conversely, letting " # 0 in (18.13), we have

��jxj�1ru
��
Lp

� k1
��jxj�2u��

Lp
C 2k2k�uk1=2Lp

��jxj�2u��1=2
Lp

� .k1 C k2/

k�ukLp C ��jxj�2u��

Lp

�
: (18.29)

Thus we obtain

kukLp C kTp;min.c/ukLp
� kukLp C k�ukLp C jbj��jxj�1ru

��
Lp

C jcj��jxj�2u��
Lp

� kukLp C 

1C jbj.k1 C k2/C jcj�
k�ukLp C ��jxj�2u��

Lp

�
� 


2C jbj.k1 C k2/C jcj�jjjujjj:

This is nothing but the first inequality in (18.28). Consequently, we can conclude
that Tp.c/ is the closure of Tp;min.c/ when c � ˛N;b.p/ and c > ˇN;b.p/.

The second case (ii): c D c0 D ˇN;b.p/ � ˛N;b.p/. We apply [8, Theorem
1.2] to Tp.c0/ and Sp D jxj�2. Namely, we consider the sequence of perturbed
operators

8̂
ˆ̂<
ˆ̂̂:

.Tp.c0/C n�1Sp/u.x/ D Tp.c0 C n�1/u.x/

D ��u.x/C b

jxj2 .x � r/u.x/C c0 C n�1

jxj2 u.x/;

D.Tp.c0/C n�1Sp/ D D.Tp/ D W 2;p.RN / \D.jxj�2/:

Then the assertion in the first case (i) implies that Tp.c0/ C n�1Sp (n 2 N) is
m-accretive in Lp and has a positive resolvent (because c0 C n�1 > ˇN;b.p/).
Moreover, it follows from (18.27) with c D c0 C n�1 that

kTp.c0/ukLp
� k.Tp.c0/C n�1Sp/ukLp C n�1kSpukLp
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� k.Tp.c0/C n�1Sp/ukLp C n�1

.c0 C n�1/ � ˇN;b.p/k.Tp.c0/C n�1Sp/ukLp

� 2k.Tp.c0/C n�1Sp/ukLp ; u 2 D.Tp/:

Thus applying [8, Theorem 1.2] to the pair of Tp.c0/ and Sp , we see that Tp.c0/ is
essentially m-accretive on D.Tp/, and the resolvent of QTp.c0/ has the following
expression:

.� C QTp.c0//�1f D lim
n!1.� C Tp.c0/C n�1Sp/�1f; � > 0; f 2 Lp:

(18.30)

Since .�CTp.c0/Cn�1Sp/�1 is positive, we see from (18.30) that .�C QTp.c0//�1
is also positive on Lp .

Finally, since D.Tp/ is a core for QTp.c0/, it follows from (18.29) and [8, Lemma
4.8] that C1

0 .R
N n f0g/ is also a core for QTp.c0/. This completes the proof of

Proposition 18.1. ut
Remark 18.3 It follows from [8, Theorem 1.2] that for every f 2 Lp ,

n�1Sp.� C Tp.c0/C n�1Sp/�1f ! 0 weakly .n ! 1/: (18.31)

Now let g 2 L
p
C. Then u WD .1 C QTp.c0//�1g 2 L

p
C as shown above. Let fgng be

a sequence in C1
0 .R

N n f0g/C such that gn ! g (n ! 1). Then it follows that
'n WD .1C Tp.c0/C n�1Sp/�1gn 2 C1

0 .R
N n f0g/C; with

g D .1C QTp.c0//u D w- lim
n!1 .1C Tp;min.c0//'n: (18.32)

In fact, since .1C Tp;min.c0//'n D gn � n�1Sp.1C Tp.c0/C n�1Sp/�1gn; (18.32)
is a consequence of (18.31). (18.32) seems to be the essence of Proposition 18.1
because (18.32) is exactly what we need in the proof of the main theorem in the
next section.

18.4 Proof of Theorem 18.1

Proof (of Theorem 18.1) Let c0 D maxf˛N;b.p/; ˇN;b.p/g: Then it follows from
condition (18.2) that the accretivity of Ap;min is reduced to that of Tp;min.c0/ D
Tp.c0/jC1

0 .R
N n f0g/:

Re
Z
RN

.Ap;minu/ujujp�2 dx � Re
Z
RN

.Tp;min.c0/u/ujujp�2 dx � 0:
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We shall show the maximality of the closure of Ap;min. Suppose that v 2 Lp
0

annihilates the range R.1C Ap;min/ of 1C Ap;min. Setting

Ep;min'.x/ WD ��'.x/C bjxj�2.x � r/'.x/; ' 2 C1
0 .R

N n f0g/;

we have that for ' 2 C1
0 .R

N n f0g/,

0 D
Z
RN

v.x/.1C Ap;min/'.x/ dx

D
Z
RN

v.x/


.1C V.x//'.x/CEp;min'.x/

�
dx: (18.33)

We have to show that v D 0. The proof depends on Kato’s inequality (see, e.g., [1]
or [11]). In fact, (18.33) and (18.2) imply by Kato’s inequality that

Z
RN

jv.x/j.1C Tp;min.c0//'.x/ dx

D
Z
RN

jv.x/j
.1C c0

jxj2 /C Ep;min
�
'.x/ dx � 0 (18.34)

for all ' 2 C1
0 .R

N n f0g/C. By virtue of (18.32) we have

Z
RN

jv.x/jg.x/ dx � 0 8 g 2 LpC:

This completes the proof because kvkLp 0 D 0 when we choose g WD jvjp 0�1 2 LpC.
Therefore it remains to prove (18.34). Noting that jxj�b=2'.x/ 2 C1

0 .R
N nf0g/,

we have

jxjb=2�.jxj�b=2'.x// D jxjb=2div Œr.jxj�b=2'.x// �
D �Ep;min'.x/ � bN jxj�2'.x/;

where bN WD .b=2/.N � 2 � b=2/. Thus we obtain

v.x/Ep;min'.x/ D �jxjb=2v.x/�.jxj�b=2'.x// � bN jxj�2v.x/'.x/
D �vb.x/�'b.x/ � bN jxj�2v.x/'.x/ (18.35)

when we define

v b.x/ WD jxjb=2v.x/ 2 Lp 0

loc.R
N n f0g/ � L1loc.R

N n f0g/;
'b.x/ WD jxj�b=2'.x/ 2 C1

0 .R
N n f0g/:
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It follows from (18.33) and (18.35) that

Z
RN

v.x/


1C V.x/ � bN jxj�2�'.x/ dx D

Z
RN

vb.x/�'b.x/ dx: (18.36)

Noting that v.x/'.x/ D v b.x/'b.x/, we see that (18.36) can be written as

Z
RN

vb.x/�'b.x/ dx D
Z
RN

v b.x/


1C V.x/ � bN jxj�2�'b.x/ dx:

Since V 2 Lploc.R
N n f0g/, this implies that

�v b D .1C V.x/ � bN jxj�2/v b 2 L1loc.R
N n f0g/: (18.37)

Applying Kato’s inequality to v b , we have that for every 'b D jxj�b=2' with ' 2
C1
0 .R

N n f0g/C,

Z
RN

jv b.x/j�'b.x/ dx � Re
Z
RN

Œsign v b.x/��v b.x/ � 'b.x/ dx: (18.38)

Here (18.37) yields by (18.2) that

Œsign v b.x/��v b.x/ D jv b.x/j.1C V.x/ � bN jxj�2/
� jv b.x/j



.1C c0jxj�2/ � bN jxj�2�: (18.39)

Since jv b.x/j'b.x/ D jv.x/j'.x/, it follows from (18.38) and (18.39) that

Z
RN

jv b.x/j
�
�'b.x/C bN

jxj2
�
'b.x/ dx �

Z
RN

jv b.x/j


1C c0

jxj2
�
'b.x/ dx

D
Z
RN

jv.x/j
1C c0

jxj2
�
'.x/ dx:

Finally, we see from (18.35) with v.x/ replaced with jv.x/j that

Z
RN

jv.x/j
1C c0

jxj2
�
'.x/ dx � �

Z
RN

jv.x/jEp;min'.x/ dx 8 ' 2 C1

0 .RN n f0g/C:

This is nothing but (18.34). Thus the proof of Theorem 18.1 has been finished. ut
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Chapter 19
Semilinear Delay Evolution Equations
with Nonlocal Initial Conditions

Ioan I. Vrabie

In memory of Professor Alfredo Lorenzi

Abstract An existence and asymptotic behaviour result for a class of semilinear
delay evolution equations subjected to nonlocal initial conditions is established. An
application to a semilinear wave equation is also discussed.

19.1 Introduction

In this paper we prove an existence and uniform asymptotic stability result for mild
solutions to a semilinear delay differential evolution equation with nonlocal initial
data in a Banach space X , i.e.

(
u0.t/ D Au.t/C f .t; ut /; t 2 Œ 0;C1/;

u.t/ D g.u/.t/; t 2 Œ��; 0 �: (19.1)

Here A W D.A/ 	 X ! X is the infinitesimal generator of a C0-semigroup of
contractions, fS.t/ W X ! X I t � 0g, � � 0, f W Œ 0;C1/ � C.Œ��; 0 �IX/ ! X

is a compact function which is jointly continuous and Lipschitz with respect to
its second argument and g W Cb.Œ��;C1/IX/ ! C.Œ��; 0 �IX/ is continuous
and has affine growth. In the limiting case � D 0, i.e. when the delay is absent,
C.Œ��; 0 �IX/ D X and so, in this case, f W Œ 0;C1/ � X ! X and
g W Cb.Œ 0;C1/IX/ ! X . If I is an unbounded interval, Cb.I IX/ denotes
the space of all bounded and continuous functions from I to X , equipped with
the sup-norm k � kCb.I IX/, while QCb.I IX/ stands for the space of all bounded
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and continuous functions from I to X , endowed with the uniform convergence
on compacta topology. Further, C.Œ a; b �IX/ denotes the space of all continuous
functions from Œ a; b � to X endowed with the sup-norm k � kC.Œ a;b �IX/. As usual,
if u 2 C.Œ��;C1/IX/ and t 2 Œ 0;C1/, ut 2 C.Œ��; 0 �IX/ is defined by
ut .s/ WD u.t C s/ for each s 2 Œ��; 0 �.

It should be noticed that, as far as the nondelayed case, i.e. � D 0, is concerned,
in many situations, the nonlocal problem (19.1) has proved more reliable than
its classical initial-value counterpart. This is the case, for instance, of long-term
weather forecasting in meteorology. See Rabier et al. [23]. In addition, (19.1), with
� D 0, is nothing but the abstract form of various mathematical models for :
wave propagation—see Avalishvili and Avalishvili [3], diffusion processes—see
Deng [10], Gordeziani [13] and Olmstead and Roberts [21], fluid dynamics—
see Gordeziani et al. [14] and Shelukhin [25, 26], or pharmacokinetics—see
McKibben [18, Model II.6, p. 395].

Abstract nondelayed evolution equations subjected to nonlocal initial condi-
tions were investigated by Aizicovici and Lee [1], Aizicovici and McKibben [2],
Bryszewski [8], Garcia-Falset and Reich [12] and Paicu and Vrabie [22], to cite
only a few.

Since the presence of a delay in the source term of an evolution equation is
more realistic than an instantaneous feedback, there is an increasing literature
on such kind of problems, i.e. functional evolution equations with delay. This
explains why, in recent years, abstract delayed evolution equations or inclusions
subjected to nonlocal initial conditions were considered by many authors from
which we mention Burlică and Roşu [5], Burlică et al. [6, 7] and Vrabie [28–33]
and the references therein. For previous results on initial-value problems for delay
evolution equations, see Mitidieri and Vrabie [19, 20]. Some existence, uniqueness
and continuity with respect to the data theorems concerning source identification for
semilinear delay evolution equations were recently obtained, among others, by Di
Blasio and Lorenzi [11] and Lorenzi and Vrabie [16, 17].

19.2 Preliminaries

Definition 19.1 Let X , Y be Banach spaces and Z a subset of Y . We say that a
mapping Q W Z ! X is compact if it carries bounded subsets in Z into relatively
compact in X .

Definition 19.2 We say that the Banach space X is C0-compact if there exists a
family of linear, compact operators fI"I " 2 .0; 1/g 	 L.X/ with kI"kL.X/ � 1 for
each " 2 .0; 1/ and lim"#0 I"x D x for each x 2 X .

Remark 19.1 Let p 2 Œ 1;C1/ and let ˝ be a nonempty and bounded domain in
R
d , d � 1. ThenLp.˝/ isC0-compact. This follows from the fact that, for each p 2

Œ 1;C1/, the Laplace operator subjected to Dirichlet boundary conditions generates
a compact C0-semigroup on Lp.˝/. See [27, Theorem 4.1.3, p. 81]. Furthermore,
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if X is a separable Hilbert space then it is C0-compact. Indeed, let fekI k 2 Ng be
an orthonormal system, let " 2 .0; 1/ and let us define I" W X ! X by:

I".x/ WD
1X
kD0

e�"khx; ekiek

for each x 2 X . Since for each m 2 N, the operator Im" W X ! X , defined by

Im" .x/ WD
mX
kD0

e�"khx; ekiek

for each x 2 X , has finite dimensional range and lim
m!1 Im" D I" uniformly on

bounded subsets, it readily follows that I" is a compact operator for each " 2 .0; 1/.
Finally, observing that lim

"#0
I".x/ D x for each x 2 X , we conclude that X is C0-

compact.

We recall for easy reference the following result due to Schaefer [24].

Theorem 19.1 Let Y be a real Banach space and let Q W Y ! Y be a continuous,
compact operator and let

E.Q/ D fx 2 Y I 9� 2 Œ 0; 1 �; such that x D �Q.x/g:

If E.Q/ is bounded, then Q has at least one fixed-point.

Let us denote by M.�; h/ the unique mild solution u of the Cauchy problem

(
u0.t/ D Au.t/C h.t/; t 2 Œ 0; T �
u.a/ D �;

corresponding to � 2 X and h 2 L1.0; T IX/, i.e.

u.t/ D S.t/� C
Z t

0

S.t � s/h.s/ ds

for t 2 Œ 0; T �.
The next slight extension of a compactness result due to Becker [4] is a direct

consequence of Vrabie [27, Theorem 2.8.4, p. 194] and Cârjă et al. [9, Lemma 1.5.1,
p. 14].

Theorem 19.2 Let A W D.A/ 	 X ! X be the infinitesimal generator of a C0-
semigroup fS.t/ W X ! X I t � 0g, let D be a bounded subset inX , and F a subset
in L1.0; T IX/ for which there exists a compact set K 	 X such that f .t/ 2 K

for each f 2 F and a.e. for t 2 Œ 0; T �. Then, for each � 2 .0; T /, M.D;F/ is
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relatively compact in C.Œ �; T �IX/. If, in addition, D is relatively compact, then
M.D;F/ is relatively compact even in C.Œ 0; T �IX/.

19.3 The General Framework

We assume familiarity with the basic concepts and results of the linear semigroup
theory, as well as with the theory of delay evolution equations. However, we recall
for easy reference some concepts we will frequently use in the sequel and we refer
to Vrabie [27] for details concerning linear semigroups and to Hale [15] for details
on delay evolution equations.

We recall that a function u 2 Cb.Œ��;C1/IX/ is called a mild solution of the
problem (19.1) if it is given by the variation of constants formula, i.e.

u.t/ D

8̂
<
:̂
S.t/g.u/.0/C

Z t

0

S.t � s/f .s; us/ ds; t 2 Œ 0;C1/

u.t/ D g.u/.t/; t 2 Œ��; 0 �:
(19.2)

Definition 19.3 We say that the function g W Cb.Œ��;C1/IX/ ! C.Œ��; 0 �IX/
has affine growth if there exists m0 � 0 such that, for each u 2 Cb.Œ��;C1/IX/,
we have

kg.u/kC.Œ��;0 �IX/ � kukCb.Œ��;C1/IX/ Cm0:

We begin with the general assumptions we need in the sequel.

.HX/ the Banach space X is C0-compact (cf. Definition 19.2) I

.HA/ the operator A W D.A/ 	 X ! X generates a C0-semigroup, fS.t/ W X !
X I t � 0g, and there exists ! > 0 such

kS.t/k � e�!t ;

for each t 2 Œ 0;C1/ I
.Hf / the function f W Œ 0;C1/ � C.Œ��; 0 �IX/ ! X is jointly continuous on

its domain, compact (cf. Definition 19.1) and:

.f1/ there exists ` > 0 such that

kf .t; v/ � f .t; Qv/k � `kv � QvkC.Œ��;0 �IX/
for each t 2 Œ 0;C1/ and v; Qv 2 C.Œ��; 0 �IX/ I
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.f2/ there exists m > 0 such that

kf .t; 0/k � m

for each t 2 Œ 0;C1/;

.Hc/ the constants ` and ! satisfy the nonresonance condition W

` < !I

.Hg/ the function g W Cb.Œ��;C1/IX/ ! C.Œ��; 0 �IX/ satisfies:

.g1/ g has affine growth (cf. Definition 19.3) I

.g2/ there exists a > 0 such that, for each u; v 2 Cb.Œ��;C1/IX/, from
u.t/ D v.t/ for each t 2 Œ a;C1/, it follows that g.u/ D g.v/ I

.g3/ g is continuous from QCb.Œ��;C1/IX/ to C.Œ��; 0 �IX/.
Remark 19.2 From .g1/ and .g2/, we get that for each u 2 Cb.Œ��;C1/IX/, we
have

kg.u/kC.Œ��;0 �IX/ � kukCb.Œ a;C1/IX/ Cm0; (19.3)

where a is given by .g2/. Indeed, if we assume by contradiction that there exists
u 2 Cb.Œ��;C1/IX/ such that kukCb.Œ a;C1/IX/ C m0 < kg.u/kC.Œ��;0 �IX/, then
the function Qu W Œ��;C1/ ! X , defined by

Qu.t/ D
(

u.t/; t 2 Œ a;C1/;

u.a/; t 2 Œ��; a/;

satisfies u.t/ D Qu.t/ for each t 2 Œ a;C1/ and thus g.u/ D g.Qu/. So,

kukCb.Œ a;C1/IX/ Cm0 < kg.u/kC.Œ��;0 �IX/ D kg.Qu/kC.Œ��;0 �IX/
� kQukCb.Œ��;C1/IX/ Cm0 D kQukCb.Œ a;C1/IX/ Cm0 D kukCb.Œ a;C1/IX/ Cm0:

This contradiction can be eliminated only if (19.3) holds true, as claimed.

Remark 19.3 The class of functions g satisfying .Hg/ is very large and includes
several important specific cases. More precisely:

• let N W X ! X be a possibly nonlinear operator having linear growth, i.e.

kN.x/k � kxk
for each x 2 X , let � is a 	-finite and complete measure on Œ 0;C1/, satisfying

supp � D Œ b;C1/;
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where b > � and �.Œ 0;C1// D 1, and let  2 C.Œ��; 0 �IX/. Then, the
function g, defined by

g.u/.t/ D
Z C1

0

N.u.t C �// d�.�/C  .t/; (19.4)

for each u 2 Cb.Œ��;C1/IX/ and t 2 Œ��; 0 �, satisfies hypothesis .Hg/ with
m0 D k kC.Œ��;0 �IX/ and a D b � � ;

• let T > � and let us consider the T -periodic condition, i.e.

g.u/.t/ D u.t C T /;

for u 2 Cb.Œ��;C1/IX/ and t 2 Œ��; 0 �. Clearly g satisfies .Hg/, with m0 D
0 and a D T � � ;

• let T > � and let us consider the T -anti-periodic condition, i.e.

g.u/.t/ D �u.t C T /;

for u 2 Cb.Œ��;C1/IX/ and t 2 Œ��; 0 �. Also in this case g satisfies .Hg/,
with m0 D 0 and a D T � � ;

• let us consider the multi-point discrete mean condition, i.e.

g.u/.t/ D
nX
iD1

˛iu.t C ti /

for u 2 Cb.Œ��;C1/IX/ and t 2 Œ��; 0 �, where ˛i 2 .0; 1/, for i D
1; 2; : : : ; n,

nX
iD1

˛i � 1 and 0 < t1 < t2 < � � � < tn are arbitrary but fixed.

In this case, g satisfies .Hg/ with m0 D 0 and a D t1.

19.4 The Main Result and Some Auxiliary Lemmas

The main result of this paper is:

Theorem 19.3 If .HX/, .HA/, .Hf /, .Hg/ and .Hc/ hold true, then the problem
(19.1) has at least one mild solution, u 2 Cb.Œ��;C1/IX/. Moreover, for each
mild solution of (19.1), we have

kukCb.Œ��;C1/IX/ � m

! � `
C
�

!

! � ` �
�

1

e!a � 1
C `

!

�
C 1

�
�m0: (19.5)
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If, in addition, instead of .Hc/, the stronger nonresonance condition `e!� < ! is
satisfied, then each mild solution of (19.1) is globally asymptotically stable.

The proof of Lemma 19.1 below can be found in Vrabie [33, Lemma 6.2].

Lemma 19.1 If .Hc/ is satisfied and u 2 Cb.Œ��;C1/IX/ is such that

ku.t/k � e�!tku.0/k C .1 � e�!t /
`

!

h
kukCb.Œ��;C1/IX/ C m

`

i

for each t 2 Œ 0;C1/ and

kukC.Œ��;0 �IX/ � kukCb.Œ a;C1/IX/ Cm0;

then u satisfies (19.5).

The lemma below is a specific form of general result in Vrabie [32, Lemma 4.3],
where X is a general Banach space, A is a nonlinear m-dissipative operator and f
is globally Lipschitz.

Lemma 19.2 Let us assume that .HA/, .Hf / and .Hc/ are satisfied. Then, for each
' 2 C.Œ��; 0 �IX/, the problem

(
u0.t/ D Au.t/C f .t; ut /; t 2 Œ 0;C1/;

u.t/ D '.t/; t 2 Œ��; 0 �; (19.6)

has a unique mild solution u 2 Cb.Œ��;C1/IX/.
We conclude this section with a Bellman Lemma for integral inequalities with

delay proved in Burlică and Roşu [5].

Lemma 19.3 Let y W Œ��;C1/ ! RC and ˛0; ˇ W Œ 0;C1/ ! RC be continuous
functions with ˛0 nondecreasing. If

y.t/ � ˛0.t/C
Z t

0

ˇ.s/kyskC.Œ��;0 �WR/ ds (19.7)

for each t 2 Œ 0;C1/, then

y.t/ � ˛.t/C
Z t

0

˛.s/ˇ.s/e
R t
s ˇ.	/ d	ds; (19.8)

for each t 2 Œ 0;C1/, where ˛.t/ WD ky0kC.Œ��;0 �IR/C˛0.t/ for each t 2 Œ 0;C1/.
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19.5 Proof of the Main Result

19.5.1 The Approximate Problem

We shall use an interplay of two fixed point arguments and an approximation
procedure. Let " > 0, let g" D I"g, where I" is given by .HX/, and let us consider
the "-approximate problem

(
u0.t/ D Au.t/C f .t; ut /; t 2 Œ 0;C1/;

u.t/ D g".u/.t/; t 2 Œ��; 0 �: (19.9)

Remark 19.4 In view of .g2/, for each v 2 Cb.Œ��;C1/IX/, g.v/ depends only
on the values of v on Œ a;C1/. In fact we have

g.v/ D g.QvjŒ 0;C1// D g. QwjŒ a;C1//; (19.10)

where a > 0 is given by .g2/, Qv is any function in Cb.Œ��;C1/IX/ which
coincides with v on Œ 0;C1/ and Qw is any function in Cb.Œ��;C1/IX/ which
coincides with v on Œ a;C1/. This explains why, in that follows, we will assume
with no loss of generality that g is defined merely on Cb.Œ 0;C1/IX/, or even on
Cb.Œ a;C1/IX/. From .g3/ and (19.10), we deduce that g is continuous from both
QCb.Œ 0;C1/IX/ and QCb.Œ a;C1/IX/ to C.Œ��; 0 �IX/.

Lemma 19.4 Let us assume that .HX/, .HA/, .Hf / and .Hg/ are satisfied, let
" > 0 be arbitrary and let g" be defined as above. Then the approximate problem
(19.9) has at least one mild solution u" 2 Cb.Œ��;C1/IX/.
Proof Let us first consider the problem

(
u0.t/ D Au.t/C f .t; ut /; t 2 Œ 0;C1/;

u.t/ D g".v/.t/; t 2 Œ��; 0 �: (19.11)

By Lemma 19.2 and Remark 19.4, it follows that, for each v 2 Cb.Œ 0;C1/IX/,
(19.11) has a unique mild solution u 2 Cb.Œ��;C1/IX/. Thus, we can define the
operator

S" W Cb.Œ 0;C1/IX/ ! Cb.Œ 0;C1/IX/

by

S".v/ WD ujŒ 0;C1/;

where u is the unique mild solution of (19.11) corresponding to v. We will complete
the proof, by showing that the operator S" defined as above satisfies the hypotheses
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of Schaefer Fixed Point Theorem 19.1 and thus (19.9) has at least one mild solution.
So, we have to check out that S" is continuous with respect to norm topology of
Cb.Œ 0;C1/IX/, is compact and

E.S"/ D fu 2 Cb.Œ 0;C1/IX/I 9� 2 Œ 0; 1 �; such that u D �S".u/g

is bounded.
To prove the continuity of S" let v; Qv 2 Cb.Œ 0;C1/IX/, set u.t/ D S".v/.t/ and

Qu.t/ D S".Qv/.t/ for t 2 Œ 0;C1/ and let us observe that

ku.t/ � Qu.t/k � e�!tkg".v/.0/� g".Qv/.0/k C
Z t

0

e�!.t�s/kf .s; us/ � f .s; Qus/k ds

� e�!tkg.v/.0/ � g.Qv/.0/k C `

Z t

0

e�!.t�s/kus � QuskC.Œ��;0 �IX/ ds

for each t 2 Œ 0;C1/. So, we have

ku.t/ � Qu.t/k � e�!tkg.v/.0/ � g.Qv/.0/k C .1 � e�!t /
`

!
ku � QukCb.Œ��;C1/IX/

for each t 2 Œ 0;C1/.
But

ku � QukCb.Œ��;C1/IX/ � ku � QukC.Œ��;0 �IX/ C ku � QukCb.Œ 0;C1/IX/:

On the other hand, by the nonlocal initial condition, we have

ku � QukC.Œ��;0 �IX/ D kg".v/� g".Qv/kC.Œ��;0 �IX/ � kg.v/ � g.Qv/kC.Œ��;0 �IX/:

Thus

ku � QukCb.Œ 0;C1/IX/ � ! C `

! � ` kg.v/ � g.Qv/kC.Œ��;0 �IX/

for each v; Qv 2 Cb.Œ 0;C1/IX/. So, from .g3/ in .Hg/ and Remark 19.4, we
conclude that S" is continuous on Cb.Œ 0;C1/IX/ in the norm topology.

The next step is to show that, for each bounded set K in Cb.Œ 0;C1/IX/, S".K/
is relatively compact in Cb.Œ 0;C1/IX/. To this aim, let K be a bounded set in
Cb.Œ 0;C1/IX/ and let .vk/k be an arbitrary sequence in K. We show first that
uk D S".vk/, k D 1; 2; : : : , is bounded. Indeed, from .HA/, .Hf / and (19.2),
we get

kuk.t/k � e�!tkuk.0/k C .1 � e�!t /
`

!

h
kukkCb.Œ��;C1/IX/ C m

`

i
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for each t 2 .0;C1/. For t 2 Œ��; 0 �, we have

kuk.t/k D kg".vk/.t/k � kvkkCb.Œ 0;C1/IX/ Cm0

for each k 2 N and, since .vk/k is bounded, there exists m1 > 0 such that

kukkC.Œ��;0 �IX/ � m1

for each k 2 N. On the other hand

kukkCb.Œ��;C1/IX/ D maxfkukkC.Œ��;0 �IX/; kukkCb.Œ 0;C1/IX/g

� m1 C kukkCb.Œ 0;C1/IX/:

Accordingly

kuk.t/k � e�!tm1 C .1 � e�!t /
`

!

h
kukkCb.Œ 0;C1/IX/ Cm1 C m

`

i

� m1 C `

!

h
kukkCb.Œ 0;C1/IX/ Cm1 C m

`

i

for each k 2 N and t 2 .0;C1/. Hence

�
1 � `

!

�
kukkCb.Œ 0;C1/IX/ � m1

�
1C `

!

�
C m

!

for each k 2 N. Finally, we deduce that

kukkCb.Œ 0;C1/IX/ � ! C `

! � ` �m1 C m

! � `
for each k 2 N. So .S".vk//k is bounded and consequently, for each T > 0, the set

ff .t; S".vk/t /I k 2 N; t 2 Œ 0; T �g

is relatively compact. By virtue of Theorem 19.2, it follows that fS".vk/I k 2 Ng is
relatively compact in C.Œ ı; T �IX/ for each T > 0 and ı 2 .0; T /.

By .HX/, it follows that fS".vk/.0/I k 2 Ng D fg".vk/.0/I k 2 Ng is relatively
compact in X , simply because .vk/k is bounded and I" is compact. Using once
again Theorem 19.2, we conclude that fS".vk//I k 2 Ng is relatively compact in
C.Œ 0; T �IX/ for each T > 0 and thus in QCb.Œ 0;C1/IX/.
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For the sake of simplicity, let us denote also by .uk/k D .S".vk//k a convergent
subsequence of .S".vk//k in QCb.Œ 0;C1/IX/ to some function u. Then

kuk.t/ � u.t/k � e�!.t��/kuk.�/ � u.�/k C
Z t

�

`e�!.t�s/kuks � uskC.Œ��;0 �IX/ ds

for each t 2 Œ �;C1/. Taking y.t/ D e!.t��/kuk.t/�u.t/k, ˛0.t/ D kuk.�/�u.�/k
and ˇ D ` in Lemma 19.3 applied on the shifted intervals Œ 0;C1/ and Œ �;C1/,
after some simple calculations and recalling that ` < !, we deduce

kuk.t/ � u.t/k � e.`�!/.t��/Œkuk.�/� u.�/k C kuk � ukC.Œ 0;� �IX/�

for each t 2 Œ �;C1/. Since .uk/k is bounded, this shows that limk uk D u in
Cb.Œ �;C1/IX/. Furthermore, from limk uk D u in QCb.Œ 0;C1/IX/, it follows
that .uk/k D .S".vk//k is convergent even in Cb.Œ 0;C1/IX/. Thus S".K/ is
relatively compact in Cb.Œ 0;C1/IX/, as claimed.

It remains merely to prove that E.S"/ is bounded. To this aim, let u 2 E.S"/, i.e.

u D �S".u/

for some � 2 Œ 0; 1 �. Consequently

ku.t/k � kS".u/.t/k

for each t 2 Œ 0;C1/. From .HA/ and (19.2), it follows that

kS".u/.t/k � e�!tkS".u/.0/k C
Z t

0

e�!.t�s/kf .s; us/k ds

for each t 2 Œ 0;C1/ and thus, by .Hf / and .g1/ in .Hg/, we get

kS".u/.t/k � e�!tkS".u/.0/k C .1 � e�!t /
`

!

h
kS".u/kCb.Œ��;C1/IX/ C m

`

i

for each t 2 Œ 0;C1/. Since, by .g1/, .g2/ in .Hg/, .HX/ and Remark 19.2, we
have

kS".u/kC.Œ��;0 �IX/ � kg".u/kC.Œ��;0 �IX/
� kukCb.Œ a;C1/IX/ Cm0 � kS".u/kCb.Œ a;C1/IX/ Cm0;

we are in the hypotheses of Lemma 19.1 which shows that E.S"/ is bounded. Thus
Schaefer Fixed Point Theorem 19.1 applies implying that S" has at least one fixed
point which v D ujŒ 0;C1/, where u 2 Cb.Œ��;C1/IX/ is a mild solution of the
problem (19.9). This concludes the proof of Lemma 19.4. ut
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19.5.2 Proof of the Main Result: Continued

We can now proceed with the final part of the proof of Theorem 19.3.

Proof For each " 2 .0; 1/ let us fix a mild solution u" of the problem (19.9) whose
existence is ensured by Lemma 19.4. We first prove that the set fu"I " 2 .0; 1/g is
relatively compact in QCb.Œ��;C1/IX/. As a consequence, there exists a sequence
"n # 0 such that the corresponding sequence .u"n/n converges in QCb.Œ��;C1/IX/
to a function u 2 Cb.Œ��;C1/IX/ which turns out to be a mild solution of (19.1).

From Lemma 19.1, we know that fu"I " 2 .0; 1/g is bounded in
Cb.Œ��;C1/IX/. From Theorem 19.2, we conclude that fu"I " 2 .0; 1/g is
relatively compact in C.Œ ı; T �IX/ for each T > 0 and each ı 2 .0; T /. Then, it is
relatively compact in QCb.Œ a;C1/IX/. In view of .g2/ and .g3/ and Remark 19.4,
it follows that fg".u"/I " 2 .0; 1/g is relatively compact in C.Œ��; 0 �IX/. This
means that, there exists a subsequence of ."n/n, denoted again by ."n/n, such that
.u"n/n—denoted for simplicity also by .un/n—converges in QCb.Œ a;C1/IX/ to
some function u 2 Cb.Œ a;C1/IX/ and the restriction of .un/n to Œ��; 0�, i.e.
.g"n.un//n, converges in C.Œ��; 0 �IX/ to some element v 2 C.Œ��; 0 �IX/, i.e.

8<
:

lim
n!1 un D u in QCb.Œ a;C1/IX/
lim
n!1 un D lim

n!1g"n .un/ D lim
n!1 I"ng.un/ D v in C.Œ��; 0 �IX/:

We have

kun.t/ � up.t/k � e�!tkun.0/� up.0/k C .1 � e�!t /
`

!
kun � upkCb.Œ��;C1/IX/

for each n; p 2 N and each t 2 Œ 0;C1/. Since

kun � upkCb.Œ��;C1/IX/ � kun � upkC.Œ��;0 �IX/ C kun � upkCb.Œ 0;C1/IX/

D kg"n .un/ � g"p .up/kC.Œ��;0 �IX/ C kun � upkCb.Œ 0;C1/IX/; (19.12)

it follows that

kun.t/ � up.t/k � e�!tkg"n .un/ � g"p .up/kC.Œ��;0 �IX/

C.1 � e�!t /
`

!

kg"n .un/ � g"p .up/kC.Œ��;0 �IX/ C kun � upkCb.Œ 0;C1/IX/
�

for each n; p 2 N and t 2 Œ 0;C1/. Hence

kun � upkCb.Œ 0;C1/IX/ � ! C `

! � `
kg"n .un/� g"p .up/kC.Œ��;0 �IX/
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for each n; p 2 N. As .g"n .un//n is fundamental in C.Œ��; 0 �IX/ being convergent,
from the last inequality, if follows that .un/n is fundamental in Cb.Œ 0;C1/IX/. By
virtue of (19.12), we deduce that .un/n is fundamental even in Cb.Œ��;C1/IX/
and so it is convergent in this space.

Now, from Remark 19.2, it follows that Lemma 19.1 applies and thus we get
(19.5). Since the global asymptotic stability, in the case when `e�! < !, follows
very similar arguments as those in the last part of the proof of Burlică and Roşu [5,
Theorem 3.1], this completes the proof of Theorem 19.3. ut

19.6 The Damped Wave Equation

Let˝ be a nonempty bounded and open subset in R
d , d � 1, with C1 boundary � ,

letQC D Œ 0;C1/�˝ ,Q� D Œ��; 0 ��˝ ,˙C D Œ 0;C1/�� , let ! > 0 and let
us consider the following damped wave equation with delay, subjected to nonlocal
initial conditions:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

@2u

@t2
.t; x/ D �u.t; x/�2!@u

@t
.t; x/�!2u.t; x/Ch .t; u.t � �; �// in QC;

u.t; x/ D 0 on ˙C;

u.t; x/ D
Z C1

0

˛.s/u.tCs; x/ dsC 1.t; x/ in Q�;

@u

@t
.t; x/ D

Z C1

0

N

�
s; u.tCs; x/; @u

@t
.tCs; x/

�
dsC 2.t; x/ in Q�;

(19.13)

h W Œ 0;C1/�H1
0 .˝/ ! L2.˝/, ˛ 2 L2.Œ 0;C1/IR/, N W Œ 0;C1/�R�R ! R,

while  1 2 C.Œ��; 0 �IH1
0 .˝// and  2 2 C.Œ��; 0 �IL2.˝//.

Theorem 19.4 Let ˝ be a nonempty bounded and open subset in R
d , d � 1, with

C1 boundary � , let � � 0,  1 2 C.Œ��; 0 �IH1
0 .˝//,  2 2 C.Œ��; 0 �IL2.˝//

and let us assume that h W Œ 0;C1/ � R ! R, ˛ 2 L2.Œ 0;C1/IR/ and N W
Œ 0;C1/ � R � R ! R are continuous and satisfy W
.h1/ there exists ` > 0 such that kh.t;w/ � h.t; y/kL2.˝/ � `kw � ykH1

0 .˝/
for

each t 2 Œ 0;C1/ and w; y 2 H1
0 .˝/ I

.h2/ there exists m > 0 such that kh.t; 0/kL2.˝/ � m for each t 2 Œ 0;C1/ I

.n1/ there exists a nonnegative continuous function � 2 L2.RCIRC/ such that

jN.t; u; v/j � �.t/.juj C jvj/;

for each t 2 RC and u; v 2 R:
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Let �1 be the first eigenvalue of �� and let us assume that

.n2/

( k�kL2.Œ 0;C1/IR/ � 1;

.1C ��1
1 !/k˛kL2.Œ 0;C1/IR/ C ��1

1 .1C !/k�kL2.Œ 0;C1/IR/ � 1 I
.n3/ there exists b > � such that ˛.t/ D �.t/ D 0 for each t 2 Œ 0; b �;
.c1/ ` < !.

Then the problem (19.13) has at least one mild solution u 2 Cb.Œ��;C1/I
H1
0 .˝// with

@u

@t
2 Cb.Œ��;C1/IL2.˝//. In addition, u satisfies

kukCb.Œ��;C1/IH1
0 .˝//

C
����@u

@t

����
Cb.Œ��;C1/IL2.˝//

� m

! � `
C
�

!

! � `
�
�

1

e!a � 1
C `

!

�
C 1

�
�m0;

where

m0 D k 1kC.Œ��;0 �IH1
0 .˝//

C k! 1 C  2kC.Œ��;0 �IL2.˝//:

If, instead of .c1/, the stronger nonresonance condition `e�! < ! is satisfied, then
each mild solution of (19.13) is globally asymptotically stable.

Proof Let us observe that (19.13) can be equivalently rewritten in the form (19.1)

in the Hilbert space X D
0
@H

1
0 .˝/

�
L2.˝/

1
A ; endowed with the usual inner product

��
u
v

�
;

� Qu
Qv
��

D
Z
˝

ru.x/ � r Qu.x/ dx C
Z
˝

v.x/Qv.x/ dx

for each

�
u
v

�
;

� Qu
Qv
�

2 X , where A, f , and g are defined as follows. First, let us

define the linear operator A W D.A/ 	 X ! X by

D.A/ D
0
@H

1
0 .˝/\H2.˝/

�
H1
0 .˝/

1
A ;

A

�
u
v

�
WD
 �!u C v

�u � !v

!
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for each

�
u
v

�
2 D.A/. Second, let us define f W Œ 0;C1/�C.Œ��; 0 �IX/ ! X by

f

�
t;

�
z
y

��
.x/ D

�
0

h.t; z.��//
�

for each t 2 Œ 0;C1/, x 2 ˝ and

�
z
y

�
2 C.Œ��; 0 �IX/. Third, let the nonlocal

constraint g W Cb.Œ��;C1/IX/ ! C.Œ��; 0 �IX/ be given by

�
g

�
u
v

�
.t/

�
.x/ D

0
BBB@

Z C1

0

˛.s/u.tCs; x/ ds C  1.t; x/

Z C1

0

M .s; x; u.tCs; x/;w.tCs; x//ds C  3.t; x/

1
CCCA

for each

�
u
v

�
2 Cb.Œ��;C1/IX/, each t 2 Œ��; 0 � and a.e. x 2 ˝ , w D v �!u,

M.t; u;w/ D N.t; u;w/C !˛.t/u and  3 D  2 C ! 1.
We begin by observing that, in view of Remark 19.1, X satisfies .HX/. Clearly,

the linear operator B WD AC !I for each u 2 D.B/ D D.A/, where A is defined
as above and I is the identity on X , is the infinitesimal generator of a C0-group of
unitary operators fG.t/ W X ! X I t 2 Rg in X . See Vrabie [27, Theorem 4.6.2,
p. 93]. Consequently, A generates a C0-semigroup of contractions fS.t/ W X !
X I t � 0g, defined by

S.t/� D e�!tG.t/�

for each t � 0 and each � 2 X , i.e. A ism-dissipative. So A satisfies .HA/. Next, let

us observe that f is compact. Indeed, if C D
��

u˛
v˛

�
I ˛ 2 �

	
is a bounded subset

in C.Œ��; 0 �IX/, then fu˛.��/I ˛ 2 �g is bounded in H1
0 .˝/ which is compactly

embedded inL2.˝/. So, fu˛.��/I ˛ 2 �g is relatively compact inL2.˝/ and since
h is continuous and has linear growth, it follows that, for each T > 0, f .Œ 0; T ��C/
is relatively compact in X . But this shows that f is compact. Moreover, in view of
.h1/, it follows that the function f satisfies .Hf /, while from .n1/, .n2/ and .n3/,
we deduce that g, which is of the form (19.4) in Remark 19.3 with

 .t/ D
 
 1.t/

 3.t/

!
;

for t 2 Œ��; 0 �, and satisfies .Hg/ with m0 D k kC.Œ��;0 �IX/ and a D b � � > 0.
Hence, the conclusion of Theorem 19.4 follows from Theorem 19.3. ut
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Chapter 20
Elliptic Differential-Operator Problems
with the Spectral Parameter in Both
the Equation and Boundary Conditions
and the Corresponding Abstract Parabolic
Initial Boundary Value Problems

Yakov Yakubov

Dedicated to the memory of Alfredo Lorenzi

Abstract We consider, in UMD Banach spaces, boundary value problems for
second order elliptic differential-operator equations with the spectral parameter and
boundary conditions containing the parameter in the same order as the equation.
An isomorphism and the corresponding estimate of the solution (with respect to
the space variable and the parameter) are obtained. Then, an application of the
obtained abstract results is given to boundary value problems for second order
elliptic differential equations with the parameter in non-smooth domains. Further,
the corresponding abstract parabolic initial boundary value problem is treated and an
application to initial boundary value problems with time differentiation in boundary
conditions is demonstrated.

AMS Subject Classifications: 34G10, 35J25, 47E05, 47D06.

20.1 Introduction and Basic Notations

In the last decade, the study of boundary value problems for elliptic differential-
operator equations in a Banach space has been intensively developed. We refer
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the reader to the papers [3–9] and to their introductions with the full reference
to the last works on the subject. The corresponding problems with the spectral
parameter both in the equation and in boundary conditions, especially with the
same power, have been less studied (see [1] and the reference therein). In [1],
boundary value problems for second order elliptic differential-operator equations
with the linear spectral parameter and operator-boundary conditions containing
also the same linear parameter have been considered in a Hilbert space. The main
operator of the equation is selfadjoint and positive-definite. It seems that there is no
the corresponding study in a Banach space. The main purpose of the present paper is
to generalize and improve the corresponding isomorphism result in a Hilbert space
from [1] in the framework of UMD Banach spaces and non-selfadjoint operators. In
particular, we get maximal Lp-regularity for the considered problems. The second
aim of the paper, and not less, is to study the corresponding abstract parabolic
initial boundary value problems with the time differentiation in abstract boundary
conditions. The main abstract results in the paper are illustrated by some suitable
applications to PDEs.

We give now some necessary definitions. Let E1 and E2 be Banach spaces. The
set E1 PCE2 of all the vectors of the form .u; v/, where u 2 E1; v 2 E2, with the
natural coordinatewise linear operations and the norm k.u; v/kE1 PCE2 WD kukE1 C
kvkE2 is a Banach space and is said to be a direct sum of Banach spaces E1 and E2.

By .E1;E2/�;p , 0 < � < 1, 1 � p � 1, we denote the standard (real)
interpolation space (see, e.g., [14] for definitions and properties).

Let A be a linear closed operator in the Banach space E with domain D.A/.
The domain D.A/ is turned into the Banach space E.A/ with respect to the norm
kukE.A/ WD .kuk2E C kAuk2E/

1
2 :

By B.E1;E/ we denote the Banach space of all linear bounded operators from
E1 into E with ordinary operator norm; B.E/ WD B.E;E/.

By Lp..0; 1/IE/, 1 < p < 1, we denote the Banach space of functions x !
u.x/ W .0; 1/ ! E , strongly measurable and summable in the p-th power, with finite

norm kukLp..0;1/IE/ WD .
R 1
0

ku.x/kpEdx/
1
p :

The space W `
p ..0; 1/IE/, 1 < p < 1, 0 � ` is an integer, is the Banach

space of functions u.x/ on .0; 1/ with values in E , which have generalized
derivatives up to the `-th order inclusive with finite norm kukW `

p ..0;1/IE/ WDP`
kD0.

R 1
0

ku.k/.x/kpEdx/
1
p :

By W 2
p ..0; 1/IE.A/;E/ we denote

W 2
p ..0; 1/IE.A/;E/ WD ˚

u W u 2 Lp..0; 1/IE.A//; u00 2 Lp..0; 1/IE/
�

with finite norm kukW 2
p ..0;1/IE.A/;E/ WD kukLp..0;1/IE.A//Cku00kLp..0;1/IE/. It is known

that this space is a Banach space (see for more general spaces [14, Lemma 1.8.1];
see also [16, Sect. 1.7.7]).

With 0 � k is an integer, Ck.Œ0; T �IE/ denotes the Banach space of functions
u.x/ on Œ0; T � with values from E which have continuous derivatives up to the k-th
order inclusive on Œ0; T � and the norm kukCk.Œ0;T �IE/ WD Pk

`D0 max
x2Œ0;T � ku.`/.x/kE is
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finite. If k D 1 then this is a set of functions u.x/ with values from E which have
continuous derivatives of any order.

Let an operator A act from a Banach space E into a Banach space F . By F 0 we
denote the dual space to F . The operator A from E into F is Fredholm, if

(a) the image R.A/ is closed in F ;
(b) kerA and cokerA are finitely dimensional subspaces in E and F 0, respectively;
(c) dim kerA D dim coker A.

The following notions are well known but we would like to bring them here for
the reader convenience.

A Banach spaceE is said to be of class HT, if the Hilbert transform is bounded on
Lp.RIE/ for some (and then all) p > 1. Here the Hilbert transformH of a function
f 2 S.RIE/, the Schwartz space of rapidly decreasing E-valued functions, is
defined by Hf WD 1

�
PV. 1

t
/
f , i.e., .Hf /.t/ WD 1

�
lim
"!0

R
j� j>"

f .t��/
�

d� . These spaces

are often also called UMD Banach spaces, where the UMD stands for the property
of unconditional martingale differences.

For a linear operator A in the Banach space E , we will, sometimes, write �C A

instead of �I C A, where � 2 C and I is the identity operator in E . The operator
R.�;A/ WD .�I � A/�1 is the resolvent of the operator A.

Definition 20.1 LetE be a complex Banach space, andA is a closed linear operator
in E . The operator A is called sectorial if the following conditions are satisfied:

1. D.A/ D E , R.A/ D E , .�1; 0/ 	 �.A/I
2. k�.�C A/�1k � M for all � > 0, and some M < 1.

Definition 20.2 Let E and F be Banach spaces. A family of operators T �
B.E;F / is called R-bounded if there is a constant C > 0 and p � 1 such
that for each natural number n, Tj 2 T , uj 2 E and for all independent,
symmetric, f�1; 1g-valued random variables "j on Œ0; 1� (e.g., the Rademacher
functions "j .t/ D sign sin.2j�t/) the inequality

���
nX

jD1
"j Tjuj

���
Lp..0;1/IF /

� C
���

nX
jD1

"juj
���
Lp..0;1/IE/

is valid. The smallest suchC is called R-bound ofT and is denoted byRfT gE!F .
If E D F , the R-bound will be denoted by RfT gE or simply RfT g.

Remark 20.1 From the definition of R-boundedness it follows that every
R-bounded family of operators is (uniformly) bounded (it is enough to take n D 1).
On the other hand, in a Hilbert space H every bounded set is R-bounded (see,
e.g., [12, p. 75]). Therefore, in a Hilbert space, the notion of R-boundedness is
equivalent to boundedness of a family of operators (see also [2, p. 26]).

We indicate with arg� the element of the argument of the complex number � in
.��; �� (� 2 C n f0gI arg 0 WD 0/.
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Definition 20.3 A sectorial operator A in E is called R-sectorial if

RA.0/ WD Rf�.�C A/�1 W � > 0g < 1:

The number �R
A WD inff� 2 .0; �/ W RA.� � �/ < 1g, where RA.�/ WD

Rf�.�C A/�1 W j arg�j � �g, is called the R-angle of the operator A.

20.2 Auxiliary Results

In this section we set some useful facts.

Lemma 20.1 Let � and � be elements of C n f0g. Let � 2 R
C (positive real

numbers) and assume that

jj arg� � arg�j � �j � �: (20.1)

Then j�C �j � C.�/.j�j C j�j/, with C.�/ 2 R
C, depending only on � and not on

� and �.

Proof We set � WD arg� and M WD arg�. We have

j�C �j2 D j�j2 C j�j2 C 2j�jj�j cos.� �M/:

Obviously,��M 2 .�2�; 2�/ and, if � is in this interval, cos � D �1 if and only
if j� j D � . In case jj� j � �j � �, the estimate cos � � ı.�/ � 1, for some ı.�/ in
.0; 2/, holds. We deduce that, in case (20.1),

j�C �j2 � j�j2 C j�j2 C 2Œı.�/� 1�j�jj�j:

As min��0 �
2C1C2Œı.�/�1��

.�C1/2 D ı.�/

2
, we get

j�j2 C j�j2 C 2Œı.�/ � 1�j�jj�j D j�j2
�
.
j�j
j�j /

2 C 1C 2Œı.�/� 1�
j�j
j�j
�

� ı.�/

2
.j�j C j�j/2:

The conclusion follows, with C.�/ D .
ı.�/

2
/1=2. ut

We introduce the following notation:

�� WD minf�; � � j arg�jg: (20.2)
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Lemma 20.2 Let A be a linear operator in the complex Banach space E and let
� 2 .0; �/. Assume that f� 2 C n f0g W j arg �j � � � �g [ f0g 	 �.A/ and there
exists M 2 R

C such that, for � in this set, .1C j�j/k.� � A/�1kB.E/ � M .

(i) let � 2 Cn f0g, with j arg�j � �. Then �� 2 �.A/ and so .�CA/�1 2 B.E/;
(ii) let � 2 C n f0g, with 0 � arg� � � (so that Im� � 0). If � 2 C n f0g

and ��� < arg� < � then � C � ¤ 0 and j arg.� C �/j � �. Moreover,
8� 2 .0; ��/, there existsC.�;M/ in R

C such that, if ���C� � arg� � ���,
we have

k.�C �C A/�1kB.E/ � C.�;M/.j�j C j�j/�1:

The constant C.�;M/ is independent of � and � at least 8� 2 .0;minf�;
� � �g/;

(iii) let � be as in (ii). Then, the operator .�C A/1=2 is well defined. If z 2 C n f0g
and ��C��

2
< arg z < �C�

2
, �z 2 �..� C A/1=2/. Moreover, 8� 2 .0; ��/,

if ��C��
2

C � � arg z � �C�
2

� �,

k.z C .�C A/1=2/�1kB.E/ � C.�;M; �/jzj�1:

The constant C.�;M; �/ is independent of � and z at least 8� 2 .0;minf�;
� � �g/.

Proof (i) follows from the simple observation that, given� 2 Œ0; ��, j arg�j � ���
if and only if j arg.��/j � �.

Let � 2 Cnf0g, with 0 � arg� � � < � . It is easily seen that, if � 2 Cnf0g and
��� < arg� < �, then �C� ¤ 0 and j arg.�C�/j � �, so that .�C�CA/�1 2
B.E/. We observe also that 8� 2 .0; ��/, in case ��� C � � arg� � � � �, we
have j arg� � arg�j � � � �, so that (20.1) holds. We deduce that, in such a case,

k.�C �C A/�1kB.E/ � M j�C �j�1 � C.�;M/.j�j C j�j/�1:

So (ii) is proved.
Concerning (iii), we start by remarking that, as a consequence of (ii), � C A is

positive and the operator .�C A/1=2 is defined. We have also, for z 2 R
C,

Œz C .�C A/1=2��1 D 1

�

Z 1

0

t1=2.AC �C t/�1

t C z2
dt (20.3)

(see [13, formula (2.32)]). We observe that (20.3) is well defined even in the more
general case j arg zj < �

2
. So, by analytic continuation, if j arg zj < �=2, Œz C .�C

A/1=2��1 exists and equals (20.3).
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We come back to the case that z 2 R
C, and observe that, by analyticity, we can

shift the path of integration from R
C to R

Cei� , if ��� < � < �, to obtain

Œz C .�C A/1=2��1 D 1

�

Z 1

0

t1=2ei�=2.AC �C tei� /�1

tei� C z2
ei�dt: (20.4)

Now we observe that the right hand side of (20.4) is well defined if ���
2
< arg z <

�C�
2

, implying that Œz C .�C A/1=2��1 2 B.E/ whenever ��C��
2

< arg z < �C�
2

.

Let � 2 .0; ��/ and z 2 C n f0g, with ��C��
2

C � � arg z � �C�
2

� �. Then we
can take � in Œ��� C �; � � ��, such that ���

2
C �

2
� arg z � �C�

2
� �

2
. We have

arg.z2/ D
8<
:
2 arg z if ��

2
< arg z � �

2
;

2 arg z � 2� if �
2
< arg z � �;

2 arg z C 2� if �� < arg z � ��
2
:

In the first case, we deduce �� C � � arg.z2/� � � � � �. In the second case, we
have arg.z2/ � � � �� � �. In the third case, we have arg.z2/� � � � C �. So, in
each case we obtain jj arg.z2/ � � j � �j � �. Employing Lemma 20.1, we obtain,
from (20.4) and part (ii),

kŒz C .�C A/1=2��1kB.E/ � C1.�;M; �/

Z 1

0

t1=2.j�j C t/�1

t C jzj2 dt

� C1.�;M; �/

Z 1

0

t�1=2

t C jzj2 dt � C2.�;M; �/jzj�1:

The proof of (iii) is complete, too. ut
In a similar way, we can prove the following

Lemma 20.3 Let A satisfy conditions of Lemma 20.2 and let � 2 C n f0g, with
0 � arg� � �� (so that Im� � 0). Then,

(i) if � 2 C n f0g and �� < arg� < ��, � C � ¤ 0 and j arg.� C �/j � �.
Moreover, 8� 2 .0; ��/, there exists C.�;M/ in R

C, such that, if �� C � �
arg� � �� � �, we have

k.�C �C A/�1kB.E/ � C.�;M/.j�j C j�j/�1:

The constant C.�;M/ is independent of � and � at least 8� 2 .0;minf�; � �
�g/;

(ii) the operator .�CA/1=2 is well defined. If z 2 Cnf0g and ��C�
2
< arg z < �C��

2
,

�z 2 �..�CA/1=2/. Moreover, 8� 2 .0; ��/, if ��C�
2

C � � arg z � �C��
2

� �,

k.z C .�C A/1=2/�1kB.E/ � C.�;M; �/jzj�1:
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The constant C.�;M; �/ is independent of � and z at least 8� 2 .0;minf�;
� � �g/.

Theorem 20.1 Let A satisfy conditions of Lemma 20.2 and let ˛ 2 C n f0g and
� 2 C n f0g, with j arg�j � �, such that

j arg� � arg˛j � � C �

2
� �; (20.5)

for some � in .0;minf� � arg˛; ��g/. Then, the operator Œ�.AC �/�1=2 C ˛��1 is
defined, it belongs to B.E/, and

kŒ�.AC �/�1=2 C ˛��1kB.E/ � C.�;M; ˛; �/:

The constant C.�;M; ˛; �/ is independent of � at least if � is chosen in .0;min
f� � arg˛; �; � � �g/.
Proof Set z WD �

˛
. Then z D jzjei.arg��arg˛/, so that, by (20.5), arg z D arg��arg˛.

If arg� � 0, we have ��C��
2

D maxf��C�
2
;

arg�
2

� �g, arg z � .
arg�
2

� �/ D
arg�
2

C � � arg˛ � �. We deduce that ��C��
2

C � � arg z � �C�
2

� �. So, by
Lemma 20.2, Œ �

˛
C .�CA/1=2��1 is defined and

kŒ�
˛

C .�C A/1=2��1k � C.M; �; �; ˛/j�j�1: (20.6)

An analogous argument works in case arg� � 0, employing Lemma 20.3.
We have �.AC �/�1=2 C ˛ D ˛Œ �

˛
C .AC �/1=2�.AC �/�1=2, so that Œ�.A C

�/�1=2 C ˛��1 is defined and

Œ�.AC �/�1=2 C ˛��1 D ˛�1.AC �/1=2Œ
�

˛
C .AC �/1=2��1

D ˛�1
1 � �

˛
Œ
�

˛
C .AC �/1=2��1

�
:

So the conclusion follows from (20.6). ut
Remark 20.2 Assume that A is selfadjoint and positive definite in the Hilbert space
E . Then f� 2 C n f0g W j arg �j � � � �g [ f0g 	 �.A/, for every � in .0; �/.
Assume that ˛ 2 C n f0g, with j arg˛j � ���

2
. If j arg�j � � � �, with 0 < � < �,

we have

j arg� � arg˛j � j arg�j C j arg˛j � � C �

2
� �;

so that Theorem 20.1 is applicable if 0 < � < minf��; � � arg˛g.
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20.3 Homogeneous Equations

We start with homogeneous equation and boundary conditions without perturbation
terms

L0.�/u WD �u.x/ � u00.x/C Au.x/ D 0; x 2 .0; 1/; (20.7)

L10.�/u W D �u.0/� ˛u0.0/ D f1;

L20.�/u W D �u.1/C ˇu0.1/ D f2:
(20.8)

Theorem 20.2 Let the following conditions be satisfied:

1. an operator A is closed, densely defined and invertible in the complex Banach
space E and kR.�;A/kB.E/ � C.1 C j�j/�1, for j arg�j � � � ', for some
' 2 .0; �/;

2. ˛ D 0 or j arg˛j � ��'
2

and ˇ D 0 or j argˇj � ��'
2

.

Then, the problem (20.7)–(20.8), for fk 2 .E.A/;E/�k;p , where �k D mk
2

C 1
2p

,

p 2 .1;1/, m1 D
(
1; ˛ ¤ 0;

0; ˛ D 0
; m2 D

(
1; ˇ ¤ 0;

0; ˇ D 0
; and j arg�j � ' � �,

� > 0 is any sufficiently small and j�j is sufficiently large, has the unique solution
u.x/ that belongs to the space W 2

p ..0; 1/IE.A/;E/ and, for these �, the following
estimate holds for the solution:

j�jkukLp..0;1/IE/ C ku00kLp..0;1/IE/ C kAukLp..0;1/IE/

� C.'; �/

2X
kD1

j�j�1Cmk
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE
�
:

(20.9)

Proof In view of condition (1), for j arg�j � ' < � , there exists the holomorphic,

for x > 0, and strongly continuous, for x � 0, semigroup e�x.AC�I/ 12 (see, e.g.,
[16, Lemma 5.4.2/6]). By virtue of [8, Lemma 1], an arbitrary solution of the
equation (20.7), for j arg�j � ', belonging to W 2

p ..0; 1/IE.A/;E/ has the form

u.x/ D e�x.AC�I/ 12 g1 C e�.1�x/.AC�I/ 12 g2; (20.10)

where gk 2 .E.A/;E/ 1
2p ;p

.

Let us now prove the converse, i.e., a function u.x/ of the form (20.10), with
gk 2 .E.A/;E/ 1

2p ;p
, belongs to the space W 2

p ..0; 1/IE.A/;E/. In view of [16,
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Theorem 5.4.2/1] (see the appendix), from (20.10), we find, for j arg�j � ',

kukW 2
p ..0;1/IE.A/;E/

� 
kA.AC �I/�1kB.E/ C 1
�h
 Z 1

0

k.AC �I/e�x.AC�I/
1
2
g1kpEdx

� 1
p

C 
 Z 1

0

k.AC �I/e�.1�x/.AC�I/
1
2
g2kpEdx

� 1
p

i

� C.'/

2X
kD1


kgkk.E.A/;E/ 1
2p ;p

C j�j1� 1
2p kgkkE

�
:

A function u.x/ of the form (20.10) satisfies boundary conditions (20.8) if

�

g1 C e�.AC�I/ 12 g2

� � ˛ � .AC �I/
1
2 g1 C .AC �I/

1
2 e�.AC�I/ 12 g2

� D f1;

�

e�.AC�I/ 12 g1 C g2

�C ˇ
 � .AC �I/

1
2 e�.AC�I/ 12 g1 C .AC �I/

1
2 g2

� D f2:
(20.11)

Rewrite (20.11) in the form


�I C ˛.AC �I/

1
2
�
g1 C 

�e�.AC�I/ 12 � ˛.AC �I/
1
2 e�.AC�I/ 12 �g2 D f1;


�e�.AC�I/ 12 � ˇ.AC �I/

1
2 e�.AC�I/ 12 �g1 C 

�I C ˇ.AC �I/
1
2
�
g2 D f2:

(20.12)

From (20.12) we get


�.AC �I/�

m1
2 C˛�.AC �I/

m1
2 g1 C 

�e�.AC�I/ 12 .AC �I/�
m1
2

� ˛e�.AC�I/ 12 �.AC �I/
m1
2 g2 D f1;


�e�.AC�I/ 12 .AC�I/�m2

2 � ˇe�.AC�I/ 12 �.AC �I/
m2
2 g1

C 
�.AC �I/�

m2
2 C ˇ

�
.AC �I/

m2
2 g2 D f2:

(20.13)

Denote v1 WD .AC �I/
m
2 g1; v2 WD .AC �I/

m
2 g2, where m D maxfm1;m2g. Note

that, by Yakubov and Yakubov [16, Lemma 1.7.3/5], v1 and v2 are well-defined.
Then, (20.13) can be rewritten in the form


�.AC �I/�

m1
2 C˛�.AC �I/

m1�m
2 v1 C 

�e�.AC�I/ 12 .AC �I/�
m1
2

� ˛e�.AC�I/ 12 �.AC �I/
m1�m
2 v2 D f1;


�e�.AC�I/ 12 .AC�I/�m2

2 � ˇe�.AC�I/ 12 �.AC �I/
m2�m
2 v1

C 
�.AC �I/�

m2
2 C ˇ

�
.AC �I/

m2�m
2 v2 D f2:

(20.14)
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System (20.14) has the form

�
A.�/CR.�/

�0@v1

v2

1
A D

0
B@
.AC �I/

m�m1
2 f1

.AC �I/
m�m2
2 f2

1
CA ; (20.15)

where A.�/ and R.�/ are operator-matrixes 2 � 2:

A.�/ D

0
B@
�.AC �I/�

m1
2 C ˛ 0

0 �.AC �I/�
m2
2 C ˇ

1
CA

and R.�/ is equal to

0
B@

0 �e�.AC�I/
1
2 .AC �I/�

m1
2 � ˛e�.AC�I/

1
2

�e�.AC�I/
1
2 .AC �I/�

m2
2 � ˇe�.AC�I/

1
2 0

1
CA :

Note that, by Yakubov and Yakubov [16, Lemma 1.7.3/5], .A C �I/
m�mk
2 fk are

well-defined.
By virtue of [16, Lemma 5.4.2/6], for j arg�j � ' and j�j ! 1,

kR.�/kB.E2/ � C.'/e�ıj�j 12 ; kR.�/kB.ŒE.A/�2/ � C.'/e�ıj�j 12 ; (20.16)

for some ı > 0. On the other hand, by virtue of the conditions of our theorem,
Theorem 20.1 implies, for j arg�j � ' � � and any small enough � > 0, that

k.�.AC �I/�
m1
2 C ˛/�1kB.E/ � C.'; �/j�j�1Cm1;

k.�.AC �I/�
m2
2 C ˇ/�1kB.E/ � C.'; �/j�j�1Cm2:

(20.17)

Since, by (20.17), there exists

A.�/�1 D

0
B@
.�.AC �I/�

m1
2 C ˛/�1 0

0 .�.AC �I/�
m2
2 C ˇ/�1

1
CA

then, by virtue of (20.16) and (20.17), kR.�/A.�/�1k ! 0 for j arg�j � ' � � and
j�j ! 1. Hence, by the Neumann identity, for j arg�j � ' � � and j�j ! 1,



A.�/CR.�/��1 D A.�/�1



ICR.�/A.�/�1��1 D A.�/�1

1X
kD0


�R.�/A.�/�1�k :



20 Elliptic Differential-Operator Problems and Abstract Parabolic IBV Problems 447

Consequently, system (20.15) has a unique solution for j arg�j � ' � � and j�j
sufficiently large, and the solution can be expressed in the form, for k D 1; 2,

vk D 
Ck1.�/CRk1.�/

�
.AC �I/

m�m1
2 f1 C 

Ck2.�/CRk2.�/
�
.AC �I/

m�m2
2 f2;

(20.18)

where C11.�/ D .�.A C �I/�
m1
2 C ˛/�1, C22.�/ D .�.A C �I/�

m2
2 C ˇ/�1,

C12.�/ D C21.�/ D 0, andRkj.�/ are some bounded operators both in E and E.A/
(since A is invertible in E). Moreover, by (20.17), for k D 1; 2,

kCkk.�/kB.E/ � C.'; �/j�j�1Cmk ; kCkk.�/kB.E.A// � C.'; �/j�j�1Cmk

and, by virtue of (20.16), for k D 1; 2 and j D 1; 2,

kRkj.�/kB.E/ � C.'; �/e�ıj�j 12 ; kRkj.�/kB.E.A// � C.'; �/e�ıj�j 12 ; (20.19)

for j arg�j � ' � � and j�j ! 1.
From the form of Ckj and Rkj it follows that these operators commute with .AC

�I/�m
2 . Then, multiplying (20.18) by .AC �I/�m

2 , we get (remind that vk D .AC
�I/

m
2 gk), for k D 1; 2,

gk D 
Ck1.�/CRk1.�/

�
.AC �I/�

m1
2 f1 C 

Ck2.�/CRk2.�/
�
.AC �I/�

m2
2 f2:

(20.20)

Substituting (20.20) into (20.10) we get

u.x/ D
2X

kD1


.AC �I/�

mk
2 e�x.AC�I/ 12 
C1k.�/CR1k.�/

�

C .AC �I/�
mk
2 e�.1�x/.AC�I/ 12 
C2k.�/CR2k.�/

��
fk:

Then, for j arg�j � ' � � and j�j sufficiently large, we have

j�jkukLp..0;1//IE/ C ku00kLp..0;1/IE/ C kAukLp..0;1/IE/

� C

2X
kD1

n
j�j
h� Z 1

0

k.AC �I /�
mk
2 e�x.AC�I/

1
2
C1k.�/fkkpEdx

� 1
p

C
�Z 1

0

k.AC �I /�
mk
2 e�x.AC�I/

1
2
R1k.�/fkkpEdx

� 1
p

C
�Z 1

0

k.AC �I /�
mk
2 e�.1�x/.AC�I/

1
2
C2k.�/fkkpEdx

� 1
p
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C
�Z 1

0

k.AC �I /�
mk
2 e�.1�x/.AC�I/

1
2
R2k.�/fkkpEdx

� 1
p
i

C .1C kA.AC �I /�1kB.E//
h� Z 1

0

k.AC �I /1�
mk
2 e�x.AC�I/

1
2
C1k.�/fkkpEdx

� 1
p

C
�Z 1

0

k.AC �I /1�
mk
2 e�x.AC�I/

1
2
R1k.�/fkkpEdx

� 1
p

C
�Z 1

0

k.AC �I /1�
mk
2 e�.1�x/.AC�I/

1
2
C2k.�/fkkpEdx

� 1
p

C
�Z 1

0

k.AC �I /1�
mk
2 e�.1�x/.AC�I/

1
2
R2k.�/fkkpEdx

� 1
p
io
: (20.21)

It was mentioned above that the operatorsCkj.�/ both in E andE.A/ act bound-
edly and kCkj.�/kB.E/ � C.'; �/j�j�1Cmk , kCkj.�/kB.E.A// � C.'; �/j�j�1Cmk
since C12.�/ D C21.�/ D 0. Then, from [16, Sect. 1.7.9], it follows that the
operators Ckj.�/ act boundedly in the space .E.A/;E/�;p , where 0 < � < 1, too.
Moreover, for j arg�j � ' � � and j�j ! 1,

kCkj.�/kB..E.A/;E/�;p/ � kCkj.�/k1��B.E.A//kCkj.�/k�B.E/ � C.'; �/j�j�1Cmk ;

as well.
By virtue of [16, Theorem 5.4.2/1] (see the appendix) and that .E0;E1/�;p D

.E1;E0/1��;p (see, e.g., [16, Lemma 1.7.3/1]), for the first term of the right-hand
side of inequality (20.21), we have, for j arg�j � ' � � and j�j ! 1,

j�j
� Z 1

0

k.AC �I/�
mk
2 e�x.AC�I/ 12 C1k.�/fkkpEdx

� 1
p

� C j�jk.AC �I/�1kB.E/
� Z 1

0

k.AC �I/1�
mk
2 e�x.AC�I/ 12 C1k.�/fkkpEdx

� 1
p

� C.'/
�
kC1k.�/fkk.E.A/;E/�k ;p C j�j1��kkC1k.�/fkkE

�

� C.'; �/j�j�1Cmk
�
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�
:

From (20.19) and [16, Sect. 1.7.9], it follows that the operators Rkj.�/ are bounded
in the space .E.A/;E/�;p, 0 < � < 1, and, for j arg�j � ' � �; j�j ! 1,

kRkj.�/kB..E.A/;E/�;p/ � kRkj.�/k1��B.E.A//kRkj.�/k�B.E/ � C.'; �/e�ıj�j 12 :
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By the same theorem [16, Theorem 5.4.2/1] (see the appendix), for the second term
of the right-hand side of inequality (20.21), we have, for j arg�j � '��; j�j ! 1,

j�j
� Z 1

0

k.AC �I/�
mk
2 e�x.AC�I/ 12 R1k.�/fkkpEdx

� 1
p

� C j�jk.AC �I/�1kB.E/
� Z 1

0

k.AC �I/1�
mk
2 e�x.AC�I/ 12 R1k.�/fkkpEdx

� 1
p

� C.'/
�
kR1k.�/fkk.E.A/;E/�k ;p C j�j1��kkR1k.�/fkkE

�

� C.'; �/e�ıj�j 12
�
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�

� C.'; �/j�j�1Cmk
�
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�
:

In a similar way, we estimate all the other terms on the right-hand side of
inequality (20.21). This proves estimate (20.9). ut

20.4 Nonhomogeneous Equations

We start with auxiliary lemma.

Lemma 20.4 Let an operator A be closed, densely defined, invertible in the
complex UMD Banach space E , and Rf�R.�;A/ W j arg�j � � � 'g < 1,
for some ' 2 .0; �/, and f 2 Lp.RIE/. Then, if u is a solution of the equation
�u.x/� u00.x/C Au.x/ D f .x/ on R,

kuk
W 1
p .RIE.A1

2 /;E/
� C j�j� 1

2 kf kLp.RIE/;

where the constant C is independent of �, with j arg�j � '.

Proof We have

kuk
W 1
p .RIE.A 1

2 /;E/
� C


kA1
2 ukLp.RIE/ C ku0kLp.RIE/

�

D C

kF �1A1

2 .�C �2 C A/�1Ff kLp.RIE/

C kF �1�.�C �2 C A/�1Ff kLp.RIE/
�
;

where F and F�1 denote the Fourier transform and the inverse Fourier trans-
form, respectively. It is enough to show that for nonnegative integers i; j; k, if
i C j C k D 2,

kj�j i2 F�1�jA
k
2 .�C �2 C A/�1Ff kLp.RIE/ � Ckf kLp.RIE/;
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where the constant C is independent of �, with j arg�j � '. This can be done
employing [15, Theorem 3.4]. In turn, in order to do that, it is enough to prove that
the sets

fm.�; i; j; k; �/ W � 2 Cnf0g; j arg�j � '; � 2 Rg

and

f�D�m.�; i; j; k; �/ W � 2 Cnf0g; j arg�j � '; � 2 Rg

are R-bounded in B.E/, where D� WD @
@�

and m.�; i; j; k; �/ WD j�j i2 �j Ak
2 .� C

�2 C A/�1, for i C j C k D 2.
We have

�D�m.�; i; j; k; �/ D jm.�; i; j; k; �/ � 2m.�; i; j; k; �/Œ�2.�C �2 C A/�1�:

As �2 � C.'/j� C �2j, for mentioned above � and �, by Kahane’s contraction
principle, f�2.� C �2 C A/�1 W � 2 Cnf0g; j arg�j � '; � 2 Rg is R-bounded
in B.E/. So, we have only to prove that fm.�; i; j; k; �/ W � 2 Cnf0g; j arg�j �
'; � 2 Rg is R-bounded in B.E/. We have already examined the case i D k D 0,
j D 2. In general, the case k D 0 follows from the inequality j�j i2 j�jj � C.'/j�C
�2j and, again, Kahane’s contraction principle. The case i D j D 0, k D 2 follows
from

A.�C �2 C A/�1 D I � .�C �2/.�C �2 C A/�1:

It remains only to consider the situation k D 1. By [3, Lemma 1.5(V)], the set

fj�C �2j 12 A 1
2 .�C �2 CA/�1 W � 2 Cnf0g; j arg�j � '; � 2 Rg

is R-bounded in B.E/. So, the conclusion for the last situation follows from
Kahane’s contraction principle and the fact that, if i C j D 1, j�j 12 j�jj �
C.'/j�C �2j 12 .

�

Now consider a boundary value problem for the nonhomogeneous equation with
the parameter

L0.�/u WD �u.x/� u00.x/C Au.x/ D f .x/; x 2 .0; 1/; (20.22)

L10.�/u W D �u.0/� ˛u0.0/ D f1;

L20.�/u W D �u.1/C ˇu0.1/ D f2:
(20.23)
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Theorem 20.3 Let the following conditions be satisfied:

1. an operator A is closed, densely defined and invertible in the complex UMD
Banach space E and

Rf�R.�;A/ W j arg�j � � � 'g < 1;

for some ' 2 .0; �/1;
2. ˛ D 0 or j arg˛j � ��'

2
and ˇ D 0 or j argˇj � ��'

2
;

3. m1 WD
(
1; ˛ ¤ 0;

0; ˛ D 0
, m2 WD

(
1; ˇ ¤ 0;

0; ˇ D 0
; �k WD mk

2
C 1

2p
, p 2 .1;1/,

k D 1; 2.

Then, the operator L0.�/ W u ! L0.�/u WD
�
L0.�/u; L10.�/u; L20.�/u

�
, for

j arg�j � ' � �, � > 0 is any sufficiently small and j�j is sufficiently large, is
an isomorphism from W 2

p ..0; 1/IE.A/;E/ onto Lp..0; 1/IE/ u .E.A/;E/�1;p u
.E.A/;E/�2;p and, for these �, the following estimate holds for the solution of the
problem (20.22)–(20.23):

j�jkukLp..0;1/IE/ C ku00kLp..0;1/IE/ C kAukLp..0;1/IE/
� C.'; �/

h
j�j maxfmkg

2 kf kLp..0;1/IE/

C
2X

kD1
j�j�1Cmk
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�i
: (20.24)

Proof The uniqueness follows from Theorem 20.2. Let us now define Qf .x/ WD
f .x/ if x 2 .0; 1/ and Qf .x/ WD 0 if x 62 .0; 1/. We now show that a solution of the
problem (20.22)–(20.23) belonging to W 2

p ..0; 1/IE.A/;E/ can be represented as a
sum of the form u.x/ D u1.x/ C u2.x/, where u1.x/ is the restriction on Œ0; 1� of
the solution Qu1.x/ of the equation

L0.�/Qu1 D Qf .x/; x 2 R; (20.25)

and u2.x/ is a solution of the problem

L0.�/u2 D 0; Lk0.�/u2 D fk � Lk0.�/u1; k D 1; 2: (20.26)

1In fact, this condition is equivalent to that A is an invertible R-sectorial operator in E with the
R-angle �R

A < � � '.
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It was shown in the proof of [4, Theorem 4] that a solution of the equation (20.25)
is given by the formula

Qu1.x/ D 1

2�

Z
R

ei�xL0.�; i�/
�1F Qf .�/d�; (20.27)

where F Qf is the Fourier transform of the function Qf .x/, and L0.�; 	/ is the
characteristic operator pencil of the equation (20.25), i.e., L0.�; 	/ D �	2I C
AC �I . Moreover, the solution belongs to W 2

p .RIE.A/;E/ and for the solution it
holds the estimate (see [4, formula (4.11)])

j�jkQu1kLp.RIE/ C kQu1kW 2
p .RIE.A/;E/ � C.'/k Qf kLp.RIE/; j arg�j � '; (20.28)

and, therefore, u1 2 W 2
p ..0; 1/IE.A/;E/.

By virtue of [16, Theorem 1.7.7/1] (for v.x/ D u1.x C x0/) and the inequal-
ity (20.28), we have u.s/1 .x0/ 2 .E.A/;E/ s

2C 1
2p ;p

, 8x0 2 Œ0; 1�, s D 0; 1. Hence,

Lk0.�/u1 2 .E.A/;E/�k;p since .E.A/; E/ 1
2p ;p

� .E.A/;E/�k;p . Thus, by virtue

of Theorem 20.2 (together with Remark 20.1), the problem (20.26) has the unique
solution u2.x/ that belongs to W 2

p ..0; 1/IE.A/;E/ as j arg�j � ' � �, � > 0 is
any sufficiently small and j�j is sufficiently large. Moreover, for the solution of the
problem (20.26), for j arg�j � ' � �; j�j ! 1, we have

j�jku2kLp..0;1/IE/ C ku00
2kLp.0;1/IE/ C kAu2kLp..0;1/IE/

� C.'; �/

2X
kD1

j�j�1Cmk
�
kfk �Lk0.�/u1k.E.A/;E/�k ;p

C j�j1��kkfk � Lk0.�/u1kE
�

� C.'; �/

2X
kD1

j�j�1Cmk
h
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

C j�jku1kC.Œ0;1�I.E.A/;E/�k ;p/ C j�j1��k j�jku1kC.Œ0;1�IE/
Cmkku0

1kC.Œ0;1�I.E.A/;E/�k ;p/ Cmkj�j1��kku0
1kC.Œ0;1�IE/

i
: (20.29)

From (20.28), for j arg�j � ', it follows that

j�jku1kLp..0;1/IE/ C ku1kW 2
p ..0;1/IE.A/;E/ � C.'/kf kLp..0;1/IE/: (20.30)
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Hence, from .E.A/;E/ 1
2p ;p

� .E.A/;E/�k;p , [16, Theorem 1.7.7/1] (for v.x/ D
u1.x C x0/), and (20.30), for any x0 2 Œ0; 1�, we have

ku.s/1 .x0/k.E.A/;E/�k ;p � Cku1kW 2
p ..0;1/IE.A/;E/ � C.'/kf kLp..0;1/IE/; s D 0; 1:

(20.31)

By virtue of [16, Theorem 1.7.7/2], for � 2 C; u1 2 W 2
p ..0; 1/IE/,mk D 0; 1,

j�j2�mkku.mk/1 .x0/k � C
�
j�j 1p ku1kW 2

p ..0;1/IE/Cj�j2C 1
p ku1kLp..0;1/IE/

�
: (20.32)

Dividing (20.32) by j�j 1p and substituting � D �2 for � 2 C; j�j ! 1, u1 2
W 2
p ..0; 1/IE/, we have

j�j1��kku.mk/1 .x0/k � C
�
ku1kW 2

p ..0;1/IE/ C j�jku1kLp..0;1/IE/
�
; mk D 0; 1:

(20.33)

Then, (20.30) and (20.33) imply, for j arg�j � ', j�j ! 1,

j�j1��kku.mk/1 .x0/k � C
�
ku1kW 2

p ..0;1/IE.A/;E/ C j�jku1kLp..0;1/IE/
�

� C.'/kf kLp..0;1/IE/; mk D 0; 1: (20.34)

From (20.29), (20.31), and (20.34), for j arg�j � ' � �; j�j ! 1, we have

j�jku2kLp..0;1/IE/ C ku00
2kLp..0;1/IE/ C kAu2kLp..0;1/IE/

� C.'; �/
h
j�jmaxfmkgkf kLp..0;1/IE/

C
2X

kD1
j�j�1Cmk
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�i
: (20.35)

Then, (20.30) and (20.35) imply (20.24) form1 D m2 D 0.
Let us now at least one mk D 1. Then, the corresponding �k D 1

2
C 1

2p
. By

[14, Theorem 1.15.2], .E.A/;E/�k;p D .E.A
1
2 /; E/ 1

p ;p
. In turn, by Favini et al. [3,

Lemma 2.1],

.E.A
1
2 /; E/ 1

p ;p
D fu.0/ W u 2 W 1

p .R
CIE.A1

2 /; E/g:

Hence, ku.0/k.E.A/;E/�k ;p � Ckuk
W 1
p .RIE.A 1

2 /;E/
. So, by Lemma 20.4,
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ku1kC.Œ0;1�I.E.A/;E/�k ;p/ � CkQu1k
W 1
p .RIE.A 1

2 /;E/
� C j�j� 1

2 k Qf kLp.RIE/

D C j�j� 1
2 kf kLp..0;1/IE/: (20.36)

Moreover, by (20.32) (take � D �2) and (20.30),

ku1kC.Œ0;1�IE/ � C

j�j 1

2p�1ku1kW 2
p ..0;1/IE/ C j�j 1

2p ku1kLp..0;1/IE/
�

� C j�j 1
2p�1kf kLp..0;1/IE/: (20.37)

Therefore, from (20.29), (20.31), (20.34), (20.36), and (20.37), for j arg�j �
' � �; j�j ! 1,

j�jku2kLp..0;1/IE/ C ku00

2 kLp..0;1/IE/ C kAu2kLp..0;1/IE/

� C.'; �/
h
j�j 12 kf kLp..0;1/IE/ C

2X
kD1

j�j�1Cmk

kfkk.E.A/;E/�k;p C j�j1��kkfkkE

�i

D C.'; �/
h
j�j maxfmkg

2 kf kLp..0;1/IE/

C
2X

kD1

j�j�1Cmk

kfkk.E.A/;E/�k;p C j�j1��kkfkkE

�i
: (20.38)

Then, (20.30) and (20.38) imply (20.24). ut

20.5 Isomorphism of a Problem with the Parameter in Both
the Equation and Boundary Conditions
and with Perturbation Terms in the Boundary
Conditions

First, consider the problem (20.22)–(20.23) with the perturbed both equation and
boundary conditions, namely,

L.�/u WD �u.x/� u00.x/C Au.x/C .A1u/.x/ D f .x/; x 2 .0; 1/; (20.39)

L1.�/u W D �u.0/� ˛u0.0/C T1u D f1;

L2.�/u W D �u.1/C ˇu0.1/C T2u D f2;
(20.40)

and prove the following Fredholmness theorem.
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Theorem 20.4 Let the following conditions be satisfied:

1. an operator A is closed, densely defined in the complex UMD Banach space E
and Rf�R.�;A/ W j arg�j � � � '; j�j � M g < 1, for some ' 2 .0; �/ and
some M � 02;

2. ˛ D 0 or j arg˛j � ��'
2

and ˇ D 0 or j argˇj � ��'
2

;

3. m1 WD
(
1; ˛ ¤ 0;

0; ˛ D 0
, m2 WD

(
1; ˇ ¤ 0;

0; ˇ D 0
; �k WD mk

2
C 1

2p
, p 2 .1;1/,

k D 1; 2;
4. the embeddingE.A/ 	 E is compact;
5. for any ı > 0 and u 2 W 2

p ..0; 1/IE.A/;E/,

kA1ukLp..0;1/IE/ � ıkukW 2
p ..0;1/IE.A/;E/ C C.ı/kukLp..0;1/IE/I

6. if mk D 0 then Tk D 0I if mk D 1 then, for any ı > 0 and u 2
W 2
p ..0; 1/IE.A/;E/,

kTkuk.E.A/;E/�k ;p � ıkukW 2
p ..0;1/IE.A/;E/ C C.ı/kukLp..0;1/IE/:

Then, the operator L.�0/ W u ! L.�0/u WD
�
L.�0/u; L1.�0/u; L2.�0/u

�
, for

any fixed �0 with j arg�0j � ' � �, � > 0 is any sufficiently small and j�0j is
sufficiently large, from W 2

p ..0; 1/IE.A/;E/ into Lp..0; 1/IE/u .E.A/;E/�1;p u
.E.A/;E/�2;p is bounded and Fredholm.

Proof Without loss of generality, we can assume that condition (1) is satisfied for
the whole sector j arg�j � � �' and � D 0 (� D 0 means thatA is invertible). Our
general case is reduced to the latter if the operator A C M1I is considered instead
of the operator A, and the operator A1 �M1I is considered instead of the operator
A1 with sufficiently large M1 � M .

We can represent the operator L.�0/ in the form

L.�0/ D L0.�0/C L1

with L0.�/u WD .L0.�/u; L10.�/u; L20.�/u/ and L1u WD ..A1u/.x/; T1u; T2u/,
where L0.�/, Lk0.�/, k D 1; 2, are defined by (20.22)–(20.23).

By Theorem 20.3, the operator L0.�0/ from W 2
p ..0; 1/IE.A/;E/ onto

Lp..0; 1/IE/ PC.E.A/;E/�1;p PC.E.A/;E/�2;p is invertible. From condition (4),
by Yakubov and Yakubov [16, Theorem 5.2.1/1], it follows that the embedding
W 2
p ..0; 1/IE.A/;E/ � Lp..0; 1/IE/ is compact. By conditions (5) and (6), for

2For example, any R-sectorial operator inE with the R-angle �R
A < ��' satisfies this condition.
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any ı1 > 0 and u 2 W 2
p ..0; 1/IE.A/;E/, we have

kL1ukLp..0;1/IE/ PC.E.A/;E/�1;p PC.E.A/;E/�2;p � kA1ukLp..0;1/IE/ C kT1uk.E.A/;E/�1;p
C kT2uk.E.A/;E/�2;p � ı1kukW 2

p ..0;1/IE.A/;E/ C C.ı1/kukLp..0;1/IE/:

Hence, by Yakubov and Yakubov [16, Lemma 1.2.7/2], the operator L1 from
W 2
p ..0; 1/IE.A/;E/ into Lp..0; 1/IE/ PC.E.A/; E/�1;p PC.E.A/;E/�2;p is com-

pact. Applying [11, Sect. 14, Theorem 14.1] to the operator L.�0/, we complete
the proof. ut

In order to prove our main isomorphism theorem, which, in particular, implies
maximal Lp-regularity, we need to define two more Banach spaces.

Let s > 0 and let E , E1 be Banach spaces. Denote, for 0 < s � 1, p 2 .1;1/,
the Banach space

Bs
p



.0; 1/I .E1;E/1� s

2 ;2
; E
� WD 


W 2
p ..0; 1/IE1;E/;Lp..0; 1/IE/

�
1� s

2 ;2

(20.41)

and, for 1 < s < 2, the Banach space

Bsp


.0; 1/I .E1;E/1� s

2 ;2
; E
� WD 


W 2
p ..0; 1/IE1;E/; B1p..0; 1/I .E1;E/ 1

2 ;2
; E/

�
2�s;2

:

(20.42)

Consider the problem

L0.�/u WD �u.x/� u00.x/C Au.x/ D f .x/; x 2 .0; 1/; (20.43)

L1.�/u W D �u.0/� ˛u0.0/C T1u D f1;

L2.�/u W D �u.1/C ˇu0.1/C T2u D f2:
(20.44)

Theorem 20.5 Let the following conditions be satisfied:

1. an operator A is closed, densely defined and invertible in the complex UMD
Banach space E and Rf�R.�;A/ W j arg�j � � � 'g < 1, for some ' 2
.0; �/3;

2. ˛ D 0 or j arg˛j � ��'
2

and ˇ D 0 or j argˇj � ��'
2

;

3. m1 WD
(
1; ˛ ¤ 0;

0; ˛ D 0
, m2 WD

(
1; ˇ ¤ 0;

0; ˇ D 0
; �k WD mk

2
C 1

2p
, p 2 .1;1/,

k D 1; 2;
4. the embeddingE.A/ 	 E is compact;

3In fact, this condition is equivalent to that A is an invertible R-sectorial operator in E with the
R-angle �R

A < � � '.
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5. if mk D 0 then Tk D 0I if mk D 1 then, for any ı > 0 and u 2
W 2
p ..0; 1/IE.A/;E/,

kTkuk.E.A/;E/�k ;p � ıkukW 2
p ..0;1/IE.A/;E/ C C.ı/kukLp..0;1/IE/;

kTkukE � ıkuk
B
1C 1

p
p



.0;1/I.E.A/;E/1��k ;2;E

� C C.ı/kukLp..0;1/IE/:

Then, the operator QL.�/ W u ! QL.�/u WD
�
L0.�/u; L1.�/u; L2.�/u

�
, for

j arg�j � ' � �, � > 0 is any sufficiently small and j�j is sufficiently large, is
an isomorphism from W 2

p ..0; 1/IE.A/;E/ onto Lp..0; 1/IE/ u .E.A/;E/�1;p u
.E.A/;E/�2;p and, for these �, the following estimate holds for the solution of the
problem (20.43)–(20.44):

j�jkukLp..0;1/IE/ C ku00kLp..0;1/IE/ C kAukLp..0;1/IE/
� C.'; �/

h
j�j maxfmkg

2 kf kLp..0;1/IE/

C
2X

kD1
j�j�1Cmk
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�i
: (20.45)

Proof Let u 2 W 2
p ..0; 1/IE.A/;E/ be a solution of problem (20.43)–(20.44).

Then, u.x/ is a solution of the problem L0.�/u D f , Lk0.�/u D fk � Tku,
k D 1; 2, where Lk0.�/u; k D 1; 2, are determined by the equalities (20.23). Then,
by Theorem 20.3, for j arg�j � ' � �, � > 0 is any sufficiently small and j�j is
sufficiently large, we have

j�jkukLp..0;1/IE/ C ku00kLp..0;1/IE/ C kAukLp..0;1/IE/
� C.'; �/

h
j�j maxfmkg

2 kf kLp..0;1/IE/

C
2X

kD1
j�j�1Cmk
kfk � Tkuk.E.A/;E/�k ;p C j�j1��kkfk � TkukE

�i
:

(20.46)

If mk D 0, k D 1; 2, then, by condition (5), Tk D 0 and then, from (20.46), we
get (20.45). Assume now that at least one mk D 1, i.e., the corresponding �k D
1
2

C 1
2p

, and show that again (20.46) implies (20.45).

By condition (5), for ı > 0; u 2 W 2
p ..0; 1/IE.A/;E/,

kfk � Tkuk.E.A/;E/�k;p D kfk � Tkuk.E.A/;E/ 1
2C

1
2p ;p

� kfkk.E.A/;E/ 1
2C

1
2p ;p

C ıkukW 2
p ..0;1/IE.A/;E/ C C.ı/kukLp..0;1/IE/: (20.47)
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Obviously,

j�j1��kkfk � TkukE D j�j 12� 1
2p kfk � TkukE � j�j 12� 1

2p .kfkkE C kTkukE/:
(20.48)

By virtue of (20.42) and [16, Lemma 1.7.3/8] (take E1 D E.A/ and s D 1 C 1
p

in (20.42) and E0 WD W 2
p ..0; 1/IE.A/;E/, E1 WD B1

p



.0; 1/I .E.A/;E/ 1

2 ;2
; E
�
,

� D �, and � D 1 � 1
p

in Yakubov and Yakubov [16, Lemma 1.7.3/8]), we have,

for � 2 C; u 2 W 2
p ..0; 1/IE.A/;E/,

j�j1� 1
p kuk

B
1C 1

p
p



.0;1/I.E.A/;E/ 1

2�
1
2p ;2

;E
� � C


j�jkuk
B1p



.0;1/I.E.A/;E/ 1

2 ;2
;E
�

C kukW 2
p ..0;1/IE.A/;E/

�
:

Replacing � D �2, as a result, we have, for � 2 C, u 2 W 2
p ..0; 1/IE.A/;E/,

j�j 12� 1
2p kuk

B
1C 1

p
p



.0;1/I.E.A/;E/ 1

2�
1
2p ;2

;E
� � C


j�j 12 kuk
B1p



.0;1/I.E.A/;E/ 1

2 ;2
;E
�

C kukW 2
p ..0;1/IE.A/;E/

�
: (20.49)

Further, in (20.41) we take E1 D E.A/, s D 1. Then,

B1
p



.0; 1/I .E.A/;E/ 1

2 ;2
; E
� WD 


W 2
p ..0; 1/IE.A/;E/; Lp..0; 1/IE/

�
1
2 ;2

and, by Yakubov and Yakubov [16, Lemma 1.7.3/8] (take there � D 1
2
), for � 2 C,

u 2 W 2
p ..0; 1/IE.A/;E/,

j�j 12 kuk
B1p



.0;1/I.E.A/;E/ 1

2 ;2
;E
� � C


kukW 2
p ..0;1/IE.A/;E/ C j�jkukLp..0;1/IE/

�
:

(20.50)

Then, taking into account (20.50) into (20.49), we get

j�j 12� 1
2p kuk

B
1C 1

p
p



.0;1/I.E.A/;E/ 1

2�
1
2p ;2

;E
� � C


kukW 2
p ..0;1/IE.A/;E/ C j�jkukLp..0;1/IE/

�
:

(20.51)

From condition (5) and the inequality (20.51), we have

j�j 12� 1
2p kTkukE � Cı


kukW 2
p ..0;1/IE.A/;E/ C j�jkukLp..0;1/IE/

�

C C.ı/j�j 12� 1
2p kukLp..0;1/IE/: (20.52)
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Then, taking into account (20.52) into (20.48), we have

j�j1��kkfk � TkukE � j�j 12� 1
2p kfkkE C Cı


kukW 2
p ..0;1/IE.A/;E/ C j�jkukLp..0;1/IE/

�

C C.ı/j�j 12� 1
2p kukLp..0;1/IE/: (20.53)

Hence, by (20.47) and (20.53), from (20.46), we have (remind that at least one
mk D 1, i.e., the corresponding �k D 1

2
C 1

2p
)

�
1� Cı � C j�j�. 12C 1

2p / � C.ı/j�j�. 12C 1
2p /
��

j�jkukLp..0;1/IE/ C ku00kLp..0;1/IE/

C kAukLp..0;1/IE/
�

� C
h
j�j 12 kf kLp..0;1/IE/

C
2X

kD1
j�j�1Cmk
kfkk.E.A/;E/�k ;p C j�j1��kkfkkE

�i
:

(20.54)

Now, first, choose ı0 such that Cı0 < 1. Furthermore, choose j�j so that Cı0 C
C j�j�. 12C 1

2p / C C.ı0/j�j�. 12C 1
2p / < 1. Then, from (20.54) we get (20.45).

Consequently, for j arg�j � ' � �, � > 0 is any sufficiently small and j�j is
sufficiently large, the solution of problem (20.43)–(20.44) in W 2

p ..0; 1/IE.A/;E/
is unique. By Theorem 20.4, for each such �, the operator QL.�/ from
W 2
p ..0; 1/IE.A/;E/ into Lp..0; 1/IE/ PC.E.A/;E/�1;p PC.E.A/;E/�2;p is a

Fredholm operator. Then, the desired isomorphism follows from the uniqueness
and the Fredholm property. ut

20.6 Application of Obtained Abstract Results to Elliptic
Boundary Value Problems in Non-smooth Domains

It is well-known that usually boundary value problems for elliptic equations in
non-smooth domains do not have the maximal regularity for a solution (see, e.g.,
[10, Preface]). We have succeeded to find a class of elliptic boundary value problems
with the spectral parameter both in the equation and boundary conditions, in
cylindrical domains (i.e., in non-smooth domains), which has the maximal regularity
for a solution, i.e., the solution belongs to W 2

p -Sobolev spaces for any 1 < p < 1.
Note, that our considered equations (see below (20.55)) do not contain mixed
derivatives on x-variable and y-variable.

Let ˝ WD .0; 1/ � G, where G � R
r , r � 2, be a bounded open domain with

an .r � 1/-dimensional boundary @G which locally admits rectification. We will
consider, in this section, the Besov space

Bs
q;p.G/ WD .W s0

q .G/;W
s1
q .G//�;p;
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where 0 � s0; s1 are integers, 0 < � < 1, 1 < p < 1, 1 < q < 1 and s D
.1 � �/s0 C �s1, and the space

W l;s
p;q.˝/ WD W l

p



.0; 1/IW s

q .G/;Lq.G/
�
;

where 0 � l; s are integers, 1 < p < 1, 1 < q < 1. If l D s then W l
p;q.˝/ WD

W l;l
p;q.˝/. Finally, Lp;q.˝/ WD W 0;0

p;q .˝/ D Lp


.0; 1/ILq.G/

�
.

In the cylindrical domain˝ , let us consider a boundary value problem for second
order elliptic equations with the spectral parameter in the equation and in a part of
boundary conditions, namely,

L0.�;Dx;Dy/u WD �u.x; y/�D2
xu.x; y/ �

rX
s;jD1

asj.y/DsDj u.x; y/C �0u.x; y/

D f .x; y/; .x; y/ 2 ˝; (20.55)

L1.�;Dx/u WD �u.0; y/� ˛Dxu.0; y/C .T1u/.y/ D f1.y/; y 2 G;
L2.�;Dx/u WD �u.1; y/C ˇDxu.1; y/C .T2u/.y/ D f2.y/; y 2 G;

(20.56)

L.Dy/u WD
rX

jD1
cj .y

0/Dj u.x; y0/C c0.y
0/u.x; y0/ D 0; .x; y0/ 2 .0; 1/ � @G;

(20.57)

where Dx WD @
@x

, Dj WD �i @
@yj

, Dy WD .D1; : : : ;Dr/, ˛; ˇ are complex
numbers, y WD .y1; : : : ; yr /, Tk are, generally speaking, unbounded operators from
Lp


.0; 1/ILq.G/

�
intoLq.G/, 1 < p; q < 1. Letm be the order of the differential

expression L.Dy/.
We would like to give an exact description of the corresponding interpolation

spaces .E.A/;E/�k;p , so the relation between m and 2 � mk � 1
p

� 1
q

becomes
important (see the proof of the below Theorem 20.6). Note that in our case, the
equalitym D 2�mk � 1

p
� 1
q

is possible only ifmk D 0;m D 1 ormk D 1;m D 0.
In that case, we will take p D q D 2 in order to give the exact description of the
corresponding interpolation spaces. Two other possible situations mk D m D 0 or
mk D m D 1 do not imply the above equality. Introduce the last notation of

B
2�mk�

1
p

q;p;� .G/ WD

8̂
ˆ̂<
ˆ̂̂:

B
2�mk�

1
p

q;p .GIL.Dy/u D 0/ if m < 2 �mk � 1
p

� 1
q
;

B
2�mk�

1
p

q;p .G/ if m > 2 �mk � 1
p

� 1
q
;

B
2�mk�

1
p

p;p .GIL.Dy/u 2 QB
1
p
p;p.G// if m D 2 �mk � 1

p
� 1

q
;

(20.58)

with QB
1
p
p;p.G/ WD fu j u 2 B

1
p
p;p.R

r /; supp.u/ 	 Gg. By the above, in the last case
we take p D q D 2.
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Theorem 20.6 Let the following conditions be satisfied:

1. (Smoothness condition) jasj.y/ � asj.z/j � C jy � zj
 , for some C > 0 and

 2 .0; 1/, and 8y; z 2 G; cj ; c0 2 C2�m.@G/; @G 2 C2;

2. (Ellipticity condition for the operator A defined in the below proof) for y 2
G, 	 2 R

r , j arg�j � � � ', for some ' 2 .0; �/, j	 j C j�j ¤ 0, one has
�CPr

s;jD1 asj.y/	s	j ¤ 0I
3. (Lopatinskii-Shapiro condition for the operator A) y0 is any point on @G, the

vector 	 0 is tangent and 	 is a normal vector to @G at the point y0 2 @G.
Consider the following ordinary differential problem, for j arg�j � � � ',

h
�C

rX
s;jD1

asj.y
0/


	 0
s � i	s d

dt

�

	 0
j � i	j

d

dt

�i
u.t/ D 0; t > 0; (20.59)

rX
jD1

cj .y
0/


	 0
j � i	j

d

dt

�
u.t/

ˇ̌
ˇ
tD0 D h; for m D 1; (20.60)

u.0/ D h; for m D 0I (20.61)

it is required that, for m D 1, the problem (20.59), (20.60) (for m D 0,
the problem (20.59), (20.61)) has one and only one solution, including all its
derivatives, tending to zero as t ! 1, for any numbers h 2 C;4

4. ˛ D 0 or j arg˛j � ��'
2

and ˇ D 0 or j argˇj � ��'
2

;

5. m1 WD
(
1; ˛ ¤ 0;

0; ˛ D 0
, m2 WD

(
1; ˇ ¤ 0;

0; ˇ D 0
; �k WD mk

2
C 1

2p
, p 2 .1;1/,

k D 1; 2;
6. q 2 .1;1/; if 1

p
C 1

q
D 1 and, for at least one k, mk Cm D 1 then p D q D 2;

7. if mk D 0 then Tk D 0I if mk D 1 then, for any ı > 0 and u 2
W 2
p;q.˝IL.Dy/u D 0/,

kTkuk
B
1� 1

p
q;p .G/

� ıkukW 2
p;q.˝/

C C.ı/kukLp;q.˝/;

kTkukLq.G/ � ıkuk
B
1C 1

p
p



.0;1/IB1C

1
p

q;2 .G/;Lq.G/
�CC.ı/kukLp;q.˝/; q 2 .1;1/I

Then, there exists �0 > 0 such that the operator

QL.�;Dx;Dy/ W u ! QL.�;Dx;Dy/u WD
�
L0.�;Dx;Dy/u; L1.�;Dx/u; L2.�;Dx/u

�
;

4In the case m D 0, the boundary condition (20.57) is transformed into the Dirichlet condition
u.x; y0/ D 0.
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for j arg�j � ' � �, � > 0 is any sufficiently small and j�j is sufficiently large, is an

isomorphism from W 2
p;q.˝IL.Dy/u D 0/ onto Lp;q.˝/

2

u
kD1

B
2�mk� 1

p

q;p;� .G/ and, for

these �, the following estimate holds for the solution of the problem (20.55)–(20.57):

j�jkukLp;q.˝/ C kukW 2
p;q.˝/

� C.'; �/
h
j�j maxfmkg

2 kf kLp;q .˝/

C
2X

kD1
j�j�1Cmk
kfkk

B
2�mk�

1
p

q;p .G/

C j�j1�mk
2 � 1

2p kfkkLq.G/
�i
:

(20.62)

Proof Let us denote E WD Lq.G/ and consider an operator A which is defined by
the equalities

D.A/ WD W 2
q .GIL.Dy/u D 0/; Au WD �

rX
s;jD1

asj.y/DsDj u.y/C �0u.y/:

Then, problem (20.55)–(20.57) can be rewritten in the form

L0.�/u WD �u.x/� u00.x/C Au.x/ D f .x/; x 2 .0; 1/;
L1.�/u WD �u.0/� ˛u0.0/C T1u D f1;

L2.�/u WD �u.1/C ˇu0.1/C T2u D f2;

(20.63)

where u.x/ WD u.x; �/, f .x/ WD f .x; �/ are functions with values in the Banach
space E D Lq.G/ and fk WD fk.�/. Let us apply Theorem 20.5 to problem (20.63).
In view of conditions (1)–(3), by Denk et al. [2, Theorem 8.2], there exists �0 > 0

such that A is an R-sectorial operator in E with the R-angle �R
A < � � '. So,

conditions (1)–(3) of Theorem 20.5 are already true. By virtue of, e.g., [14, Theorem
3.2.5], the embeddingW 2

q .G/ � Lq.G/ is compact. Consequently, condition (4) of
Theorem 20.5 is fulfilled, too. Let us check the last condition (5) of Theorem 20.5.

First, always, for any 0 < � < 1,

.E.A/;E/�;p D 

W 2
q .GIL.Dy/u D 0/; Lq.G/

�
�;p

� 

W 2
q .G/;Lq.G/

�
�;p

D B2.1��/
q;p .G/:

On the other side, by virtue of [14, Theorem 4.3.3] (see also [16, Theorem 1.7.4/6]),
if m < 2.1� �/ � 1

q
,

.E.A/;E/�;p D 

W 2
q .GIL.Dy/u D 0/; Lq.G/

�
�;p

D B2.1��/
q;p



GIL.Dy/u D 0

�
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and, if m > 2.1� �/� 1
q

,

.E.A/;E/�;p D 

W 2
q .GIL.Dy/u D 0/; Lq.G/

�
�;p

D B2.1��/
q;p



G
�
:

If m D 2.1� �/� 1
q

and p D q then, by Triebel [14, Theorem 4.3.3],

.E.A/;E/�;p D 

W 2
p .GIL.Dy/u D 0/; Lp.G/

�
�;p

D B2.1��/
p;p



GIL.Dy/u 2 QB

1
p
p;p.G/

�
:

Therefore, from condition (7), condition (5) of Theorem 20.5 is satisfied. The last
calculations explain us also (20.58). ut

Let us give some examples of the operators Tk which satisfy condition (7) of
Theorem 20.6:

1. Tku D
MkP
jD1

ıjku.xjk; y/ with ıjk 2 C, xjk 2 Œ0; 1�, k D 1; 2 (and y 2 G);

2. Tku D R
G

R 1
0

P
mCj`j�1 Tkm`.x; y; z/

@mCj`ju.x;z/
@xm@z`

dxdz with k D 1; 2, z D
.z1; : : : ; zr /, ` D .`1; : : : ; `r /, j`j D

rP
iD1

`i , where all functions Tkm`.x; y; z/ 2
L2..0; 1/�G �G/, Tkm`.x; y; z/ are continuously differentiable with respect to
y and all the mentioned derivatives also belong to L2..0; 1/ �G �G/.

It was shown in Aliev and Yakubov [1] that the above operators Tk satisfy condition
(7) of Theorem 20.6, for p D q D 2.

20.7 Abstract Parabolic Initial Boundary Value Problems
with Time Differentiation in Abstract Boundary
Conditions

Let X be a Banach space and let A be a linear, closed operator in X . Consider
Banach spaces

1. C�.I IX/ WD
n
f j f 2 C.I IX/; kf kC�.I IX/ WD sup

t2I
kt�f .t/kX <

1
o
; � � 0;

2.

C

� .I IX/ WD

n
f j f 2 C.I IX/; kf kC
� .I IX/ WD sup

t2I

kt�f .t/kX

C sup
t<tCh
t;tCh2I

kf .t C h/ � f .t/kXh�
 t� < 1
o
; 
 2 .0; 1�; � � 0;
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where I denotes an interval of the real axis R.
An abstract interpretation of initial boundary value problems for parabolic equa-

tions such that some of the boundary value conditions contain the differentiation on
the time t is different from those problems which do not contain the differentiation
on t in boundary conditions. Let us derive such an abstract interpretation.

Let X and Xk; k D 1; : : : ; s, be Banach spaces. Consider the Cauchy problem
for a system of differential-operator equations

L0.t;Dt /u WD u0.t/C Bu.t/ D f .t/; (20.64)

Lk.t;Dt /u WD .Ak0u.t//
0 C Ak1u.t/ D fk.t/; k D 1; : : : ; s; (20.65)

u.0/ D u0; (20.66)

where t 2 Œ0; T �; B is an operator in X ; Ak0 and Ak1 are operators from X into
Xk ; f .t/ from Œ0; T � into X and fk.t/ from Œ0; T � into Xk are given functions; u.t/
from Œ0; T � into X is an unknown function. Note that operators B , Ak0, and Ak1
are, generally speaking, unbounded;Dt WD d

dt . Remind, X.B/ denotes the domain
D.B/ with the graph norm.

Consider a system of characteristic operator pencils corresponding to the system
of equations (20.64)–(20.65)

L0.�/ WD �I C B;

Lk.�/ WD �Ak0 CAk1; k D 1; : : : ; s;

where � is a complex number. The following theorem belongs to Yakubov and
Yakubov. The proof of the theorem is the same of that [16, Theorem 7.2.10/1]. One
should only to use [16, Theorem 7.2.2/1] instead of [16, Theorem 7.2.6/4].

Theorem 20.7 Let the following conditions be satisfied:

1. the operator B is closed and densely defined in the Banach space X ;
2. the operators Ak0 and Ak1 are bounded from X.B/ into Xk , k D 1; : : : ; s;
3. for some � 2 .0; 1�; � > 0, all numbers � from the sector j arg�j � �

2
C

� and with sufficiently large moduli are regular points for the operator pencil
QL.�/ W u ! QL.�/u WD

�
L0.�/u; L1.�/u; : : : ; Ls.�/u

�
, which acts boundedly

from X.B/ onto X PCX1 PC � � � PCXs , and, for j arg�j � �
2

C �; j�j ! 1,

k QL.�/�1k
B.X

sPC
kD1

Xk;X/
� C j�j��;

kAk0 QL.�/�1k
B.X

s

PC
kD1

Xk;Xk/
� C j�j��; k D 1; : : : ; sI

4. f 2 C

�..0; T �IX/, fk 2 C


�..0; T �IXk/, for some 
 2 .1 � �; 1�, � 2 Œ0; �/I
5. u0 2 X.B/.
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Then, there exists a unique solution u.t/ of problem (20.64)–(20.66) such that
the function t ! .u.t/; A10u.t/; : : : ; As0u.t// from .0; T / into X PCX1 PC � � � PCXs is
continuously differentiable and from Œ0; T � intoX.B/ PCX1 PC � � � PCXs is continuous,
and, for t 2 .0; T �, the following uniform on t 2 .0; T � estimates hold

ku.t/kX C
sX

kD1
kAk0u.t/kXk � C

h
kAu0kX C ku0kX

C kf kC�..0;t �IX/ C
sX

kD1
kfkkC�..0;t �IXk/

i
;

ku0.t/kX C
sX

kD1
k.Ak0u.t//0kXk C kAu.t/kX � C

h
t��1


kAu0kX C ku0kX
�

C t����1
kf kC
� ..0;t �IX/ C
sX

kD1
kfkkC
� ..0;t �IXk/

�i
:

Consider now, in a Banach spaceE , the following abstract initial boundary value
problem for a parabolic differential-operator equation

@u.t; x/

@t
� @2u.t; x/

@x2
C Au.t; x/ D f .t; x/; .t; x/ 2 .0; T / � .0; 1/; (20.67)

@Œu.t; 0/�

@t
� ˛

@u.t; 0/

@x
C T1u.t; �/ D f1.t/; t 2 .0; T /;

@Œu.t; 1/�

@t
C ˇ

@u.t; 1/

@x
C T2u.t; �/ D f2.t/; t 2 .0; T /;

(20.68)

u.0; x/ D u0.x/; x 2 .0; 1/: (20.69)

Theorem 20.8 Let the following conditions be satisfied:

1. an operator A is closed, densely defined and invertible in the complex UMD
Banach space E and Rf�R.�;A/ W j arg�j � �

2
� �g < 1, for some � 2

.0; �
2
/;5

2. j arg˛j � �
2 ��
2

and j argˇj � �
2 ��
2

;

3. m1 WD
(
1; ˛ ¤ 0;

0; ˛ D 0
, m2 WD

(
1; ˇ ¤ 0;

0; ˇ D 0
; �k WD mk

2
C 1

2p
, p 2 .1;1/,

k D 1; 2;
4. the embeddingE.A/ 	 E is compact;

5In fact, this condition is equivalent to that A is an invertible R-sectorial operator in E with the
R-angle �R

A < �
2

� � .
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5. if mk D 0 then Tk D 0I if mk D 1 then, for any ı > 0 and u 2
W 2
p ..0; 1/IE.A/;E/,

kTkuk.E.A/;E/�k ;p � ıkukW 2
p ..0;1/IE.A/;E/ C C.ı/kukLp..0;1/IE/;

kTkukE � ıkuk
B
1C 1

p
p



.0;1/I.E.A/;E/1��k ;2;E

� C C.ı/kukLp..0;1/IE/I

6. f 2 C

�..0; T �ILp..0; 1/IE//, fk 2 C


�..0; T �I .E.A/;E/�k;p/, for some


 2 .maxfmkg
2

; 1�; � 2 Œ0; 1 � maxfmkg
2

/;
7. u0 2 W 2

p ..0; 1/IE.A/;E/.
Then, there exists a unique solution u.t; x/ of problem (20.67)–(20.69) such that

the function t ! .u.t; x/; u.t; 0/; u.t; 1// from .0; T / into Lp..0; 1/IE/ PC.E.A/;
E/�1;p PC.E.A/;E/�2;p is continuously differentiable and from Œ0; T � into
W 2
p ..0; 1/IE.A/;E/ PC.E.A/;E/�1;p PC.E.A/;E/�2;p is continuous, and, for

t 2 .0; T �, the following uniform on t 2 .0; T � estimates hold

ku.t; �/kLp..0;1/IE/ C ku.t; 0/k.E.A/;E/�1;p C ku.t; 1/k.E.A/;E/�2;p
� C

h
kAu0.�/kLp..0;1/IE/ C ku0.�/kLp..0;1/IE/

C kf kC�..0;t �ILp..0;1/IE// C
2X

kD1
kfkkC�..0;t �I.E.A/;E/�k ;p/

i
;

��@u.t; �/
@t

��
Lp..0;1/IE/ C �� @

@t
Œu.t; 0/�

��
.E.A/;E/�1;p

C �� @
@t
Œu.t; 1/�

��
.E.A/;E/�2;p

C kAu.t; �/kLp..0;1/IE/ � C
h
t�

maxfmkg

2


kAu0.�/kLp..0;1/IE/

C ku0.�/kLp..0;1/IE/
�C t�

maxfmkg

2 ��
kf kC
� ..0;t �ILp..0;1/IE//

C
2X

kD1
kfkkC
� ..0;t �I.E.A/;E/�k ;p/

�i
:

Proof Denote the Banach spaces X WD Lp..0; 1/IE/, X.B/ WD W 2
p ..0; 1/IE.A/;

E/, Xk WD .E.A/;E/�k;p , k D 1; 2. Consider, in the space X , the operator B
defined by the equalities

D.B/ WD W 2
p ..0; 1/IE.A/;E/;

Bu WD �u00.x/C Au.x/;
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and introduce A10u WD u.0/, A11u WD �˛u0.0/ C T1u, A20u WD u.1/, A21u WD
ˇu0.1/ C T2u. Then, problem (20.67)–(20.69) in E can be rewritten in the form
(20.64)–(20.66) in X with s D 2, to which we want to apply Theorem 20.7.

From conditions (1) and (5), and the trace inequality (see, e.g., (20.31)), we
get conditions (1) and (2) of Theorem 20.7. Condition (7) implies condition (5)
of Theorem 20.7, and condition (6) implies condition (4) of Theorem 20.7 with
� D 1 � maxfmkg

2
. The only thing remains is to prove the main condition (3) of

Theorem 20.7 with the same � D 1� maxfmkg
2

2 .0; 1� and some � > 0. For this, we
are going to use Theorem 20.5.

Choose 0 < � < � . Then, by our conditions (1)–(5), from the estimate (20.45),
for j arg�j � �

2
C � , j�j ! 1, we get

j�jkukLp..0;1/IE/ � C
�
j�j maxfmkg

2 kf kLp..0;1/IE/ C
2X

kD1

j�j�1Cmk j�j1��kkfkk.E.A/;E/�k;p
�

D C
�
j�j maxfmkg

2 kf kLp..0;1/IE/ C
2X

kD1

j�j
mk
2 �

1
2p jkfkk.E.A/;E/�k;p

�

� C j�j maxfmkg

2

�
kf kLp..0;1/IE/ C

2X
kD1

kfkk.E.A/;E/�k;p
�
;

i.e., kukX � C j�j�


1� maxfmkg

2

�
k.f; f1; f2/kX PCX1 PCX2 , which gives us the first

inequality in condition (3) of Theorem 20.7 with � D 1 � maxfmkg
2

2 .0; 1�.
On the other hand, from (20.44), we get

ku.0/k.E.A/;E/�1;p � C j�j�1
�
ku0.0/k.E.A/;E/�1;p C kT1uk.E.A/;E/�1;p C kf1k.E.A/;E/�1;p

�
;

ku.1/k.E.A/;E/�2;p � C j�j�1
�
ku0.1/k.E.A/;E/�2;p C kT2uk.E.A/;E/�2;p C kf2k.E.A/;E/�2;p

�
:

Then, using the trace inequality (see, e.g., (20.31)), condition (5), and the esti-
mate (20.45), we conclude

ku.0/k.E.A/;E/�1;p � C j�j�1
�
j�j maxfmkg

2 kf kLp..0;1/IE/ C
2X

kD1

j�j
mk
2 �

1
2p kfkk.E.A/;E/�k;p

C kf1k.E.A/;E/�1;p
�

� C j�j�1j�j maxfmkg

2

�
kf kLp..0;1/IE/ C

2X
kD1

kfkk.E.A/;E/�k;p
�

D C j�j�


1�

maxfmkg

2

��
kf kLp..0;1/IE/ C

2X
kD1

kfkk.E.A/;E/�k;p
�
;
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and, similarly,

ku.1/k.E.A/;E/�2;p � C j�j�


1� maxfmkg

2

��
kf kLp..0;1/IE/ C

2X
kD1

kfkk.E.A/;E/�k ;p
�
;

i.e., kAk0ukXk � C j�j�


1� maxfmkg

2

�
k.f; f1; f2/kX PCX1 PCX2 , k D 1; 2, which gives the

second inequality in condition (3) of Theorem 20.7 with � D 1 � maxfmkg
2

2 .0; 1�

and s D 2. ut

20.8 Application of Obtained Abstract Results to Parabolic
Initial Boundary Value Problems with Time
Differentiation in Boundary Conditions

Show a relevant application of the previous section. Let G � R
r , r � 2, be a

bounded domain with an .r � 1/-dimensional boundary @G which locally admits
rectification. Consider the following parabolic initial boundary value problem

@u.t; x; y/

@t
� @2u.t; x; y/

@x2
�

rX
s;jD1

asj.y/DsDj u.t; x; y/C �0u.t; x; y/

D f .t; x; y/; .t; x; y/ 2 .0; T / � .0; 1/�G;
(20.70)

@Œu.t; 0; y/�

@t
� ˛@u.t; 0; y/

@x
C .T1u.t; �; �//.y/ D f1.t; y/; .t; y/ 2 .0; T / �G;

@Œu.t; 1; y/�

@t
C ˇ

@u.t; 1; y/

@x
C .T2u.t; �; �//.y/ D f2.t; y/; .t; y/ 2 .0; T / �G;

(20.71)
rX

jD1
cj .y

0/Dj u.t; x; y0/Cc0.y
0/u.t; x; y0/ D 0; .t; x; y0/ 2 .0; T /� .0; 1/�@G;

(20.72)

u.0; x; y/ D u0.x; y/; .x; y/ 2 .0; 1/ �G; (20.73)

where Dj WD �i @
@yj

, ˛; ˇ are complex numbers, y WD .y1; : : : ; yr /, Tk are,

generally speaking, unbounded operators from Lp


.0; 1/ILq.G/

�
into Lq.G/, 1 <

p; q < 1.
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Theorem 20.9 Let the following assumptions be satisfied:

1. conditions of Theorem 20.6 are fulfilled with ' D �
2

C � , for some � 2 .0; �
2
/;

2. f 2 C

�

�
.0; T �ILp



.0; 1/ILq.G/

��
, fk 2 C



�

�
.0; T �IB2�mk� 1

p

q;p;� .G/
�

, for some


 2 .maxfmkg
2

; 1�, � 2 Œ0; 1� maxfmkg
2

/, where B
2�mk� 1

p

q;p;� .G/ is defined by (20.58);

3. u0 2 W 2
p

�
.0; 1/IW 2

q .GILu D 0/; Lq.G/
�

, where Lu WD Pr
jD1 cj .y0/Dj u.y0/

Cc0.y0/u.y0/, y0 2 @G.

Then, there exists �0 > 0 such that there exists a unique solution u.t; x; y/ of
problem (20.70)–(20.73) such that the function t ! .u.t; x; y/; u.t; 0; y/; u.t; 1; y//

from .0; T / into Lp


.0; 1/ILq.G/

� PCB2�m1� 1
p

q;p;� .G/ PCB2�m2� 1
p

q;p;� .G/ is continuously

differentiable and from Œ0; T � into W 2
p

�
.0; 1/IW 2

q .GILu D 0/; Lq.G/
�

PCB2�m1� 1
p

q;p;�

.G/ PCB2�m2� 1
p

q;p;� .G/ is continuous, and, for t 2 .0; T �, the following uniform on
t 2 .0; T � estimates hold

ku.t; �; �/k
Lp



.0;1/ILq.G/

� C ku.t; 0; �/k
B
2�m1�

1
p

q;p;� .G/

C ku.t; 1; �/k
B
2�m2�

1
p

q;p;� .G/

� C
h
ku0.�; �/kLp
.0;1/IW 2

q .G/
� C ku0.�; �/kLp
.0;1/ILq.G/�

C kf k
C�



.0;t �ILp



.0;1/ILq.G/

�� C
2X

kD1

kfkk
C�



.0;t �IB

2�mk�
1
p

q;p;� .G/
�
i
;

��@u.t; �; �/
@t

��
Lp



.0;1/ILq.G/

� C �� @
@t
Œu.t; 0; �/���

B
2�m1�

1
p

q;p;� .G/

C �� @
@t
Œu.t; 1; �/���

B
2�m2�

1
p

q;p;� .G/

C ku.t; �; �/k
Lp



.0;1/IW 2

q .G/

�

� C
h
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ku0.�; �/k
Lp



.0;1/IW 2

q .G/
� C ku0.�; �/k

Lp



.0;1/ILq.G/

��

C t�
maxfmkg

2
��
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�



.0;t �ILp



.0;1/ILq.G/

�� C
2X

kD1

kfkk
C


�



.0;t �IB

2�mk�
1
p

q;p;� .G/
��
i
:

Proof Let us denote E WD Lq.G/ and consider an operator A which is defined by
the equalities

D.A/ WD W 2
q .GILu D 0/; Au WD �

rX
s;jD1

asj.y/DsDj u.y/C �0u.y/:

Then, problem (20.70)–(20.73) can be rewritten in the form (20.67)–(20.69), to
which Theorem 20.8 is applied. All conditions of Theorem 20.8 have been, actually,
checked in the proof of Theorem 20.6. ut
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The same examples of the operators Tk from the end of Sect. 20.6 can be
employed also here.

Acknowledgements I would like to thank Professor Davide Guidetti who kindly allowed me to
include into the paper his calculations (Sect. 20.2) which appear in his paper “Abstract elliptic
problems depending on a parameter and parabolic problems with dynamic boundary conditions”
in this volume.

Appendix

Theorem 20.10 ([16, Theorem 5.4.2/1]) Let an operator A be closed, densely
defined and invertible in the complex Banach space E and kR.�;A/kB.E/ �
L.1 C j�j/�1, for j arg�j � � � ', for some ' 2 .0; �/. Moreover, let m be a
positive integer, p 2 .1;1/, and ˛ 2 . 1

2p
;mC 1

2p
/.

Then, there exists C 2 R
C .depending only on L, ', m, ˛, and p/ such that, for

every u 2 .E;E.Am// ˛
m� 1

2mp ;p
and j arg�j � ',

Z 1

0

k.AC �I/˛e�x.AC�I/ 12 ukpEdx � C
�
kukp.E;E.Am// ˛

m�
1
2mp ;p

C j�jp˛� 1
2 kukpE

�
:
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