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Preface

It began in 1989. I had just graduated from the University of Massachusetts full of 
ideas and contemplating my future. Like many people, I had been captivated by 
James Gleick’s book Chaos: The Making of a New Science. I immediately could 
foresee that the systems concepts emerging from physics and mathematics were ap-
plicable to psychology and human behavior. Here was a new way of thinking about 
causation in biological systems that fit more parsimoniously to my experiences as 
a person of the world and a student of psychology. That thoughts, emotions, and 
actions emerged or self organized simply from the interactions among lower-level 
components was beyond a theoretical model. It was almost metaphysical, like see-
ing the true nature of existence after only viewing Plato’s shadows on the cave wall. 
My disappointment with the business of psychology I had felt as a student now gave 
way to hope and promise and excitement. I was turned on by this very large idea.

I went to the library to see if anyone had made the connection between psycholo-
gy and chaos, fractals, or self-organization. Admittedly, my search was not exhaus-
tive, but there was little research at the time and almost all of that was focused on 
physical action—finger wagging and such. Hence, I found no obvious champions 
that could possibly guide me through a graduate program in areas of psychology I 
found compelling, one of the possible futures I was considering at the time. Instead, 
I kept reading popular science books but left the hallowed halls of academia to 
travel and pursue other learning experiences. However, the seeds were sown and 
took more than a decade to germinate.

By September of 2000, I had been working at the Oregon Social Learning Center 
(OSLC) for over 4 years. I had advanced through the ranks to become the obser-
vational data analyst for the whole center. Sometimes I was extremely busy, and 
at other times the requests for analyses were not frequent or demanding. During 
these lulls, I was free to pursue other analytical techniques with the data. OSLC 
had a mountain of coding data from over 20 years of research on parent-child and 
peer interactions. I had actually first been hired as an observational coder apply-
ing the Interpersonal Process Code to the behaviors of parents and children. While 
watching hundreds of different families, the ideas of complexity, self-organization, 
and fractals resurfaced. Now, as an analyst, I was free to explore. As it turned out, 
several senior researchers at OSLC were familiar with and interested in applying 
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systems approaches to better understand the family dynamics that led to behavior 
problems in childhood and adolescence. So, for about a year, I had periodic meet-
ings with Jerry Patterson, Mike Stoolmiller, and Tom Dishion where I would pres-
ent my latest attempts with the data, evaluate its success, and devise the plan for 
the next attempts. Although I thoroughly enjoyed the process, everything I tried in 
that year from Lyupanov exponents to fast Fourier transformations failed to achieve 
a viable analytical solution. That September, however, the germinating seed broke 
the surface of the soil.

That September, I first met Isabel Granic after the first session of a seminar 
course taught by Holly Arrow on complex and dynamic systems. She had just ar-
rived for her post-doc with Tom Dishion and was hoping I could help her with 
access to the observational data at OSLC. When we met in my office later that 
afternoon, Isabel gave me something that changed my life: a copy of her doctoral 
dissertation. She was the first to use state space grids for parent–child interactions 
and, as soon as I saw it, I knew, this was it. This was what we were looking for in our 
meetings at OSLC. This was the realization of the vague idea I had over a decade 
earlier. It captured the complexities of human interaction with a simple elegance. It 
opened a world of possibilities. Isabel phoned her husband Marc Lewis, the person 
who first developed state space grids on sabbatical at the University of Oregon, and 
we met at a pub to discuss state space grids. We closed the place 8 hours later and 
had embarked on what has become a rich collaboration and friendship that contin-
ues to this day.

Within the year, we submitted five state space grid manuscripts together. The 
following year, I began my doctoral training in Toronto under Marc’s supervision. 
My methodological interests, combined with Marc Lewis’ shift into neuroscience, 
made me the de facto inheritor of the state space grid methodology. Over the next 
few years, I worked with Alex Lamey—the brilliant programmer who first devel-
oped grids with Marc Lewis—to develop GridWare. We launched the website www.
statespacegrids.org in 2004 to distribute GridWare for free.

Since that time, I have continued to develop GridWare and the state space grid 
technique. In 2009, with the help of student programmers at Queen’s University 
(Shawn Drape, Ji Cho, and Vishnu Nair), I launched a new website with an up-
graded version of GridWare (version 1.15a with entropy and transitional propensity 
measures) and the new GridWare File Converter. This past year, I upgraded the web 
site again to include a user forum to facilitate the growing network of state space 
grid users around the world.

Over the past decade, I have conducted dozens of state space grid workshops 
in North and South America and Europe. This has been a fantastic opportunity for 
me to see a range of data formats and research questions. These experienced have 
pushed me toward more creative solutions and a better understanding of the range 
of possibilities that state space grid analysis holds. I am deeply indebted to the 
hundreds of people in these workshops and those whom I have helped on line. Each 
vexing problem, odd data format, unique research question, and technical issue has 
helped in some way to the creation of this book. In a way, this book reads like a 
4-day workshop on state space grids.

Preface
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The objective of this book is to provide the reader with a comprehensive under-
standing of state space grids and how to conduct state space grid analysis. The book 
is organized so that each chapter provides the necessary information for compre-
hending the next chapter. It begins with a comprehensive description of dynamic 
systems and the foundational concepts from which state space grids were derived 
in Chap. 1. It is important to note that adopting a dynamic systems approach is not 
necessary to be able to use state space grids. Often users just want to explore their 
dynamic data or test more direct hypotheses unrelated to systems concepts. This is 
perfectly reasonable—we purveyors of dynamic systems are not necessarily a dog-
matic lot. Still, I think that one of the great benefits of this technique is to facilitate 
thinking systemically. As described in Chap. 1, there are deep and profound impli-
cations for how we think of causation, especially in terms of development. So, you 
may start out using state space grids for very pragmatic reasons, but the act of work-
ing with this technique may in fact inspire greater resonance with systems thinking.

Chapter 2 is a conceptual description of state space grids culminating in the re-
view of all state space grid studies to date. I also include examples from currently 
unpublished projects to provide as wide a range of project ideas as possible. In the 
next chapter, I introduce GridWare, the software for creating state space grids. This 
is a free Java-based program I distribute via the internet at www.statespacegrids.
org. This is followed by Chap. 4 which provides the nitty-gritty details of how to 
create a project in GridWare for state space grid analysis. Most of these issues have 
to do with the formatting of the data files and basic considerations of data and vari-
able types. The remaining chapters cover the analyses that can be conducted using 
state space grids, starting with the most basic in Chap. 5, between-grid analyses in 
Chap. 6, and culminating with advanced analyses in Chap. 7.

As with my workshops, there is a cyclic redundancy across chapters. Concepts 
first introduced abstractly are then fleshed out in greater detail and eventually be-
come the focal point for analyses. By the end of the book, and if you try the ex-
amples provided here, you will be an expert in state space grid analysis. The book 
should also continue to serve as a reference resource for any further analytical cir-
cumstances.

Happy gridding!

Melbourne, Australia� Tom Hollenstein
February 2012

Preface
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The complexities of natural systems have plagued scientists and philosophers for 
centuries. Even as Newton was tackling and solving all sorts of problems of celes-
tial mechanics, he and his colleagues struggled with what would seem to be a minor 
variation on the motions of the planets. With his knowledge of gravity, Newton 
could predict the orbital trajectories of two planets on the basis of their density, 
distance, and speed. Add a third planetary body and the predictive accuracy goes 
out the window. Though it is difficult to pinpoint an exact moment when a scientific 
endeavor was born, this comes close to being the birth of systems science. As there 
were myriad basic laws and relations to be discovered through linear and mecha-
nistic formulations, the nonlinear dynamics of complex systems were not, however, 
the object of inquiry for many years.

Flash forward to the middle of the twentieth century. The advances of electron-
ic computing combined with the growing sophistication of all the sciences led to 
the inevitable need for a more comprehensive account of complex interrelations. 
As always, this push was led by physics and mathematics, but soon included the 
natural sciences, computer science, and, eventually, social science. Pioneers such 
as Norbert Weiner and Ross Ashby developed the field of cybernetics as the sci-
ence of information and control in machines and natural organisms (Ashby 1947; 
Weiner 1950). The capacity for machines to self-regulate led to the understanding 
of complex mechanisms in biological organisms. Chief among these were feedback 
process and the circularity of self-organization—the ability of systems to “interact 
with themselves and produce themselves from themselves” (American Society for 
Cybernetics). From cybernetics emerged General System Theory (GST), most no-
tably advanced by von Bertalanffy (1968). With the accumulation of observations 
and the burgeoning understanding of certain lawful regularities in complex systems, 
there was a movement to identify those processes which were generalizable to all 
systems. According to von Bertalanffy, GST was an attempt to provide “models, 
principles, and laws that apply to generalized systems or their subclasses, irrespec-
tive of their particular kind, the nature of their component elements, and the rela-
tionships or ‘forces’ between them” (von Bertalanffy 1968, p. 32). Thus, the bold 
claim of this theory was that the complex interactions through which celestial bod-
ies formed planetary systems or galaxies, the complex interactions among atoms to 
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form molecules, and the complex interactions of system elements at every scale in 
between were all connected through the same lawful processes of self-organization. 
A grand unified theory indeed!

The next steps were to identify which systems were applicable and which pro-
cesses were generalizable. The most basic distinction of a system is whether it is 
“open” or “closed.” An open system is one in which energy is exchanged with the 
external environment. In contrast, a closed system does not exchange energy with 
the environment and, therefore, does not function with the same processes as an 
open system. A basic example of a closed system is a machine with a single func-
tion. The best example of an open system is a living organism. Thus, biologists such 
as von Bertalanffy began drawing on the advanced understanding that physicists 
and mathematicians had derived from highly controlled measurements for describ-
ing the behavior of humans and other organisms (Box 1.1).

Box 1.1 Dynamic or Dynamical: What’s the Difference?  There is some 
confusion about terminology that naturally arises with such an interdisciplin-
ary approach. A system, by definition, is a collection of elements that change 
over time (Thelen and Smith 2006), so it is necessarily dynamic. However, it 
is not necessarily “complex.”1 The situation is further obfuscated by the use 
of both “dynamic” and “dynamical” as adjectives describing systems. Some 
of these differences in terminology are meaningful, in which they distinguish 
salient features of the system, and others are simply different disciplinary 
approaches. Thus, it is useful to clarify these so that you, the reader, can better 
understand systems research and theory.

For mathematicians and some other systems researchers, the equations that 
describe complex behavior are the system. That is, the system is an exhaus-
tive, quantifiable set of relations among variables that are iteratively deter-
mined over time (i.e., the condition of the system at time t is derived from 
the condition at time t − 1). From this viewpoint, systems do not exist without 
this quantification. When the term “dynamical systems” is used, it most often 
reflects this approach.

In contrast, there are those who begin with the premise that natural systems 
exist, whether or not we quantify them. These are open systems with varying 
degrees of quantifiability. In the human domain which is our concern here, 
there are some processes that are easily quantified (e.g., body movements) 
and others less so (e.g., anger). Still, for those who tend to employ the term 
“dynamic systems,” there is the fundamental assumption that individuals or 
groups of individuals function as open, complex, and adaptive systems. The 
trick is to discover the means by which the basic properties of dynamic sys-
tems operate in human behavior.

1  The term “complexity” has a very precise meaning in mathematics and physics. It is beyond the 
scope of the present treatment to review complexity science. The reader is encouraged to refer to 
excellent works by Kauffman (1995); Cohen and Stewart (1994).

1  Dynamic Systems
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The theoretical framework that forms the basis of state space grids and my 
own work is that of the “dynamic systems” (DS) approach (see Box 1.2). The 
basic premise is that since humans are biological organisms, they are also 
DS. From there we can set about trying to discover how. That being said, I do 
not think this is in direct contrast with the more mathematical approaches of 
“dynamical systems.” With sufficient measurement (a challenge in develop-
mental psychology to be sure, see Chap. 3), the precision and theory testing 
made available by differential and difference equations, and other modeling 
techniques is essential to the advancement of our knowledge. Some of these 
will be discussed in Chap. 7. Where I and others draw the line is to think of 
these formulae, functions, equations, and models as anything but representa-
tive of the actual systems we are striving to understand.

Features of Dynamic Systems

The central feature of a complex dynamic system—perhaps most difficult to com-
prehend—is that it comes into being via self-organization. With self-organization, 
the interactions among lower-order elements actually give rise to the superordi-
nate structure of the system (e.g., tissue is an emergent structural organization from 
the interactions among cells). This process, sometimes called emergence, is at the 
heart of any DS approach (e.g., Haken 1977; Lewis 2000a), even if never explicitly 
stated. It is easy to see why self-organization has had particular appeal for develop-
mental scientists (Lewis 2011; Thelen and Ulrich 1991; Witherington 2007), who 
by definition grapple with the problem of the emergence of novel forms of behavior 
across the lifespan.

Self-organization is a bottom-up explanatory mechanism of development with 
extraordinary implications. The physicist who won a Nobel Prize for his work on 
self-organization in thermodynamics, Ilya Prigogine, has boldly declared that the 
discovery of self-organization has meant the end of determinism (Prigogine 1997). 
At best, he argues, we can obtain statistical knowledge of self-organizing phenom-
ena, but never predetermine the exact form or trajectory. Others have argued that 
self-organization renders reductionism obsolete as a scientific approach (Thompson 
2007) for the same reason. This is not to say that the behavior of self-organizing sys-
tems is indeterminate, rather it is not reducible to efficient cause in the Aristotelian 
sense (Witherington 2007). At the end of the day, that is the massively important 
contribution of self-organization—a shift in how we think about causation in natu-
rally occurring DS.

To illustrate these causal dynamics and explain the process of self-organization 
vis-à-vis development, consider the model depicted in Fig.  1.1. Through this il-
lustration, the hierarchical structures that emerge through self-organization can be 
explained in terms of bottom-up and top-down causal processes. Following this 
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explanation, several key characteristics of DS will be covered that have the most 
direct relevance for state space grids.

The first thing to notice about the model depicted in Fig. 1.1 is that it is seg-
mented into three levels of organization or complexity to depict the part–whole 
relations common to all systems theories. Thus, the system is depicted as a nested 
hierarchy with the least complex, most rudimentary components at the bottom level, 
here labeled as “micro,” and the most complex and advanced components at the top 
level, here labeled as “macro.” In between these two levels is an intermediate one, 
here labeled as “meso,” that is of a higher order than the micro scale but of a lower 
order than the macro scale. Although three scales are depicted, there are further 
lower order scales below micro and higher order scales above macro (not shown). 
The meso scale is typically the focus or unit of analysis with the understanding that 
it is made up of the elements from the micro level and simultaneously functions as 
the elements for the macro level (Hollenstein 2012).

If the description were to stop here, leaving only a nested hierarchy, it would be 
nondynamic yet similar to some other “systems” models. That is, though the idea 
of nested interrelations is not radical or uncommon, often these models are static. 
This fixation on the categories or states or elements of such models is static because 
it neglects how interactions within and between levels transpire and explain system 
behavior. In other words, for this type of modeling there are many nouns but few 
verbs.

Instead, with the dynamics at the fore, the focus is on time and change. This 
is the stuff of development, the concern of embryologists and epidemiologists, 

Fig. 1.1   An abstract illustration of the organization at three levels of a dynamic system. (Adapted 
from Hollenstein 2012)
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economists and therapists, parents and educators, historians and politicians. How 
do novel forms emerge? How do they grow and change over time? How do they 
stabilize and, once stabilized, undergo transformation? Through the process of self-
organization, time and hierarchical organization are inexorably linked. Increases 
in complex organization occur across both developmental and evolutionary time 
scales (indeed this is the link between ontogeny and phylogeny, see Lewis and Liu 
2011). Humans, and the societies that they build, become increasingly complex 
over these time scales. For this reason, the structural relations of organization scales 
depicted in Fig. 1.1—micro, meso, and macro—are also relations of time scales.

To make this more concrete and to put in terms that relate most directly with 
issues of human development, we can identify the time scales in Fig. 1.1 as real-
time, moment-to-moment processes (micro), the situational, day-time processes 
that occur over minutes to hours (meso), and the developmental-time processes that 
unfold over the course of months or years (macro). In the bottom-up process of self-
organization, the interactions among the micro elements that transpire in real time 
create structures that persist and recur, thus forming the elements at the next higher 
meso level. These stable and recurring structures at the meso level then build the 
habits and identities of the individual across development. For example, Marc D. 
Lewis has modeled emotional development in this way (Lewis 2000b). Emotions 
are made up of feeling states and appraisals that cohere in the moment and are most 
often fleeting occurrences. However, they can sometimes persist and become more 
stable over the meso time scale of minutes or hours in the form of moods. Devel-
opmentally, the emotional experiences of childhood all occur in real time, yet some 
emotional states and appraisals recur with a frequency greater than others due to 
myriad factors such as temperament, family socialization practices, and the stress 
level of the home environment. This is most obviously underpinned by biological 
substrates—the emotional experiences that persist into moods become strengthened 
and literally build neuronal structures through neural plasticity (Lewis 2005). Over 
the course of development, these emotion structures that recur with the greatest 
frequency and intensity form the basis of what is known as the personality—the ag-
gregate product of all previous activities at the micro and meso scales.

This bottom-up emergence is only half of the causal picture, however. The 
progression of development is also a product of system-generated top-down pro-
cesses. Within a particular time scale, interactions among elements are reciprocally 
causal—they mutually influence each other as a matter of their interactions. From 
these reciprocal interactions among lower order elements, a higher order structure 
emerges. Yet at the same time, these higher order structures constrain the interac-
tions among lower order elements in a top-down fashion. Consider the example 
of emotions and moods from the Lewis (2000, 2005) model. The coordination of 
cognitive appraisals and internal feeling states in an anger episode at the micro scale 
may transform into a mood and persist for the next several hours. During this ir-
ritable mood, the recurrence of the real-time emotional state of anger is much more 
probable than during a neutral or happy mood. In this way, the meso-scale mood 
constrains the micro-scale emotions. The combination of these bottom-up and top-
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down causal processes characterizes the relations between time scales and is called 
circular causality (Haken 1977).

To summarize, the structure of a complex, open and dynamic system is hier-
archically nested and the result of reciprocally causal relations within scales and 
circularly causal relations between scales. This is the self-organizing process of 
development and the overarching framework of DS models. Given this background, 
we can now consider some of the key characteristics of system behavior that arise 
from these processes: multistability, attractors, repellors, and phase transitions.

Multistability and Attractors

Although self-organizing systems have many possible states, they generally only 
have a few stable states that recur with some regularity. These recurrent states are 
called attractors because they “pull” the trajectory of the system toward those states. 
In contrast, some states of the system rarely, if ever, occur. These are called repel-
lors. The configuration of a system then can be described in terms of the underlying 
set of attractors and repellors revealed by its behavior. To illustrate this multistable 
configuration, DS models are often represented on a state space, an abstract space 
which contains all possible states of the system. As a heuristic, a state space is often 
depicted as an undulating landscape (see Fig. 1.2). The current state of the system 
can be thought of as a ball rolling across the landscape, easily getting caught in the 
wells or holes that are attractors, and never coming to rest atop the hills that are re-
pellors. As we are talking about open systems, there is a flow through of energy and 
it is this energy that is required to move the system through its sequence of states. 
So, for an attractor, it takes very little energy to enter and substantially more to get 
out. This very basic distinction of some states being significantly more probable 
than others has become one of the most direct ways to examine developmental phe-
nomena. As we discuss later, this multistable nature of systems has been examined 
by quantifying attractor states in motor coordination (Kelso 1995; Thelen and Ul-
rich 1991), psychopathology (Johnson and Nowak 2002), emotional states (Lewis 
et al. 1999), and most often in interpersonal relationships (Fogel 1993; Fogel and 
Thelen 1987; Gottman et al. 2002; Granic and Lamey 2002; Hsu and Fogel 2001; 
Licktwarck-Aschoff et al. 2008).

Given that a system can be conceptualized as a configuration of attractors and 
repellors on a state space, variability is the essential means of information about a 
system (Fogel 1993; Granic and Hollenstein 2003, 2006; Thelen and Ulrich 1991; 

Fig. 1.2   Hypothetical state 
space
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van Geert and van Dijk 2002). In most ways, the term “dynamic” in DS refers ex-
plicitly to system variability or changes over time. What the variability of system 
behavior reveals then is the underlying structure—the state space configured by 
attractors and repellors. Consider two contrasting systems as an example. In the 
first, there are several attractors, each of low-to-moderate “strength” (e.g., the depth 
and width of the broad basin in Fig. 1.2); in the other system there is only one very 
strong (i.e., deep) attractor. The behavior of the first system would be much more 
variable as it would take minimal energy to move in and out of the attractors on the 
state space. In contrast, the second system would show little variability as most of 
the time would be spent at the bottom of the one large attractor. This relationship be-
tween variability and attractors highlights an important distinction that satisfies von 
Bertalanffy’s (1968) GST mandate: content versus structure. Content is the specific 
states of a system. As described earlier, each system has the theoretical potential to 
be in any one of the states on a state space, yet only a few out of that exhaustive set 
tend to occur and recur. Why? Because of the structural configuration of the state 
space. Thus, content can only be understood in terms of the structure that constrains 
which content occurs and in what way.

For example, an interpersonal system like a married couple might have several 
specific joint emotional states in their behavioral repertoire, but it is the temporal 
pattern of those structurally constrained states that reveals the nature of the couple’s 
relationship (e.g., Gottman et al. 2002). That couples fight is not distinctive; that 
they get stuck in conflict for long periods of time is.

Phase Transitions

Up to this point, I have described systems in terms of stable configurations in order 
to illustrate multistability, attractors, repellors, and variability. However, systems 
are also adaptive and evolving, and therefore we also need to understand how they 
change and grow. Although the variability described above is dynamic change, a 
system could continue for a very long time with the same stable structure giving 
rise to that dynamic variability. This would be an example of no change or growth. 
When systems do change, it is at the structural level and comes as a qualitative shift 
in system dynamics. In DS terms, these qualitative shifts are called phase transi-
tions. Phase transitions are characterized by a range of changes in system dynamics 
(Guastello 1995; Hartelman et al. 1998; Thelen and Ulrich 1991), most notably a 
temporary increase in variability as old structures break down to give way to new 
ones. Hence, both prior to and after a phase transition, the system is relatively stable 
with lower variability and greater predictability. Importantly, the patterns of system 
behavior are qualitatively different before and after a phase transition, by dint of 
differing attractor configurations on their respective state space.

This pattern of low-high-low variability is the most basic form of a phase transi-
tion and one that is easily detectable in a wide range of circumstances. In particular, 
qualitative shifts in system behavior are characteristic of the stage-like progression of 
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development similar to that of a growing child that achieves distinctively more com-
plex ways of integrating input and coordinating output (Piaget 1952). This has led to 
the developmental phase transition hypothesis that at key transition points between 
developmental stages there will be corresponding increase in variability (Granic 
et al. 2003, Hollenstein 2007, 2011b; Lewis et al. 2004). For example, the onset of 
adolescence is a drastic reorganization in the biological, cognitive, emotional, and 
social domains. In systems terms, this is not just change in the variability of behav-
ioral content but a structural reconfiguration of the state space. In the most direct test 
of the adolescent phase transition hypothesis to date, family interactions were shown 
to temporarily increase in variability during the transition into adolescence and then 
return to previous levels of variability shortly after (Granic et al. 2003).

In summary, there are key features common to all DS that have been discovered. 
For our current purposes, those most notable are the structural properties revealed 
by attractors, repellors, and state space; the dynamics revealed by variability; and 
the phase transition as the mechanism of change. Over the past 20 years, there has 
been great progress in applying these DS constructs to developmental phenomena 
(Hollenstein 2011a); yet most of this promise has been realized in the theoretical 
rather than empirical domains (Granic and Hollenstein 2006). The empirical bottle-
neck is mostly due to a dearth of methods with which to test the rich theoretical 
models. Hence, the primary purpose of state space grids and this book is to provide 
an accessible and flexible methodological tool for a wide range of researchers to be 
able to visualize and measure variability, attractors, and phase transitions.

Box 1.2 Dynamic Systems Theory  Is “dynamic systems” (DS) an approach, 
a perspective, a model, a theory, a metatheory, or a framework? As it derives 
from General Systems Theory, there is a tendency to tag on “theory” after the 
term “dynamic system” as well. Yet because of the scope of generalization, it 
goes beyond the specifics of theoretical modeling in any particular domain. 
As such, it is unlike what is typically meant by a theory which makes spe-
cific predictions for specific phenomena under specific conditions. Further, 
DS “theory” is not necessarily contradictory to these domain-specific theories 
either. How then shall we model development as a dynamic system?

First, it should be noted that the acronym DS is an adjective used to describe 
an approach, model, etc. Second, the most circumspect utilization of systems 
principles would best be described by a DS “approach” or the DS “perspec-
tive.” In this way, the concepts of variability, phase transitions, attractors, 
and repellors are applied to developmental phenomena less formally than a 
theoretical model would imply. A DS approach to depression, for example, 
would be to examine depressive episodes as cyclical attractors. This research 
question would be relatively independent of existing theories of depression 
(it would be based on the observed phenomena of depression shared by all 
theoretical approaches to the disorder). It would also be relatively indepen-
dent of a more formal test of individuals as DS. Typically, the DS approach is 
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empirically or methodologically driven in domains where formal theorizing is 
not yet possible due to insufficient data or is less important.

Third, at the computational or statistical level, DS modeling is yet another 
terminological distinction. Here a prescribed pattern of relations among sys-
tem elements, usually articulated as an equation, is tested for its fit to actual 
or simulated data. Catastrophe models, agent-based modeling, and coupled 
equation models fall into this category. These models may or may not neces-
sarily be a test more formally of characteristics of open DS.

Finally, the leading proponents of DS theorizing in developmental science 
view DS as a metatheory or a metatheoretical framework (Granic and Hollen-
stein 2003, 2006; Lewis 2005; Spencer et al. 2006; Thelen and Smith 2006; 
Witherington 2007). “Theories and methods refer directly to the empirical 
world, while metatheories refer to the theories and methods themselves” 
(Overton 2007, p. 154). Hence, this approach does not deny the validity of 
domain-specific theories but instead contextualizes them with a set of pro-
cesses that explain the phenomenon at hand.

Conclusion

From this review of DS, I would like to highlight a few important points that may 
also aid in understanding of the rest of this book.

1.	 The natural world is a set of complex, adaptive, open, and self-organizing DS. As 
part of that world, human beings, both intrapersonally and interpersonally, are 
DS as well. That is, they function according to the same processes of all DS.

2.	 To understand human development, it is necessary to recognize the nested, 
hierarchical temporal structure of human systems. At the very least this impels 
researchers to view their phenomenon of interest at the meso scale—an emergent 
set of structural relations from the micro scale constrained by the structures at the 
macro scale.

3.	 The DS perspective is a radically different approach to causality. Therefore, it 
is not merely the application of different methodologies that will provide the 
insights into human development that we seek. Instead, understanding the com-
plex nature of human behavior requires a challenge to assumptions of both linear 
and efficient causality.

4.	 Any scientific endeavor first begins with observation and description. Given our 
relatively nascent understanding of the human being as a dynamic system (and 
the challenges to determinism that implies), the first priority is to obtain the 
means for providing that description. The state space grid method is one tech-
nique that is uniquely poised to fill that need.

Conclusion
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The focus of this book is the state space grid method. I have provided a sufficient 
review here to be able to understand the method and the analyses conducted to 
test DS-based hypotheses. However, the DS approach to development is a deep 
and broad undertaking. There are many excellent books and reviews that I strongly 
recommend to the reader interested in pursuing these ideas further. Esther Thelen 
was a superb writer and thinker and I would highly recommend all of her works. 
Most notable among these would be her monograph on child development (Thelen 
and Ulrich 1991), the two-volume book written and coedited with Linda Smith 
(Thelen and Smith 1994), and a recently updated handbook chapter (Thelen and 
Smith 2006). Paul van Geert has also provided a great deal of clear explanations 
and methodological techniques in books (van Geert 1994) and numerous articles 
(Steenbeck and van Geert 2008; van Geert and Steenbeck 2005; van Geert and van 
Dijk 2002; van Geert 1998). There are a couple of special issues in journals that 
also provide the breadth of approaches: The British Journal of Developmental Psy-
chology (Vol. 16, 1998) and Child Development Perspectives (Vol. 5, 2011). Marc 
Lewis’ comprehensive modeling of socioemotional development (Lewis 2000a), 
the neurobiological dynamics of emotion (Lewis 2005), and the relations across 
real-, developmental-, and evolutionary-time scales (Lewis and Liu 2011) is ex-
ceptional in both its coherence and impact. Finally, Isabel Granic has adeptly and 
articulately reviewed DS methodology (Granic and Hollenstein 2003, 2006) as well 
as provided detailed explanatory models of DS mechanisms in the development of 
psychopathology (Granic 2000, 2005; Granic and Patterson 2006). There are, of 
course, many other high-quality authors and sources but, at the time of this writing, 
these are the sources I would recommend starting with.

1  Dynamic Systems
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Now that some of the dynamic systems (DS) terminology is familiar to you, we can 
see how the concepts of state space, attractors, repellors, and phase transitions can 
be applied with state space grids. In this chapter, I will describe how state space 
grids were derived from the abstraction of state space. Next, I will describe the es-
sential features of state space grids. In the last section, I will review state space grid 
studies to date, so that you may get a sense of the versatility of the technique.

From Continuous to Categorical

State space is often depicted in its most simple form as a two-dimensional plane 
formed by the intersection of two perpendicular dimensions or axes. There is no 
theoretical limit to the number of orthogonal dimensions necessary to describe a 
system on a state space, but after the third dimension it becomes difficult to vi-
sualize. Since there is nothing ostensibly different about higher dimensional state 
spaces, the utilization of two dimensions is sufficient for illustrative and analytical 
purposes (see Chap. 7 for an expansion beyond two-dimensional state space).

Consider the state space landscape depicted in Fig. 2.1. Here, each position on 
the landscape is a possible state in which the system could hypothetically be at any 
one time. Furthermore, each location is a combination of one value along the x-di-
mension and another value along the y-dimension (let us leave the z-dimension out 
for the moment). Thus, it is possible to identify each point on the landscape in terms 
of an x and a y coordinate, similar to a map. At the risk of being overly simplistic, 
there are at least four important considerations of such an arrangement. First, the 
values on any one of those dimensions must be mutually exclusive. If, for example, 
the y-dimension ranged from 0 at the bottom-right corner to 100 at the top-right 
corner in Fig. 2.1, then at any given time point there could only be one value to rep-
resent the system on that dimension. That is, y could only be at value 15 or 34, not 
15 and 34. The same is true for the other dimensions. This may seem obvious but, as 
you will see later, mutual exclusivity is a necessary condition for state space grids.

T.  Hollenstein, State Space Grids, DOI 10.1007/978-1-4614-5007-8_2,
© Springer Science+Business Media New York 2013

Chapter 2
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Second, the range of values along each dimension must be exhaustive in which 
there are no other possible values that could ever occur. Using the previous 0–100 
example, this could be exhaustive if the dimension represented a percentage where-
in values below 0 or above 100 were simply not possible. If each dimension con-
forms to this requirement, then the state space will also by definition be exhaustive 
as well. Again, this may seem obvious or overly simplistic, but it will be important 
later.

Third, although most often the state space is depicted as square, the scale and/or 
range of each dimension does not have to be equivalent. The y-dimension could be 
0–100 while the x-dimension could be a range of 0–10. Of course, with continuous 
scales (i.e., ratio scaling), the number of intervals between values is a function of 
the level of precision of the measure or index. If the level of precision is one unit for 
the y-dimension (0–100) and 1/10 of a unit for the x-dimension (0–10), then both the 
dimensions would have 100 scale units between minimum and maximum values. 
Furthermore, the distance between those values depicted on the state space diagram 
can be arbitrarily determined—they may be constrained to equivalent lengths to 
make a square state space or allowed to maintain the same scale units to make a 
rectangular (10 × 100) state space. As we will see in Chap. 7, there are ways to re-
late continuous measures to categorical dimensions. For now, we will proceed by 
considering categorical dimensions.

The final consideration stems from the third: the state space can be derived from 
ordinal, categorical, or nominal dimensions, as long as each dimension is comprised 
of mutually exclusive and exhaustive values. For example, if the dimension of in-
terest was an index of emotional valence—ranging from negative to positive—the 
degree of continuity of the values on that dimension would be a function of the 
measurement precision. Valence could be captured by a self-report joystick that 
recorded values ranging from 0 (negative) to 100 (positive), or a visual analogue 
scale ranging from 0 to 10, or from the real-time ratings of a trained observer in only 
three categories (negative, neutral, positive). All three measurement methods would 
be appropriate as a dimension of state space; the only difference would be in the 
number of scale intervals or categories (100, 10, or 3). Two points can be taken from 
this example. One is that beyond the limits of the precision of the measurement 
all dimensional variables become categorical—a measurement unit of miles seems 
continuous from space but is categorical when looking at a 4 square mile area (as-

Fig. 2.1   Hypothetical state space with ordinal dimensions
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suming no further break down in units). The other is that each dimension of the state 
space can be broken down into categories, similar to the A–Z and 1–10 format of 
road maps, to create a grid of intersecting categories. Now, with such a categorical 
approach to the dimensions of the state space, then, the range no longer needs to be 
an ordinal or quasiordinal sequence, but can also be in nominal categories with no 
numerical values or ranking to determine their order or adjacency. In other words, to 
analyze the state space of a system, we can overlay a grid of meaningful boundaries 
to discriminate distinct x/y states. This is the basis of state space grids.

Before describing state space grids, let us consider a real-world example of the 
state space depicted in Fig. 2.1. Often the system being analyzed by state space 
grids has been the parent–child system, with individual states for each dyad mem-
ber ranging in valence from negative to positive. Superimposing that system on the 
hypothetical landscape, we can get something similar to the state space depicted 
in Fig. 2.2. Here, Mother behavior is depicted from negative to positive along the 
x-dimension and Child behavior is depicted from negative to positive on the y-
dimension. Now, the configuration of valleys and peaks representing attractors and 
repellors, respectively, can correspond to the structure that underlies this particu-
lar dyadic system. The dyad in this example struggles with problematic behavior. 
The strongest attractors are in the mutual negative region indicating that when they 
get into that state it is difficult for them to get out of it. Fortunately, they are also 
“pulled” into a mutual positive state at times, though not as strongly as the mutual 
negative state. Although not a strong influence in the Child negative with Mother 
positive basin, the dyad covers a broad area that could be labeled permissive parent-
ing. Finally, as seen from the repellors “hill,” this parent is never harsh or negative 
while the child is positive. In this way, the state space landscape can provide a static 
picture to depict the structure and the range of system behavior. The state space grid 
method goes a step further by taking this general idea and using it to analyze the 
temporal dynamics—the sequence of system states as they progress through time—
in order to derive the structure and function of these systems.

Fig. 2.2   Hypothetical state space of a parent–child system. A Deep (strong) attractor: Mother 
Negative with Child Negative (“Mutual Negative”); B Shallow (weak) attractor: Mother Positive 
with Child Positive (“Mutual Positive”); C Attractor basin: Mother Positive with Child Negative 
(“Permissive Parenting”); D Repellor: Mother Negative with Child Positive (“Harsh Parenting”)

A

C

D B
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State Space Grids

State space grids are two-dimensional state spaces with at least two mutually exclu-
sive and exhaustive categories on each dimension. The intersection of these catego-
ries forms a grid of cells representing each categorical combination. The number 
of categories on each dimension does not need to be the same, so the state space 
grid can be any size rectangle. The cells themselves do not need to be square either, 
though square cells are perhaps the clearest way to present a grid and this is the 
manner in which all state space grids have been presented to date. Remember that 
the state space is the space of all possible states so that what must be in that space 
are literally ALL the possibilities, theoretical and actual. See Chap. 4 for further 
discussion of this issue.

Most often, the blank state space is generic in that the combination of states 
could correspond to any number of systems of the same type. Some systems might 
spend most of their time in one region while other systems spend their time in other 
regions, with little or no overlap. For example, as we shall see later in this chapter, 
many of the published reports of state space grids focus on the parent–child system. 
In these studies, the state space grid remains constant (e.g., Parent negative, neutral, 
positive with Child negative, neutral, positive) but each parent–child dyad behaves 
differently. That is, their sequence of states is unique on a generic state space. Thus, 
it is the plotting of this sequence of states—the trajectory—on the state space that 
reveals the structure of any particular system (Fig. 2.3).

The trajectories are plotted on a state space grid as nodes or plot points connected 
by lines to indicate the transition from one state to the next. Thus, the sequence of 

Fig. 2.3   A hypothetical 
state space grid example of 
a mother–child interaction 
sequence
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states is a series of visits to cells on the grid. When information about the duration of 
each state is available, the size of the node corresponds to the duration of that state. 
In Fig. 2.3, we see a short trajectory of behavior on a state space grid that is similar 
to an aerial view of the state space landscape in Fig. 2.2. With four categories of af-
fective valence for both mother and child, the behavior depicted for this dyad begins 
in their mutually negative attractor (the open node depicts the starting point) but 
then they resolve into mutual positivity.

A wide range of measures can be derived from trajectories plotted on state space 
grids in this way. These measures can tap both the content (i.e., the frequency and 
duration of specific states) as well as the structure (i.e., the configuration of attrac-
tors and repellors) by quantifying the dynamics. All of these measures are described 
in great detail in subsequent chapters.

State space grids are a flexible analytical tool, which can be useful in a wide ar-
ray of research circumstances. This book will highlight many of these possibilities 
but as many or more of these applications of the method are yet on the horizon. In 
general, though, for any user there are three potential uses of state space grids. First, 
state space grids may simply be useful as a tool for visual inspection of data. I hap-
pen to ascribe to John Tukey’s notion of exploratory data analysis (Tukey 1977) as 
an essential, though often neglected, research function. Indeed, in any new domain 
of inquiry, the first order of business is description. If that is all state space grid 
analysis achieves, it would be a great contribution to science.

Second, by extension, the DS approach in general and the exploratory data analy-
ses facilitated by state space grids in particular are a rich source of hypotheses about 
behavioral processes. As I presented in Chap. 1, DS approaches require a different 
way of thinking about intrapersonal and interpersonal behavior, time, and causal-
ity. Though there is growing theoretical interest in the processes and mechanisms 
underlying behavior, especially in the developmental sciences, there is a paucity of 
research tools with which to test these theoretical claims (Granic and Hollenstein 
2006; Richters 1997). Thus, in the state space grid method lies the potential gen-
eration of testable hypotheses and the enactment of both inductive and deductive 
scientific means.

Finally, state space grids are a source of variables and analyses of both structure 
and content. These measures and analyses can then be combined with or compared 
to existing, more traditional methodologies to test various content-specific and 
structural hypotheses. As it is a metatheoretical framework (Witherington 2007), 
DS techniques such as state space grid analysis can be incorporated into existing 
theoretical or statistical models that are domain specific (e.g., Granic and Patterson 
2006). Realistically, the scope and power of state space grids as a dynamic analysis 
tool has not yet been fully realized and it is up to the current and next generation 
of researchers to push and extend the technique into the greater prominence it de-
serves.

State Space Grids
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A Review of Studies Using State Space Grids

I will briefly review the state space grid studies that have been published as of 2011. 
This will be followed by a review of the work in progress or otherwise unpub-
lished to give the reader a sense of a wider range of possibilities. Details presented 
here are necessarily brief, though we will return to some details of these studies in 
later chapters that focus on analysis. The reader is encouraged to read the original 
sources identified in Box 2.1.

Box 2.1 State Space Grid Studies to Date 

The first study to use state space grids was the one for which they were developed 
(Lewis et al. 1999). Marc Lewis and Alex Lamey devised the method to be able 

Study System Age Structure Content Grid size
Granic et al.  

(2012)
Mother–child 8–12 years Variability/

flexibility
Specific affect 9 × 9

Granic et al. 
(2003)

Parent–boy 9–18 years Variability; 
phase 
transition

Emotion 
valence

4 × 4

Granic and 
Lamey (2002)

Mother–child 8–12 years Attractors Emotion 
valence

4 × 4

Granic et al. 
(2007)

Mother–child 8–12 years Variability/ 
flexibility; 
repair

Specific affect 9 × 9

Hollenstein and 
Lewis (2006)

Mother–
daughter

11–12 years Variability/
flexibility

Specific affect 10 × 10

Hollenstein 
(2007)

Mother–
daughter

10–14 years Variability; 
phase 
transition

Specific affect 10 × 10

Hollenstein et al. 
(2004)

Parent–child 4–6 years Variability/
flexibility

Emotion 
valence

4 × 4

Lewis et al. 
(1999)

Infant 2–6 months Attractors Distress and 
attention

5 × 5

Lewis et al. 
(2004)

Toddler 14–24 
months

Variability; 
phase 
transition

Engagement 
with 
mother and 
frustrating 
toy

5 × 5

Lunkenheimer 
et al. (2011)

Parent– 
toddler

3–4 years Variability Emotion 
valence

4 × 4

Martin et al. 
(2005)

Peer interac-
tions

4–5 years Attractors Gender, social 
compe-
tence, 
valence

2 × 3 × 5
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to depict and measure the sequence and recurrence of infant socioemotional states 
corresponding with their simultaneous levels of distress and attention to their own 
mother who was sitting close by. That is, the infant’s emotional state and social 
behaviors to regulate that emotion could be analyzed as distinct but coordinated 
processes. Infants were given frustrating toys while playing on the floor next to 
their mothers. One minute of their level of distress (0–4) and angle of gaze toward 
mother (1 = gaze averted to 5 = direct attention to mom) were recorded and plotted 
on state space grids (see Fig. 2.4). The authors examined whether infants’ socio-
emotional attractors at 2 months of age were stable through 6 months of age.

The Lewis et  al. (1999) study introduced attractor analysis using state space 
grids through a two-step process. First attractors were identified through a winnow-
ing process based on the proportional duration in each cell. For each infant, one or 
two cells were identified for which proportional durations exceeded chance. Sec-
ond, they measured the strength of these attractors as return time, the duration of in-
tervals between visits to the attractor cells. Shorter return times indicated a stronger 
attractor. As hypothesized, infants tended to have the same attractors at both 2 and 
6 months of age and the correlations between the strength of those attractors over 
those 4 months range from 0.7 to 0.8. Thus, individual differences in emotional and 
regulatory habits of infants seem to be well established early in infancy and remain 
stable for the first half year.

Granic and Lamey (2002) extended the state space grid technique from the focus 
on an individual as the system to the parent–child dyad. In this study, the authors 
were interested in distinguishing subtypes of children with externalizing problems, 
specifically those who were comorbid with internalizing problems (MIXED) and 
those who were pure externalizers (EXT). These children and their mothers were 
observed during a 6-minute conflict discussion. As the best way to reveal the nature 
of system dynamics is through perturbation, a mild perturbation was included in this 
research design. With 2 minutes left to go, dyads were perturbed by the research 
assistant who knocked on the door, came into the room, and told the dyad to “wrap 

Fig. 2.4   State space grids from Lewis et al. (1999)
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up on a good note.” Before the perturbation, the MIXED and EXT dyads were 
indistinguishable. However, after the perturbation, the MIXED dyads shifted to a 
mutually hostile attractor (the state space grids were 4×4 as in Fig. 2.3) while the 
EXT dyads remained in the permissive region as these mothers pleaded with affec-
tion to get the child to focus on and resolve the conflict. Thus, this study revealed 
unique system dynamics associated with differential socioemotional experiences of 
MIXED and EXT children.

Following the ground-breaking Granic and Lamey (2002) study, the next group 
of studies focused on the parent–child dyad as the system and specifically examined 
the variability in these interactions. In one subset of these studies, the connection be-
tween the dyadic variability and the development of psychopathology was explored 
(Granic et al. 2012; Granic et al. 2007; Hollenstein et al. 2004; Lunkenheimer et al. 
2011). The other set of variability studies tested the developmental phase transition 
hypothesis: transitions between stable developmental periods would be evidenced 
by the temporary increase in variability characteristic of a phase transition (Granic 
et al. 2003; Hollenstein 2007; Lewis et al. 2004). Before reviewing these two sets 
of studies, it is important to first consider the psychological meaning of real-time 
emotional or affective variability.

Variability and Flexibility

As mentioned in Chap. 1, variability is considered vital information about a system. 
Yet, variability is a broad term with many viable ways to define or operationalize 
it. It can be taxonomic, simply denoting that a range of elements exist in a particu-
lar domain (e.g., eye color). It can also be used statistically, in terms of deviations 
from a fixed value (e.g., standard deviations). Variability can refer to variations in 
temporally contiguous events (e.g., walking stride) or a range of consistency across 
sporadic events (e.g., hit-or-miss food quality at a restaurant). Of these different 
meanings of variability, some can be interpreted as flexibility, or the process by 
which a state transforms into a different state in an adaptive response. For devel-
opmental DS applications, most often we have been concerned with variability at 
two scales.

At the first scale, there are the moment-to-moment fluctuations of system be-
havior that vary because of the reciprocal influence of the elements of the system 
(micro scale in Fig. 1.1). For example, try standing on one leg for a few minutes. 
You will notice that in order to maintain the stance, you will engage in many small 
muscle contractions throughout your body, mostly in your feet. Let us call this kind 
of moment-to-moment change dynamic variability. At the second level or scale are 
the variations in system behavior that come from larger, typically exogenous, per-
turbations. Variability at this scale reflects the degree to which a system can adapt 
to the changes in the environment. To continue the example, notice what you do 
differently when someone pushes you while you stand on one leg—different mus-
cle groups become involved. Perhaps you need to swing your arms or bend at the 
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waist. Let us call this adjustment to environmental demands reactive variability. In 
both cases, not dynamically adjusting or not reacting to contextual changes would 
characterize a rigid system (standing rigidly assures falling over). For dynamic sys-
tems in the natural world, the “hallmark of successful adaptation is flexibility in the 
face of changing physiological and environmental demands” (Thayer et al. 2012, 
p. 748). Thus, some aspects of variability can be interpreted as dynamic flexibility 
and others as reactive flexibility (Hollenstein et al. in press).

With state space grids, dynamic flexibility can be examined through within-grid 
analyses (Chap. 5) and reactive flexibility with between-grid analyses (Chap. 6). 
Consider the examples of dyadic emotional valence in Fig. 2.5. Immediate visual 
inspection of these two trajectories typically leads to the conclusion that the one 
on the left is more flexible than the one on the right. State space grid analysis of-
fers the means to quantify those qualities with measures such as dispersion (range 
of cells occupied controlling for relative durations), transitions, and average mean 
duration across all of the cells. Thus, dynamic flexibility can be reliably measured. 
Taking this example a step further, instead of thinking of these two trajectories as 
representing two different dyads, consider them as the same dyad in two different 
contexts. The dyad could have started with the flexible behavior depicted on the left 
of Fig. 2.5, but following a perturbation shifted their behavior to that depicted on 
the right of Fig. 2.5. This would be an example of reactive flexibility indicating an 
adaptation to environmental demands.

With this in mind, we explored both dynamic and reactive flexibility with moth-
er–daughter dyads (Hollenstein and Lewis 2006). For this study, we used state space 
grids to measure the real-time dynamic flexibility of mother–daughter affect in an 

Fig. 2.5   Examples of flexible and rigid interactions on state space grids. The grid on the left 
depicts a more flexible interaction by dint of greater dispersion across the state space, more transi-
tions, and lower mean durations ( smaller nodes). In contrast, the grid on the right depicts a rela-
tively less flexible interaction due to less dispersion, fewer transitions, and longer mean durations
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A–B–A design of three discussion contexts: positive, conflict, positive. As expect-
ed, there was more negative affect during conflict and dynamic flexibility changed 
with the context—the dyads became more rigid during the conflict but returned to 
higher levels of flexibility in the final positive discussion. Thus, consistent with the 
effect of emotions on cognitive flexibility (e.g., Isen 2000; Matthews and McLeod 
1985), we showed that the presence of negative affect actually restricted the dy-
namic structure of how that affect was expressed.

Variability, Flexibility, and Developmental Psychopathology

Interpreting variability as flexibility is also consistent with clinical observations that 
many psychopathologies are characterized by overly rigid behavior. My colleagues 
and I have explored this in several ways at several ages. In a large kindergarten sam-
ple, Hollenstein et al. (2004) showed that dynamic rigidity of parent–child affect 
during 2 hours of interaction was associated with concurrent levels of child internal-
izing and externalizing problems as well as the growth in externalizing problems 
over the course of 2 years. Moreover, partial correlations demonstrated that these 
differences in structural dynamics (rigidity) were not related to differences in the 
affective content.

Granic et  al. (2007) compared externalizing children who had improved with 
treatment (self-regulation training and parent management training) to those whose 
externalizing behavior did not drop below clinical levels by the end of treatment. 
While there were no differences between these groups pretreatment, the parent–
child dyads with improvers became significantly more dynamically flexible by the 
end of the treatment period This study also employed some innovations in region 
analyses based on four areas of the parent–child state space grid hypothesized to 
be the most important (see Fig. 2.6). These regions were mutual positivity, mutual 
hostility, permissive parenting, and mother attack—similar to the regions identi-
fied in the example for Fig. 2.2. There were no differences between improvers and 
nonimprovers in terms of duration in mutual hostile, permissive, or mother-attack 
regions, but improvers increased in mutual positivity from pretreatment to post-
treatment. Moreover, using the same A–B–A discussion design as Hollenstein and 
Lewis (2006) described above, there was diminished reactive flexibility for the 
nonimprovers. These dyads could not repair from the conflict topic and shift to a 
positive topic without continuing to express negative affect (area outside of mutual 
positive region in Fig. 2.6). In the latest extension of this work, Granic et al. (2012) 
have shown strong correlations between dyadic flexibility and the amplitude of the 
child’s electroencephalography (EEG) event-related potential called the inhibitory 
N2, even after controlling for many factors. The N2 is thought to be an index of in-
hibitory control, a key component in emotion regulation. Thus, the ability to inhibit 
behavior and emotions may be a key mechanism of affective flexibility.
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Another study examining the link between flexibility and the development of 
psychopathology explored the interaction between positive affect and flexibility. 
Lunkenheimer et  al. (2011) tested for the differences in positive versus negative 
flexibility in a sample of young children during interactions with mothers and fa-
thers. During father–child interactions, flexibility and the flexibility by positive af-
fect interaction predicted lower levels of externalizing behavior 2 years later when 
the children were 5 years old. Interactions with mothers revealed a different pattern. 
While the flexibility-positivity interaction predicted lower externalizing similar to 
the fathers’ results, the direct effect of mother–child flexibility predicted higher 
levels of externalizing behavior. It is not yet clear why these results were different 
than in other studies. This was the youngest sample that has been tested for the 
flexibility-psychopathology link and these data were coded in a different way than 
most of the other studies reported here. Still, it begs the possibility of an upside-
down u-shaped function of flexibility—too much or too little may be detrimental. 
What is needed is an examination of flexibility across more diverse contexts and 
pathologies.

Fig. 2.6   Regions on a parent–child affect state space grid
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Developmental Phase Transitions

Longitudinal studies testing the developmental phase transition hypothesis com-
prise the second set of studies on variability (Granic et al. 2003; Hollenstein 2007; 
Lewis et al. 2004). Here the general hypothesis is predicated on a stage approach 
to development that has long noted key transition periods. The first to be examined 
was the 18–20 month transition point, at which toddlers make a tremendous cogni-
tive shift as they enter into the “terrible twos.” This period is replete with a demon-
strative “no!” dominating toddler communication as well as disturbances to sleep-
ing and eating habits among other things. Lewis et al. (2004) observed toddlers once 
a month from 14 to 24 months of age as they engaged in two frustrating toy tasks. 
State space grids were created from one dimension of child’s engagement with the 
toy (1–5) and engagement with his or her mother (1–5) who sat nearby reading 
magazines. Thus, each child had 11 trajectories, one for each month. The phase 
transition was hypothesized to result in greater month-to-month change during the 
18–20 month window than either before or after. Monthly change was measured in 
two ways. First, we created an intergrid distance score (IDS) that was a calculation 
of the Euclidian differences between corresponding cells in adjacent monthly grids 
through the formula:

where Ai is a cell from the state space grid from month t and Bi is a cell from the 
state space grid from month t + 1, as shown in Fig. 2.7.

The second method for detecting month-to-month change was through a longi-
tudinal cluster analysis. The 25 duration values of every grid for every month for 
every child were put into a single k-means cluster analysis to obtain a cluster mem-
bership for each grid. Grids that had similar patterns were grouped into the same 

IDS =
# of cells∑

i=1

(Ai − Bi)
2

Fig. 2.7   Illustration of the 
calculation of the intergrid 
distance score (IDS). (Lewis 
et al. 2004)
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cluster. Then, for each child, a month-to-month cluster change score was created, 
giving a value of zero if the child stayed in the same cluster from time t to time t + 1 
and 1 if the child switched clusters from the previous month.

Using profile analysis, both the IDS and cluster change scores showed a qua-
dratic pattern across months with the peaks occurring in the 18–20 month period 
(Fig. 2.8). Moreover this occurred with both tasks and despite their repetition over 
11 months. This was the first study to provide dramatic evidence of a developmental 
phase transition using state space grids and it inspired two subsequent studies to test 
the phase transition hypothesis in adolescence.

Adolescence is one of the most tumultuous transitions in the lifespan, perhaps 
only second to the 18–20 month transition. The range and depth of changes in the 
physical, cognitive, social, and emotional domains certainly make this age period a 
leading candidate for a developmental phase transition. With a five-wave longitu-

Fig. 2.8   IDS and cluster change scores from Lewis et al. (2004)
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dinal sample of boys’ interactions with their parents, starting at the age of 9–10 and 
continuing every 2 years, Granic et al. (2003) tested the adolescent phase transition 
hypothesis with state space grids. Two measures, the number of cells and the num-
ber of transitions, were derived from the 4 × 4 parent–boy grids. As expected, both 
measures peaked in the third wave when the adolescents were aged 13–14 years, the 
start of puberty and early adolescence for boys. Importantly this peak in variability 
was not just due to increases in conflict, as negativity peaked later, when the boys 
were 15–16 years old and variability had already dropped back down to pretransi-
tion levels.

To follow up this finding with boys, another study was conducted with girls 
to see if they went through the same phase transition 2 years earlier (Hollenstein 
2007). Mother–daughter dyadic affect during conflict discussions were recorded 
over four longitudinal waves starting when the girls were in the spring of their 
grade-6 year (age 11.5 years) and every 6 months thereafter. All girls transitioned to 
a new school between the first and second waves. Possibly, because of the narrower 
time frame or the school transition, the results for the girls were not as straightfor-
ward as with the boys’ study. Instead, only dyads with girls who did not experience 
stressful events concurrently with the school transition in wave 2 showed the hy-
pothesized quadratic pattern. Interestingly, dyads with girls who experienced two 
or more stressful events concurrent with the school transition showed the opposite 
pattern. The quadratic was u-shaped because these dyads became more rigid over 
the transition period. It is possible that these girls (and their mothers) were resist-
ing the change, clinging on to old habits in order to maintain emotional stability 
during a tumultuous period. Unfortunately, this study raised as many questions as 
it answered. Certainly more tests of developmental phase transitions are warranted.

Group Dynamics

Just as state space grid studies of individuals led to the examination of dyadic sys-
tems, there is an interest among many developmental scholars to tap the group dy-
namics of peer interactions. Martin et al. (2005) created some solutions to this prob-
lem in a study that recorded the gender and social competency category (competent, 
externalizing, and internalizing) of the target child’s play partners, as well as the 
target child’s emotional valence, on the playground across an entire preschool year. 
Of course, pragmatic issues led to the observations being random and distributed 
throughout the year. Hence, transitional measures were not realistic, but measures 
of states were. The main finding was in support of increasing homophily across the 
year: girls increased their play with girls and boys with boys across the year. There 
were also interesting distributions of play partners by competency. This study pro-
vides one approach to the analysis of n-dimensional systems. Another approach was 
taken for the analysis of coach–athlete interactions with a team of athletes (Erickson 
et al. 2011). In this study, the coach and each athlete was coded continuously during 
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practice sessions, with a state space grid dimension corresponding to each. From 
this starting point, each coach–athlete combination could be analyzed and the ath-
letes could be combined to go beyond two dimensions. Further discussion of ways 
to go beyond two dimensions is covered in Chap. 7.

Summary Grids

State space grids have also been used to depict static visualizations of summary 
information. Similar to a 2 × 2 matrix of values, these grids use a single node, cen-
tered in each cell, to depict the magnitude (e.g., mean duration or frequency) of the 
activity in that cell for subgroups or for an entire sample. In the Lunkenheimer et al. 
(2011) study, the proportional durations in each parent–child affective state were 
displayed for mother–child and father–child dyads (Fig. 2.9). Comparing these two 
grids, it is easy to quickly get a sense of how similar and how different these two 
groups were. Although it was not presented in the original Martin et  al. (2005) 
study, Fig. 2.10 shows a summary of the play–partner combinations across the year 
(Hollenstein 2007). Here, the size of the plot point indicates the relative frequency 
of that particular target child with peer competency-type combination. With this 
display we can see that competent girls tended to play with each other and external-
izing boys tended to play with everyone. The means to create these summary grids 
will be described in Chap. 5.

Fig. 2.9   Summary state space grids of proportional durations in each cell for mother–child ( left) 
and father–child ( right) interactions. (Lunkenheimer et al. 2011)
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State Space Grid Studies: Unpublished or in Preparation

The studies published till date represent a fraction of the state space grid analyses 
that have been conducted till date. Some of these are in the process of reviewed or 
prepared for submission, some were just used for conference presentations, some 
are languishing in file drawers somewhere, and others were used in studies that ulti-
mately did not report using grids for simplicity. Through consultations, workshops, 
and collaborations, I have worked on no less than 100 data sets to create state space 

Fig. 2.10   Summary of preschool playground peer interactions from the Martin et al. (2005) study 
(from Hollenstein 2007). The target child’s identity (gender and competency category) is on the 
x-dimension and the identity of the peer play partner is on the y-dimension. The size of the plot 
point indicates the relative frequency of that play combination across the year. The highlighted 
diagonal indicates homophily
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grids. Through these experiences, I have gathered a range of different grid types and 
techniques that depart from the dyadic emotion grids that have been my personal 
mainstay. Seeing the diversity of approaches is always one of the highlights of a 
workshop—I can see the light bulbs turning on. I hope these descriptions in the fol-
lowing sections will do the same here.

Eye Gaze  The first variation to explore is using state space grids for tracking eye 
gaze trajectories. Individual eye gaze grids plot the direction of gaze using the 
x-dimension as left–center–right positions and the y-dimensions as down–center–up 
positions relative to a focal target. McCarthy et al. (2007) documented the direction 
of gaze at an experimenter who asked questions that required episodic recall (see 
Fig. 2.11). Most people in western cultures look up and to the left while accessing 
a memory prior to responding. This provides a social cue to others to not interrupt 
while thinking. McCarthy et al. showed that this eye gaze tendency does not reliably 
occur before the age of 7.

In a dyadic eye gaze study, van Straaten et al. (2009) examined the eye gaze 
patterns of males and females having a discussion with an opposite sex confeder-
ate who was independently rated as either attractive or average-looking. Although 
state space grids were used for analyses, these were not reported in the final journal 
article. This was a 2 × 2 grid of a binary categorization of gaze: looking directly 
at the other person’s face or away from their face (see Fig. 2.12). Compared with 
average discussion partners, males tended to have longer staring events at the face 
of attractive confederates. In contrast, females tended to have more frequent but ex-
tremely short mutual gaze durations with attractive partners compared with average 

Fig. 2.11.   Example of an 
individual eye gaze state 
space grid. Trajectories 
indicate the direction of gaze 
following each of the ten 
questions that required epi-
sodic recall for one subject
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partners. While this study demonstrated clear gender differences in interaction with 
attractive strangers, it also demonstrates for our purposes here that the minimum-
sized 2 × 2 state space grid can provide insightful information about behavioral dy-
namics.

Diaries and Experience Sampling  Another increasingly common research method 
is the examination of emotions or behavior over the course of days, weeks, or 
months. These studies may use diaries or electronic devices through what has been 
called the experience sampling method (ESM; e.g., Larsen and Csikszentmihalyi 
1983) or ecological momentary assessment (EMA; Silk et al. 2011). The big differ-
ence here is that, rather than time units of seconds or events that occur within a short 
window of time, the intervals between events could be 24 hours or more. Trajecto-
ries in these instances would reflect sequences of daily assessments and would be 
useful for tracking such things as mood or developmental progressions that occur 
over the course of weeks, months, or years.

In a creative study with a nested longitudinal design, Lichtwarck-Aschoff et al. 
(2007) obtained daily diary reports from mothers and adolescent daughters over 
the course of 2 weeks, repeated every 6 weeks for 18 months. Although the dyadic 
results are unpublished as yet, the grids used for exploratory analyses are worth 
considering. In Fig. 2.13 there are three different dyads who report how they felt 
during the discussion and then how they felt later before going to bed. Thus, each 
trajectory is a two-step sequence indicating the degree to which both the mother 
and the daughter repaired (moved from negative to positive emotional states) from 
conflict. Vertical trajectories indicate instances when the mother but not the daugh-
ter repaired, horizontal trajectories indicate instances when the daughter but not the 
mother repaired, and diagonal trajectories indicate instances when both the mother 

Fig. 2.12   Dyadic eye gaze 
state space grid of a male 
with an attractive female 
confederate
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and the daughter repaired. This example illustrates how even short trajectories can 
be used in state space grid analyses as well as how data at two time scales (within a 
day and across days) can be analyzed simultaneously with state space grids.

Measurement Analysis  As many applications of state space grids involve coded 
observational data, it may be useful to examine the relations between code catego-
ries as part of the development of the measure. My students and I have developed 
a self-conscious affect coding system for participants giving a speech in the labora-
tory, for example, for which there are four primary categories, each of which vary in 
intensity (Lanteigne et al. 2011). That is, each code category is a state variable with 
ordinal levels of intensity as the states. Thus, we have a complete data stream for 
four domains of self-conscious behavior: Body Tension (none, medium, and high), 
Mouth Tension (none, medium, and high), Eye Gaze (direct and averted), and Ver-
bal Tension (none, medium, silent, and high). The goal is to create an overall self-
conscious affect score from the combination of these state variables and to compare 
these to self-reported self-conscious affect and psychophysiological measures. As 
part of this research, we examined the relations of the individual code variables to 
each other and in relation to other measures. Figure 2.14 shows a couple of state 
space grids derived for this purpose. Here, we can see how the dynamic states relate 
to one another in real time and how they contribute to the overall code score. From 
these explorations, we have since developed a revised version of the coding system.

We also were interested in the dynamic relations between self-conscious behav-
ior and each person’s appraisals of their own distress. Following the video-taped 

Fig. 2.14   Using state space grids to compare code categories. The state space grid on the left 
shows the relationship between the mouth tension and verbal tension codes for one participant, the 
one of the right shows the relation between the body tension code and the overall self-conscious 
affect score made from the combination of all the ordinal state variables (except for the Eye Gaze 
category)
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speech, participants watched their own speech on video and rated it along a single 
dimension of distress intensity. As shown in Fig. 2.15, we can then look at the psy-
chological and behavioral dynamics simultaneously. The example shown here is of 
someone who was fairly distressed and moderately concordant across the psycho-
logical and behavioral domains.

Psychophysiology  With the growing ease of measuring and analyzing psychophys-
iological processes in vivo, more and more researchers have detailed time series 
data that are ideal for state space analyses. The primary objective is to relate psy-
chophysiological measures such as heart rate, galvanic skin response, and electro-
dermal activity, to behavior and psychological appraisals in real time. This is no 
simple task. State space grids can be adapted to perform some analyses that can be 
useful, though it requires turning continuous measurement into categorical values. 
As Chap. 7 covers this topic, I would not elaborate too much here. Instead, briefly, 
Fig. 2.16 shows an example of how the combination of self-report and physiologi-
cal measures can be used for deeper understanding of coordinated behavioral pro-
cesses for two participants who gave speeches as described in the previous section. 
In these examples, we see evidence of discordance between physiological and psy-
chological measures. This discordance in emotional situations can reveal differ-
ences in emotional processing related to emotion regulation and the development of 
psychopathology (Lanteigne et al. 2012).

Triads  Though state space grid analysis through GridWare (described in the subse-
quent chapters) is based on two-dimensional space, there is a need to go beyond two 
state variables for many research questions (e.g., Martin et al. 2005). The shift from 
two to three dimensions is tricky for many scientific endeavors (Diacu 1992), but 

Fig. 2.15   Using state 
space grids to compare 
code categories to dynamic 
self-report. The participant’s 
real-time rating of their own 
distress is synchronized with 
their observed self-conscious 
affect
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with a few modifications state space grid analysis can accommodate other dimen-
sions beyond two. From the interactions among three people (e.g., mother, father, 
child) to the coordinated dynamics of multiple measures (e.g., heart rate, self-report, 
and behavior), there are many instances for which a three-dimensional state space 
is desired. This is the focus of Chap. 7, so I will forego repeating the details here. It 
is sufficient at this point to note that state space grid analysis is flexible enough to 
accommodate many types of variations in state variables.

Lag Sequential Analysis  Finally, although much of this book is dedicated to the 
analysis of simultaneous events, state space grids can also be used to analyze lagged 
events. In some cases, for example, researchers want to know the effect of one per-
son’s behavior on another (e.g., mother and child). Thus, it is important to quantify 
these lagged events. With state space grids, this can be done by plotting the trajec-
tory with one dimension representing the original sequence and the other dimension 
representing the same sequence starting one event later. Lagged state space analysis 
is covered in more detail in Chaps. 5 and 7.

Fig. 2.16   State space grid of self-reported distress and percent change in heart rate. The state 
space grid on the top shows a high distress with low arousal participant and the one on the bottom 
shows a low distress with high arousal participant. Dev15Cat = 15 categories of percent deviations 
from baseline heart rate
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Conclusion

The contents of this chapter should give an indication of the depth and breadth of 
the state space grid technique. To date, we really have only scratched the surface. 
On one level, the technique is a deceptively simple variation of plotting data by 
embedding time within the two-dimensional space. However, just that small twist 
opens up worlds of possibilities. With the completion of these first two chapters, 
you now have all the background necessary to be able to start using state space 
grids yourself. In the next two chapters, I will describe the state space grid software, 
GridWare. First, I will walk through the software with a simple example and in the 
subsequent chapter I will describe how to set up your own projects.

Conclusion
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In this chapter, I describe the software for making state space grids, GridWare 
(Lamey et al. 2004). GridWare is a versatile visualization and data manipulation 
tool for multivariate time series of sequential (ordinal or categorical) data. It was 
developed as an exploratory data analysis tool as well as a source for a range of 
measures derived from the state space grid formatting. Since 2004, I have managed 
this software and its continued development, including the website for its free distri-
bution: www.statespacegrids.org. You should go to that website now and download 
the version appropriate for your platform. I will be using examples of state space 
grid analyses throughout the remaining chapters, so it will be useful to be able to 
work along with the sample data provided in the download. Note, the program runs 
in Java and it may be necessary for you to download Java or upgrade to the newest 
version. It is fast and simple from www.Java.com. Do not worry. Java is perfectly 
safe and runs many of the web pages you look at on the internet. These days, it is 
almost always loaded on new computers by default (Fig. 3.1, Box 3.1).

Box 3.1: GridWare: Free and Open Source  GridWare is a free and open-
source program. It was first codeveloped by a brilliant programmer, Alex 
Lamey, who shared my view that research output and research tools should 
remain in the public domain. All of the funds that have been used to develop 
GridWare have come from the public sector—allocations from government 
tax revenues distributed as research grants, fellowships, and university fund-
ing. Thus, it is important to make sure there are no barriers to the public’s 
access to the fruits of research, whether it is a journal article, book, or soft-
ware program. In some ways, this has slowed the development of the soft-
ware, but it has maintained the integrity of knowledge in the public domain.

Open-source software is quite common and was developed out of a larger 
view that the internet and computer applications should be public domain. 
This has lead to great advances in software as many experts can contribute 
bit by bit to making better software tools. Users interested in the source code 
for GridWare can find it on Source Forge (http://gridware.sourceforge.net/). 

T.  Hollenstein, State Space Grids, DOI 10.1007/978-1-4614-5007-8_3,
© Springer Science+Business Media New York 2013
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GridWare has a “copyleft” via the Gnu Public license. For more information 
about open source on the internet, see http://opensource.org.

When you download GridWare, just follow the instructions provided on the web-
site. You can save the program and the files that come with it anywhere on your 
computer, but I recommend saving it with the rest of your programs or high up in 
your hard drive’s hierarchy (e.g., C:\\GridWare\) to make it easy to access as you 
work. You will be able to save your GridWare projects anywhere on your hard drive.

Getting Started with GridWare

The way that GridWare works is through two types of files that the user sets up. The 
first file type is a single control file, the GridWare File, which tells the software about 
the dimensions of the state space, the categories in those dimensions, and informa-
tion about the files that are included in the project. The other file type is a Trajectory 
File and each project typically has many Trajectory Files. Figure 3.2 illustrates the 
general set-up. Details about each of these files will be provided in a later section.

After all the files have been extracted to your hard drive, open GridWare by dou-
ble-clicking on the program. The name of the program will depend on the version 
and your operating system (e.g., GridWare 1.1b.exe or GridWare 1.15a.jar). Next 
select the GridWare File (e.g., Example 1.gwf) that corresponds to your project 
and double-click or click the “Open” button. Depending on the size of the project 

Fig. 3.1   GridWare windows
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it may take a few moments for the project to open. Before describing GridWare 
any further, it will be best to open one of the example projects that comes with the 
GridWare download now.

Open “EXAMPLE 1.GWF” in GridWare now

Once open, Example 1.gwf should look similar to Fig. 3.3. In order to save computer 
memory, the trajectories are not displayed upon opening by default. GridWare has 
four windows. The largest is the Grid Window, which has the state space grid that 
displays the trajectories as well as the menu bar. The Data Filters Window allows 

Fig. 3.2   GridWare file structure
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the user to select which trajectories to display based on the trajectory variables. The 
Measures Window displays the measures for the whole grid and individual cells, 
if selected. The fourth window is the Run Log Window that displays the messages 
related to the processes and functions performed in the running of GridWare as well 
as any error messages to aid in troubleshooting. Using the Example 1 project you 
have open, let us walk through some of the key features. Greater detail can be found 
in the GridWare User Manual that comes with the downloaded software (Box 3.2).

Box 3.2: Glossary of GridWare Terms 

Duration-based Data	� Trajectories for which information about the time of 
onset for each event is recorded in the Onset Vari-
able. An Event’s duration is the difference between 
an Event’s onset and the onset of the next Event.

Event	� A row of data in a Trajectory File. Events are the 
smallest unit of states displayed on a grid.

Event-based Data	� Trajectories for which each onset value after the first 
Event does not represent the offset of the previous 
Event. Most often, the Onset Variable values are a 
sequence of integers representing a count of the num-
ber of Events.

Filter Variable	� A “between-trajectories” variable that identifies or 
differentiates Trajectory Files. Typical Filter Vari-
ables include participant ID, sex, age, experimental 
condition, longitudinal wave, or task.

GridWare File	� The control file that provides all the information 
GridWare needs to create the state space grid and 
import the Trajectory Files. It is always named with a 
.gwf file extension.

GridWare Project	� The combination of a GridWare File (e.g., project1.
gwf) and a set of Trajectory Files saved in a folder of 
the same name as the GridWare File plus “_trjs” (e.g., 
Project1_trjs) in the same directory.

Final Offset	� The final value of the Onset Variable in every Tra-
jectory File that indicates the end of the final state. 
There can be no text to the right of or below the Final 
Offset value. See Onset Variable.

Onset Variable	� The first column of every Trajectory File that reflects 
the time value of the onset of each event. For event-
based data, onset values are simply integer counts of 
the sequence of events. For duration-based data, each 
onset after the first also functions as the offset of the 
previous event. See Offset.

3  GridWare
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State Variable	� A single dimension of the state space grid that has 
two or more categories ( see State) and corresponds 
to a column of data in the Trajectory Files.

State	� A category of a State Variable.
Tab-delimited Text	� A text file in which columns are indicated by a tab 

as a separator. It is one of the most common formats 
of text files, especially for data, that can be imported 
into virtually every spreadsheet or data analysis soft-
ware program. All input and output files in GridWare 
are tab-delimited.

Trajectory	� A sequence of Events comprised of the joint States 
of two State Variables that can be depicted on a state 
space grid. In terms of a Trajectory File, it is the 
sequence of Events in two columns.

Trajectory File	� A Tab-delimited Text file that contains, at minimum, 
a first column labeled “Onset” that contains the onset 
values for each Event, and two other columns of State 
Variables. A Trajectory File can have more than two 
State Variables. All Trajectory Files are named with 
the .trj file extension.

Trajectories List	� Tab-delimited Text matrix or file of one row per 
Trajectory File and, at minimum, a column for an 
identifying variable (e.g., participant #) and a sec-
ond column that must be named “Filename” for the 
names of each Trajectory File in the project. All vari-
able columns other than Filename are Trajectory or 
Filter Variables.

Trajectory Variable	� see Filter Variable.

Exploratory Data Analysis with GridWare

The Grid window is the main screen for GridWare. It displays trajectories on a two-
variable state space. In this case, we start with Variable 1 on the x-axis and Variable 
2 on the y-axis. Each state variable has four states or categories: 1, 2, 3, and 4. This 
is a nondescript example, so these states could correspond to a wide range of pos-
sible variables. For instance, these could correspond to ordinal levels of distress 
(1 = low, 4 = high) or nominal categories of behavioral states (hostile, withdrawn, 
neutral, and positive) of the same individual or of different individuals (mother and 
child). It may be helpful for you to imagine relevant variables in your own research 
domain that could be represented by these State Variables as you work through this 

Exploratory Data Analysis with GridWare
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example. You could even do that right now by holding down the Alt key while click-
ing on one of the numbers on the x-axis. In axis-label edit mode, you can change 
these labels to whatever you want. Once done, hit return to leave axis-label edit 
mode. This is not the best way to make these changes permanent, but it may help 
you as you work through the example for now.

The most important first thing to do with Example 1 is to display the data. This 
is a small project (nine short trajectories), so it is not a problem to do so. With larger 
projects, you will want to select one or only a few trajectories first before display-
ing. This is not only to save the time it would take to load all of them at once, but 
also because after a certain number of trajectories are plotted on the grid at once it 
can look a bit messy. On the Grid menu in the Grid Window, there are four sections 
pertaining to the layout type, display features, nodes, and transitions. Select Show 
Event Nodes to display the nodes or plot points and then go back to the Grid menu 
to select Show Transitions. Now you can see all the nine trajectories simultane-
ously. Note that the diameter of the node corresponds to the duration of the event. 
Also note that within each cell, the position of the node is random—each time you 
open or select a new trajectory the software uses a random number generator to 
determine the x/y coordinates for each event within each cell. For purely display 
purposes, you can rerandomize these positions by selecting Randomize Nodes from 
the Grid menu.

The next thing to do is to select one trajectory from the Filters Window to dis-
play. There are five Filter Variables: Family, Wave, Age, Gender, and, by default, 
Time. Family and Gender are categorical Filter Variables and so are displayed as a 
list of values in a scrollable box (though with so few elements in this example, no 
scrolling is necessary). Even with ordinal filters, I often declare them as categorical 
because it provides greater flexibility in selecting nonadjacent values (just as with 
most computer lists of elements, you can use Ctrl or Shift keys to select specific 
elements or a range of elements, respectively). In this example, Wave and Age are 
ordinal Filter Variables and therefore have sliders that you can manipulate with 
the mouse or a combination of Ctrl, Alt, or Shift keys with the mouse click. For 
example, hold down the Alt key while clicking on the slider button for the Wave 
variable and slide it to the right. Now only Wave 3 trajectories are displayed on the 
Grid Window. Clicking on the slider line to the left of the slider button now moves 
it to the left, clicking to the right moves it to the right.

Now that you know how to select trajectories, select just Family A1 at Wave 1 
(as shown in Fig. 3.4). Select Randomize Nodes from the Grid menu a few times 
until all of the nodes are displayed in a way where you can see each distinctly. By 
default, GridWare displays the first node in the trajectory sequence as an open node 
(no color filled in), though this can be changed in the Grid menu. With this trajec-
tory, there are nine events, each corresponding to a node. Because there is a third 
State Variable not shown (we will get to this later), we know that there are repeating 
events—two or more nodes, sequentially connected by a transition line, in the same 
cell. Briefly, this is a circumstance in which the GridWare measure of Events is not 
equivalent to Visits (a transition from one cell to another). In this one trajectory, for 
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example, we have nine Events but only seven Visits. This Event/Visit distinction is 
important and something we will return to later.

Sometimes, especially with long trajectories with many events, it is preferable to 
know whether an event occurred in the middle or toward the end of the sequence. 
For this reason, it is possible to change the display to a diagonal layout (option on 
Grid menu). With trajectories displayed this way, the sequence of events are plotted 
along a diagonal line from bottom left to top right within whatever cell the event 
occurred. The nodes in the bottom left portion of the cell in which they are plotted 
are those from the early parts of the trajectory sequence, while those in the top right 
portion of the cell in which they are plotted are those from the last of the trajectory 
sequence. This is only a display variation and has no effect on the measures derived. 
To continue with the walk through of GridWare and Example 1, return the display 
to the Random Layout setting as shown in Fig. 3.4.

Data analyzed through GridWare is dynamic, it changes over time. That is why 
the program includes a Time slider by default. While only trajectory A1_1 is dis-
played, click in the right Time box that displays the number 15. That number cor-
responds to the maximum length of any one of the trajectories in the project—these 
are simulated data corresponding to 15 s of event sequences. When you click in that 
box, notice how the slider button switches sides. This is how you can control which 
end of the slider you would like to move. Now that the button is on the right, hold 
down the Alt key while you click and slide it back and forth, left and right (you can 

Fig. 3.4   The single trajectory of family A1 at Wave 1
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also use the arrow keys at this point, if you like). This is how you can explore the 
trajectory as it unfolds over time. This is one of my favorite features and can be used 
in combination with screen capture software to make a movie of the trajectory. If 
you do not want to see the cumulative trajectory, you can also just highlight a time 
window and move that along. To do that, move the slider so that only 0–3 s are 
displayed (you can also do this by typing in those values in the boxes and hitting 
return). Then, if you hold down the Ctrl key while moving the slider to the right, it 
will retain that 3-s window but move it along one time unit at a time. If you hold 
down the Shift key, it will progress through adjacent time windows, 0–3, 4–7, etc. 
Time sliding is not as dramatic with these short trajectories but with trajectories 
corresponding to longer durations (e.g., 10 min parent–child interaction), it can be 
quite insightful.

If you are like me, you have already started playing around with Example 1 and 
selected various combinations of Filter Variables to explore and compare the nine 
trajectories in this project. This exploratory capability is one of the best features of 
GridWare and often results in one of the first insightful moments experienced by 
new users. For this reason, GridWare also includes a coloring option to facilitate vi-
sual comparison of trajectories. To show off this feature we first want to go back to 
displaying all nine of the trajectories at once. There are several ways to do this. The 
manual method would be to click on the “A1” in the Family Filter Variable box and 
then either hold down the Ctrl or Shift key while selecting the rest or simply hitting 
control-a (command-a on Mac) to select all of the elements in the Family box. Then, 
while holding down the Alt key, click and slide the Wave slider button so that all 
three waves are selected. Alternatively, you can use the automatic method by select-
ing the Reset Filters option from the Filters menu on the Grid Window. The reset 
option is quite useful after a bit of exploring as you may not recall which filters to 
change (especially if you have added or removed Filter Variables from the display 
by using the drop down menus in the Filters Window or the Add Filters option on 
the Filters menu in the Grid Window).

Once all the trajectories are selected, now select just the Wave 2 trajectories. In 
the Grid menu, select the “Colour Nodes” option. This brings up a window with 
256 colors. Whatever color you click on will now be the color of the trajectories se-
lected in the Filters Window. Click on one of the reddish colors at the center of that 
color matrix and OK. Now, switch the Filters Window selection to all of the Wave 
3 trajectories and make all of them dark green. So, now we have color-coded all the 
trajectories such that Wave 1 is blue, Wave 2 is red, and Wave 3 is green. Go back 
to the Filters Window and select just Family A1 and also all of the waves. Now, we 
can see how Family A1 behaved differently at each wave. Try the same for families 
B2 and C3. You should see something similar to Fig. 3.5.

Through the control of the display options in GridWare, exploratory data analy-
sis is limited only by the user’s imagination. For example, color can be used as a 
way of analyzing beyond two dimensions (see Chap. 7) or, in combination with 
Time slider, as a means of depicting time epochs. Before moving on to describe the 
measures derived from state space grids, it is important to note two final features. 
First, grid images can be exported as a .png file using the option in the File menu. 
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Image quality is best if you first maximize the Grid Window to full screen and then 
select Square Cells from the Grid menu. Selecting opaque rather than translucent 
nodes via the Grid menu may also make the nodes stand out with more contrast. 
However, this may also make it difficult to distinguish individual nodes.

Finally, there is no need to save your GridWare project every time. Saving will 
create a new, duplicate project with the node position and color saved for each event 
in each Trajectory File. That is, each Trajectory File will have newly added tab-
delimited columns for the x-coordinate, y-coordinate, and RGB color code. With 
these saved, the project will open with exactly the same look as when you saved 
it. I do not often save my projects but when I do it is for presentations or even for 
customized grids such as the summary grid in Fig. 5.4.

Measures

Beyond exploratory data analysis, the other purpose of GridWare is to provide mea-
sures of various aspects of the dynamics of the trajectories. These indices range 
from the very simple to the computationally complex. The Measures Window pro-
vides updated values of most of the available measures as you conduct exploratory 
data analyses through Filter Variable selection. However, the typical user wants to 
use these measures in statistical models in order to be able to make inferences about 
real-world populations (see Chaps.  5 through 7). Thus, GridWare offers a range 
of options for exporting these measures for use in any spreadsheet and statistical 
software package.

Measures are divided into two basic types: Whole-grid Measures which are de-
rived from the information across all the cells, and Cell or Region Measures which 
only apply to individual cells or regions selected by the user. Thus, the values of 
Cell or Region Measures in the Measures Window are blank or missing if no cells 
are selected. The user can also select which measures to display in the Measures 
Window. In the Measures menu in the Grid Window, the user can select which type 
of measure to add: Whole-grid or Cell/Region. As with the Filters menu option, this 
action will insert a measure location in the Measures Window. By default, upon 
opening GridWare, only eight Whole-grid Measures and six Cell or Region Mea-
sures are displayed in the Measures Window. By using the Add Measures option, 
the full complement of 14 Whole-grid and 14 Cell or Region Measures can be dis-
played. There are two versions of GridWare with slight differences in the available 
measures (see Box 3.3).

Box 3.3: What Is the Difference Between Versions 1.1b and 1.15a?  The 
original version of GridWare was 1.1b, the newer version is 1.15a. The newer 
version has everything that the old version had with one notable exception. 
The export measures dialogue box options are different. Most notably, it is 
not possible to export individual cell values. The new additions in version 
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1.15a are measures of entropy and transitional propensities. Mac users should 
also note that the older version does not work with OS 10.5 and later, but the 
newer version 1.15a works fine.

Whole-Grid Measures

Most of the Whole-grid Measures are indices of within-trajectory variability, 
though there are a few that provide basic descriptive information (see Box 3.4). In 
this latter group are the count of the number of trajectories currently displayed in 
the Grid Window, the total duration or trajectory length of the currently displayed 
trajectories, and the count and duration of missing events. The rest of the measures 
use some combination of duration and frequency information within each cell that 
is then averaged or summed across cells. If only one trajectory is displayed, these 
are the raw values for that one trajectory. If more than one trajectory is displayed, 
then the values are the means across all of those trajectories. One notable variation 
to this rule is that Overall Cell Range reflects the full range across the entire set of 
displayed trajectories. For example, if trajectory A visits only cells 1 and 2 but tra-
jectory B visits cells 1, 2, 3, and 4, the Overall Cell Range would be 4 but the Mean 
Cell Range would be 3.

Box 3.4: Whole-Grid Measures 

Selected Trajectories	� The number of individual trajectories currently 
displayed.

Mean Missing Duration	� The total duration of all the missing events within 
the trajectories displayed.

Mean Missing Events	� The total number of missing events within the tra-
jectories displayed.

Mean Duration	� The average duration of all the trajectories cur-
rently displayed.

Mean # of Events	� The average number of events of all the trajecto-
ries currently displayed. An event corresponds to a 
single line in a trajectory file, and to a single node 
in the onscreen display.

Mean # of Visits	� The average number of visits to each of the cells 
across all the trajectories displayed. A cell visit is 
one or more consecutive events occurring within a 
single cell of the currently visible grid, beginning 
upon a trajectory’s entry into the cell, and end-
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ing upon its exit. Thus, the number of transitions 
between cells = visits − 1.

Mean Cell Range	� The average number of cells visited across all the 
trajectories.

Overall Cell Range	� The total # of cells visited by at least one trajectory 
across all trajectories selected. This value is equal 
to Mean Cell Range for a single trajectory.

Dispersion	� The sum of the squared proportional durations 
across all cells corrected for the number of cells 
and inverted so that values range from 0 (no dis-
persion at all –all behavior in one cell) to 1 (maxi-
mum dispersion) created by the formula:

	

		�  Where D is the total duration, di is the duration in 
cell i, and n is the total number of cells.

Duration per Event	� The mean, across trajectories, of the duration of 
each trajectory displayed divided by its number of 
events.

Duration per Visit	� The mean, across trajectories, of the duration of 
each trajectory displayed divided by its number of 
visits.

Duration per Cell	� The mean, across trajectories, of the duration of 
each trajectory displayed divided by its cell range.

Entropy Measures 
(version 1.15a only)	� Two types of entropy measures are calculated 

using probabilities based on duration or cell visits. 
In both cases, if P is this probability, then entropy 
is calculated according to the Shannon and Weaver 
(1949) formula:

	

		�  where i is an index of each cell on the grid and Pi 
is the probability in cell i. For Duration Entropy, 
Pi is the total duration in cell i divided by the total 
duration of the entire trajectory. For Visit Entropy, 
Pi is the number of visits to cell i divided by the 
total number of visits in the entire trajectory.

1 −
(
n

∑
(di

/
D)2

)
− 1

n − 1

∑
(Pi ∗ ln (1 − Pi))
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Cell or Region Measures

Using the mouse to select one or multiple cells enables GridWare to calculate mea-
sures for only those selected cells. A region is simply two or more selected cells 
and though they are most often adjacent cells, they do not need to be. As described 
in Box 3.5, selecting a subset of the state space grid allows for an additional set of 
measures to be calculated beyond those in the Whole-grid Measures section. All 
of these additional measures are ways to quantify the attractor strength of that cell 
or region. First Entry and Last Exit are fairly straightforward and can be used in a 
variety of circumstances, but the Return variables are a bit more subtle.

Box 3.5: Cell, Region, and Transitional Measures  Most of the Whole-grid 
measures can also be obtained for cells or regions (see Box 4.4). The fol-
lowing are only those measures that are uniquely suitable for cell or region 
analyses.

Mean Return Time	� “Return time” is the latency to return to the selected 
cell or region and is a measure of attractor strength. 
Return time is the average duration of the inter-
vals between visits to the selected cell or region. 
Low return times indicate a strong attractor; high 
return times indicate a weak or nonexistent attrac-
tor. A region return is defined as any sequence of 
events outside the region beginning with an exit 
from the region and ending with a reentry. The 
number of region returns is equal to the number 
of region visits minus one. Returns with a dura-
tion greater than Maximum Return Time (see 
“Preferences”) are considered to have a duration 
of Maximum Return Time for the purpose of this 
measure. The event sequence from the final region 
exit in each trajectory until the end of that trajec-
tory is considered a “pseudo-return”: it is included 
in this mean (truncated by Maximum Return Time 
if applicable) if and only if it has a duration greater 
than the mean of the trajectory’s return times as 
calculated from proper returns alone. Otherwise, 
it does not contribute. The Mean Region Return 
Time for a trajectory group is simply the mean, 
across the trajectories, of each trajectory’s return 
time. Trajectories containing fewer than Minimum 
Number of Returns (including the final pseudore-
turn if applicable), however, do not contribute to 
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the Mean Region Return Time. Events within a 
region of duration less than Minimum Event Dura-
tion are not taken as sufficient to terminate a return 
to the region, but can contribute to the return times 
of other regions.

Mean Return Visits	� The total number of discrete visits to any of the 
other cells outside the selected region before 
returning, averaged across trajectories. Return Vis-
its are calculated in the same as Rturn Time but 
with cell Visits instead of Duration as the values.

First Entry	� The mean, across trajectories, of the time until 
the first entry into the cell or region. Trajectories 
that never enter the cell or region are given the 
maximum value, which is the total duration of that 
trajectory.

Last Exit	� The mean, across trajectories, of the time of the 
last transition out of the cell or region. Trajectories 
that never enter the cell or region are given a value 
of missing.

Transitional Propensity 
(version 1.15a)	� Using the shortest duration value found in any of 

the trajectories in the project to create equal-sized 
time bins, Transitional Propensity is a conditional 
probability of making the transition from time bin 
t to time bin t + 1. Thus, the user must identify the 
cell/region of Origin (i.e, antecedent) and the cell/
region of Destination (i.e., consequence), so that 
Transitional Propensity can be calculated by the 
following formula:

	

Transitional Entropy 
(version 1.15a)	� Entropy calculated by the Shannon and Weaver 

(1949) formula:
	

		�  Where TP is the Transitional Propensity value 
described above.

# of transitions from Origin to Destination

(Duration in Origin)/(Transitional Bin Size)

T P ∗ ln

(
1

T P

)
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Return Time and Return Visits are based on the concept of an attractor. Shorter 
intervals between visits to a region indicate that the region may be an attractor, 
“pulling” the trajectory into its basin. As described further in Chap. 5, these mea-
sures are most appropriate when (a) returns are frequent and occur in most if not 
all of the trajectories or (b) attractor regions have already been identified, typically 
in the context of person-centered analyses. Otherwise, there may be problems with 
the distribution of these variables due to low base rates. Preference settings for the 
Return variables (see “Preferences” below) should be determined via reasonable 
rationale of how many returns to a region are needed to justify calculating the return 
measures and, more importantly, how long the trajectory can remain outside of the 
region before a return is considered meaningful. For example, a parent–child dyad 
that returns to an angry state after several hours may not be meaningful, but returns 
of less than 5 minutes might be.

Transitional Measures

The more recent version of GridWare (1.15a) includes a set of Transitional Mea-
sures to quantify state-to-state transitions. Because of the multidimensional and 
duration-based nature of state space grids in GridWare, simple transitional prob-
abilities are not provided (though these are easily calculated from the exported val-
ues using other statistical software). Instead, GridWare provides measures based on 
the concept of transitional propensities derived from Event History Analysis (Mills 
2011; see Chap. 7). Each moment in time is an opportunity for a system to transi-
tion to a different state. Similar to other conditional probabilities, the propensity to 
transition is simply a count of the number of state transitions divided by the number 
of opportunities to make that transition. In GridWare, the number of opportunities is 
derived from the event with the shortest duration in any trajectory in the whole proj-
ect. For example, if the longest trajectory was 100 s and the time bin size equaled 
the shortest event of 0.5 s in trajectory #5, then there would be 200 opportunities 
for transitions to occur. For this reason, Transitional Propensity values are typically 
very small, but the distribution is sufficient for analysis. See Box 3.5 for more de-
tails about these measures.

Missing Values

Missing values are acceptable but these should be used with caution. For any given 
event, if one or both of the state values are missing, then no node is plotted for that 
event. However, the trajectory is linked via dotted line from the previous valid event 
to the next valid event. Furthermore, which missing value symbol to use can have 
an impact on subsequent exporting and analyses (see Chap. 4 and “Preferences” 
below). An alternative method for missing data is to make the missing value a le-
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gitimate State Variable category so that there is a corresponding row and/or column 
on the state space grid. With this approach, the missing is treated like an “unknown” 
state and can be used in measures. In Example 1 (Fig. 3.3), suppose that 4 = missing. 
For both dimensions then, anytime a trajectory was in category 4, it meant that there 
was no real measurable information. Transitions in and out of these missing states 
could be visualized and calculated. In contrast to the first method described above, 
it would also allow for one dimension to be in a nonmissing state while the other 
was missing. Finally, it is still possible with this approach to restrict the measures 
to only nonmissing states by selecting the nine cells that make up the 3 × 3 region 
that excludes states with a value of 4 on either Variable 1 or Variable 2. As shown in 
Fig. 3.6, this would mean that the Whole-grid Variables would include the missing 
values but the Cell or Region Variables would not. In this example, comparing the 
whole 4 × 4 grid to the 3 × 3 region, Dispersion drops from 8 to 6 and Events drop 
from 7 to 5.

Preferences

The Preference Window gives the user the option to change minimum and maxi-
mum values for several calculations of measures. These include the Minimum Num-
ber of Returns, Maximum Return Time, Maximum Return Visits, Minimum Event 
Duration, Minimum Cell Duration, and the missing value symbol (see Fig. 3.7 for 

Fig. 3.6   Example trajectory 
with a 3  × 3 region of the 
state space selected

3  GridWare

                  



51

default values). These values should be considered carefully by the user as they can 
have significant effects on the values of many measures. The settings for the Return 
variables are discussed above. Events of duration less than the Minimum Event 
Duration do not contribute to: Mean Duration, Mean # of Events, Mean # of Visits, 
Mean Cell Range, Overall Cell Range, Duration per Event, Duration per Visit, and 
Duration per Cell. Cells with cumulative durations less than the Minimum Cell 
Duration do not contribute to: Mean Cell Range, Overall Cell Range, and Duration 
per Cell. The missing value symbol can be any character or set of characters. Again, 
the user should choose these wisely. A string character such as the default “—” or 
“*” can cause other software to read in the date exported from GridWare as string, 
rather than numeric, variables. Also important, the missing value symbol must be 
consistently the same across all Trajectory Files and in the Trajectories List. I will 
return to issues of preferences in relation to exporting variables in Chap.  5.

Exporting Measures

Measures are exported as a tab-delimited text file via the File menu on the Grid 
Window. The exported file is a matrix of rows (Trajectories) and columns (Vari-
ables). The first columns of this file are all of the Filter Variables found in the Tra-
jectories List in the GridWare File. Labels for Whole-grid Measures are prefixed 
by “grid” (e.g., gridVisits, gridDispersion), Region Measures are prefixed by “reg” 
(e.g., regVisits, regDispersion) in version 1.1b and by “cell” (e.g., cellVisits) in 
version 1.15a, individual cell measures are prefixed by the axis and cell number in 
coordinate fashion (e.g., x1y1Visits, x1y2Visits), and the Transitional Measures are 
prefixed by the Origin and Destination cells. Most often, these variable labels need 
to be edited for effective use with statistical software.

The Measures Export Options dialogue box allows the user to select which mea-
sures and what groupings to export. Because of differences between the two ver-

Exporting Measures

Fig. 3.7   GridWare prefer-
ences window                  
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sions, both are displayed in Fig. 3.8. These dialogue boxes are separated into three 
sections: trajectory selection, measure types, and specific measures. Most often, 
users want to export one row (i.e., case) of data for each trajectory, starting with the 
Filter Variables found in the Trajectories List section of the GridWare File. This can 
be achieved by selecting only Individual Trajectories (1.1b) or Individual Visible 
Trajectories (1.15a) and deselecting all of the other check boxes in that section. Se-
lecting any other options will restrict the rows of data that are exported to only those 
that are selected (e.g., Selected Trajectories Only) or one row of data that provides 
the mean for the group or trajectories of the entire project.

The next section allows you to choose which kinds of variables to export. You 
can export all of these at once, but that is not recommended because it can lead to 
unwieldy files and greater challenge in renaming the variables for analysis. Version 
1.1b allows you to export measures for each and every cell in the grid via the Indi-
vidual Cell Measures option. With the 4 × 4 grid in Example 1, that option would 
provide 16 variables (one per cell) for each variable selected in the bottom section 
of the window (e.g., 16 Visit variables, 16 Duration variables, etc.). If no region is 

Fig. 3.8   Measures export windows from versions 1.1b ( left) and 1.15a ( right)
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selected on the grid prior to export, then the region measure variables will have a 
column but all the values will be null or missing. In version 1.15a, there is the op-
tion to select the Transitional Measures.

Finally, the bottom section allows you choose which measures to export. With 
Example 1, if you selected only Visits, for example, but had kept all the boxes 
checked for Whole-grid, Region, and Individual Cell Measures, then you would 
be saving a file with one gridVisits, one regVisits, and 16 individual cell visits 
variables (x1y1Visits, x1y2Visits, and so on). I find it most useful to export one 
variable type at a time and only the variables you need, rather than taking a kitchen 
sink approach. It is relatively simple to go back and export a new set of variables 
and save as a new text file.

There is also a check box for Apply Time Filter, which is left unchecked by de-
fault. This can be helpful if you want to export measures for only a portion of the 
time of the trajectories. I have used this, for example, to export variables pertaining 
to the first half and then the second half of a parent-child interaction separately 
(Hollenstein and Lewis 2006). To use this feature, make sure the Time Slider on 
the Filters Window is set to the desired range before starting the exporting process.

Run Log Window

The Run Log window displays the Java messages related to the processes and 
functions performed in the running of GridWare. The contents are the same as the 
gw_run_log.txt that is automatically created in the same directory as the GridWare 
program each time GridWare is opened. When GridWare opens and runs normally, 
it is not necessary to consult this window. However, if there is an error or problem 
loading in the Trajectory Files, then the user should open the gw_run_log.txt file as 
an aid to troubleshooting the problem. The language in the window is not entirely 
user friendly, but most of the time even a basic user can discern the nature of the 
problem. The most common errors reported in this window/file are: (1) path not 
found, indicating that the file and folder correspondence is incorrect or a file is 
missing, (2) variables in the GridWare File are not declared or incorrect, (3) the 
“parsing” (reading in of trajectory files) stops at the file with the problem—open 
that trajectory file in your text editor to diagnose further, and (4) out of memory er-
ror—the project is too large for your RAM, so it needs to be broken up into smaller 
groups of trajectories. Even as an expert user, I still get errors from time to time 
when I forget some small detail or discover a problem with one of the files I am us-
ing. The gw_run_log.txt file is very helpful for being able to diagnose and fix these 
problems efficiently. You will no doubt experience moments of exhilaration when 
after many attempts the run log reads as normal and the program opens your project.

Note that for Windows users, sometimes Java does not close when there is an 
error that fails to open the GridWare project. To solve this, open your task manager 
and see if Java.exe is in the list of processes. If so, delete it (it is ok). Also, note that 
on some computers Java will take up 99 % of the CPU processing. If this occurs, 
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just reopen your project from within GridWare and Java will return to normal CPU 
usage.

Conclusion

That is GridWare in a nutshell. It provides the basic capabilities of state space grid 
analysis in a relatively user-friendly fashion. Advanced users or those who are more 
adept with command line applications (e.g., Splus) or programming (e.g., Matlab) 
will certainly find other ways to conduct state space grid analyses (see Chap.  7). For 
most users, GridWare is more than sufficient to meet their needs. Before getting into 
state space grid analyses more directly in the next section, the next chapter provides 
guidelines and recommendations for starting your own state space grid project.

3  GridWare
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The goal of this chapter is for you to be able to create your own state space grid 
project with GridWare. First, I will start with some initial considerations about the 
nature of state space as it relates to your project and some guidelines for appropri-
ate data formats. Next, I will dive into the nitty-gritty details of text files, GridWare 
Files, Trajectory Lists, and Trajectory Files. At the end of the chapter, I will discuss 
a couple of variations that may be of interest to some readers. As with Chap. 3, the 
reader is encouraged to consult the GridWare User Manual that comes with the pro-
gram download from www.statespacegrids.org for more details.

What Is the System?

The first, broadest question one must ask upon embarking upon state space grid 
analysis is “what is the system I am examining?” I am as guilty as my DS-oriented 
counterparts in not always declaring the system of interest explicitly in published 
reports, but that still does not mean it was not important at the outset. Even if you 
use state space grids without adopting a DS orientation, it is still essential to think 
carefully about the dimensions and states and the meaning of changes in those states 
over time. Here are some questions and suggestions to consider as you develop your 
own project.

First, before getting into the details of categories and states, identify what the 
actual system is that you are examining. You can break this down in steps by first 
considering whether you are looking at individual or dyadic or triadic or group 
behavior. Then once the scale of the system is identified (e.g., individual children, 
spouses, families, classrooms), the next step is to think in terms of factors that 
determine the behavior of interest at that scale. This is where things can get tricky 
for some novices. Recall that dynamic systems have been defined as a system of 
elements that change over time (Thelen and Smith 1994). Then what are your ele-
ments? By habit we tend to think of elements as the things on the axes of a graph. 
With state space grids, however, the elements are the cells—the intersection of the 
categories on the axes. With parent–child interactions, for example, the system is 
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the dyad. It is not an additive combination of parent plus child. The elements are 
the joint states. Surely, each individual is nested in the dyad, but that means they are 
lower order dimensions of the system of interest, the dyad. Using Fig. 1.1, we can 
say that the parent–child dyad is the scale of interest at the meso level. At the mi-
cro level are the individuals themselves and at the macro level is the family within 
which the parent–child dyad is nested.

Once you have identified the scale of your system and the elements of inter-
est, then you can isolate the dimensions from which those elements derive. As a 
static (rather than dynamic) example, each individual’s personality is considered 
by many personality theorists to be a combination of five dimensions: openness, 
conscientiousness, extraversion, agreeableness, and neuroticism. That is, within a 
five-dimensional space there is one specific point that identifies your personality, 
therefore any description of you (i.e., your personality system) that does not include 
all the five dimensions is necessarily incomplete. In my own work on socioemo-
tional development, I have examined parent–child systems for which the elements 
are all of the visible and audible behaviors they exchange while interacting. For 
individual adolescents, I examine the physiological, psychological, and behavioral 
dimensions that combine to form their emotional response system. Other systems 
are more directly related to measurement such as eye-gaze which corresponds to 
spatial dimensions. The point here is that the conceptual dimensions should be con-
sidered carefully before they are operationalized as measured dimensions.

Second, moving from conceptual to measured dimensions, each dimension of 
state space should have two or more categories or possible values that are mutually 
exclusive (i.e., cannot be at two positions along a single dimension at the same time) 
and exhaustive (i.e., there are no other possible values not represented on the di-
mension). This is not negotiable. As described in the next section, failure to adhere 
to these two primary criteria renders state space analyses inappropriate.

Third, what is the time scale of change? State space grid analysis can be con-
ducted at any time scale. It is important that you can see variability in system behav-
ior at a time scale within which meaningful changes occur. For example, analyses 
of mood changes would not be appropriate at the scale of milliseconds or of years. 
Instead, moods fluctuate within the range of seconds to weeks and analyses should 
occur at those time scales depending on the data and research questions.

Fourth, I strongly suggest drawing many grids on paper or a white board as you 
begin to identify the nature of your state space and your expectations of what trajec-
tories would look like. If it does not make sense on paper, it would not make sense 
with actual data either. This is a great exercise—I still do it every time I have a new 
grid idea or project. You can even start with an open two-dimensional space, draw 
some trajectories, and then decide from that what the appropriate categorization of 
each dimension might be.

Fifth, because state space grids are used for dynamic analyses, the behavior 
along any of the dimensions must be variable for at least some of the trajectories. 
It makes no sense to plot a constant value. How much variability? That depends 
on how you are going to interpret the grid patterns. For example, a more content 
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driven, attractor analysis may be useful with a low-variability data set, but a more 
structural, whole-grid analysis would not.

Considering all five of these suggestions seriously, you should be well prepared 
for state space grid analysis. Of course, there are further issues to consider that have 
to do with measurement, as I describe next, but the conceptual issues should be 
clear in your head beforehand.

Are My Data Appropriate for State Space Grids?

The time to start thinking about using state space grids is in the design phase of a 
study. There are considerations of measurement that can often be frustrating at the 
end if the data are not appropriate for state space grid analyses (Hollenstein 2007). 
The details contained in Chaps. 2 and 3 should have provided a sufficient sense 
of the kinds of data that have been used, but this was by no means an exhaustive 
report of all the possibilities. Therefore, what follows is a step-by-step method of 
determining the appropriateness of data for state space grid analyses following the 
flow chart in Fig. 4.1. Descriptions in these steps presume your familiarity with the 
terminology found in Box 3.2.

The ultimate goal in terms of data formatting is to obtain two linked sequences 
such as you would find in two columns in a spreadsheet. Each row in that spread-
sheet corresponds to an “event” and the state in column 2 corresponds in time or 
sequence to the state in column 3 of that row (column 1 will be for onset values, see 
below). It is really that simple for the most basic form. I will go into greater detail 
about the nature of the text files used in GridWare later in this chapter. For now, it 

Fig. 4.1   Flowchart for determining whether data are appropriate for state space grid analysis
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is only necessary that you think of column 2 as the sequence of states for the x-axis 
state variable and column 3 as the sequence of states for the y-axis state variable.

The first piece of information you need to determine is whether or not you have 
two or more state variables (spreadsheet columns). If not, all is not lost. There are 
ways that a single stream or sequence of values (i.e., time series) can be analyzed 
via a state space grid. Of course, what needs to happen is that a second axis (column 
3 on the spreadsheet) needs to be created. One way would be to go back and recode 
your data according to some other state variable. However, there is another method 
that is actually often used in dynamic analyses of systems. You can create a lagged 
phase plot on reconstructed phase space (Heath 2000). With this method, both the 
x-axis and y-axis (or column 2 and column 3) are the same state variable. The dif-
ference is that the second one on the y-axis is lagged by time and/or event such that 
if the x-dimension is the state variable at time t, the y-dimension is the state variable 
at time t + 1. Thus, each event (row in the spreadsheet) is plotted twice, once as the 
preceding event at time t (i.e., the antecedent) and once as the subsequent event at 
time t + 1 (i.e., the consequence). Figure 4.2 illustrates the transformation from one 
state variable to the other.

Saving more elaborate detail for the section on lagged data analysis in Chap. 5, 
I will briefly note some features of lagged state space grids. First, note in Fig. 4.2 
that the sequence becomes shorter by one event (row) because of the pairing of two 
adjacent events (see the section “Trajectory Files” for the reason that the final onset 
has no event values). Second, the lagged grid cells are now not distinct joint events 
but actually represent lag 1 transitions. For example, the two nodes plotted in the 
High/Medium cell indicate that there were two transitions from High to Medium 
in this trajectory. This opens up a number of possibilities, as discussed in Chap. 5. 
Third, similar to any lagged sequential analysis (e.g., Bakeman and Gottman 1997), 
the lag can be any amount of time or number of events. However, while lag 2, lag 
3, and beyond are sometimes used, they are not as common as a single-step lag. 
Finally, once the data are in this format, all measures derived from state space grids 
are possible, albeit with slightly different interpretations due to the lag transitions.

Fig. 4.2   Data and state space grid for a lagged phase plot

Original Lagged 

Onset Var1 Onset Var1(t) Var2(t+1) 

0 Medium 0 Medium High

1 High 1 High Medium 

2 Medium 2 Medium High

3 High 3 High Medium 

4 Medium 4 Medium Low

5 Low 5

6
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Most of the time, you will have two or more state variables for a state space grid 
project. These variables must be synchronized. The state on the x-dimension must 
correspond to the state on the y-dimension through some reasonable assumption of 
concurrence or sequential relation (i.e., lagged variables). Ideally, this synchrony is 
due to measures being obtained at the same time or corresponding to the same time-
line. Both Example 1 and Example 2 that come with the GridWare program are syn-
chronized in time in this way. Events can also be “synchronized” in that they occur 
at about the same time or in sequence. The lagged phase plots are a good example. 
Other examples include bin coding in which events are recorded every 5 or 10 s or 
events that are only recorded when they happen (e.g., conflict bouts).

The biggest issue with data for state space grids can be the continuity of the state 
variables. As mentioned earlier, each state variable must be a mutually exclusive 
and exhaustive range of states. Mutual exclusivity means that when the system is in 
any one state, it cannot logically be in any of the states that are represented by other 
categories of the state variable. For example, if your state variable has four catego-
ries, A, B, C, and D, and it is possible for B and D to occur simultaneously, then it 
would be impossible to trace the sequence of states on the grid. The system cannot 
be in two states at once. The exhaustive criterion pertains to the comprehensiveness 
of the state variable. With the aforementioned four state variables, if there is a pos-
sibility that E or F could have occurred but these were not measured, then the state 
variable is not exhaustive.

There are some ways to work around these issues of exhaustion. One is to cre-
ate a category that represents “other” states. This will allow you to account for that 
time in the trajectory in some way. Alternatively, you can designate those states as 
missing. In any case, the axis or dimension of the state space needs to include all 
of the possible states that could occur, even if none of the trajectories ever achieve 
that state. If not, it will not be possible to use the data in state space grid analysis.

The final determination of data for state space grids is to acknowledge whether 
states are recorded continuously in time (duration based) or is a sequence of events 
without information about how long each event persisted (event based). The latter 
is a special case of the former and it is important for the researcher to understand 
the limits of event-based data in terms of measures (Chap. 5). In general, a duration-
based format is preferable because of the greater amount of information—the exact 
state of the system is known for each moment in time.

Box 4.1: How Many Cells?  Sometimes a researcher has a choice of how 
many categories are in each dimension and therefore how many cells are on 
the grid. This leads to questions of what is an “appropriate” number of cat-
egories or, more cogently, what is the effect of using a smaller versus larger 
number of categories. First of all, there is no theoretical limit to the number 
of cells on a grid, but it should make sense in terms of the range of states 
in the actual data. As is discussed in Chap. 7, for example, we can use the 
number of categories flexibly to assess more continuous changes in system 
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behavior. So the simple, yet perhaps infuriatingly ambiguous, answer is “it 
depends.” Sometimes the state space should remain as large as it is, because 
there is some reason to compare to previous research or strong theoretical rea-
sons to establish the space that way. Other times, a more bottom-up empirical 
approach is more appropriate for determining how many cells are in the grid.

More important, I think, is to understand the impact of such decisions. In 
my own work, I have used the Specific Affect (SPAFF) code system (Gott-
man et al. 1996) with which I have made grids for parent–child interactions. 
Some studies have used the complete set of specific affects (e.g., Hollenstein 
and Lewis 2006) while others have reduced these down to four conceptually 
equivalent categories (e.g., Hollenstein et al. 2004). In order to understand the 
impact of these choices, I have run tests comparing the raw ten-code system 
(contempt, anger, whine/complain, fear, sadness, neutral, interest, humor, joy, 
and affection) on 10 × 10 grids with two collapsed solutions of six categories 
(contempt/anger, whine/complain, fear/sadness, neutral, interest, and posi-
tive) or four categories (negative engagement, negative disengagement, neu-
tral, and positive). For whole-grid measures, the mean values are different but 
they are all correlated above .9. Through my examinations of this issue, I have 
come to see that the biggest differences would arise by collapsing categories 
which are often the antecedent and consequence of one-step transitions. In the 
example above, people tend to transition through the neutral category rather 
than between states within a collapsed category. Thus, very few direct transi-
tions between contempt and anger means that collapsing those two affective 
states has little impact on the calculations. Collapsing neutral and interest into 
one category would have a tremendous impact because of the high number of 
transitions between those two states.

In general, I advocate retaining cell categories as close to the original mea-
sure as possible, especially for initial analyses. Doing so would have little 
impact on attractor and content-based analyses because of the flexibility in 
choosing the cells that make up a region. The main reasons for collapsing 
cell categories are to minimize the complexity of presentation or because of 
a lack of theoretical distinction between discrete categories (e.g., anger and 
contempt).

Starting a New Project

To start a new GridWare project, you need to create a GridWare File to create the 
state space and at least one Trajectory File of the sequence to be plotted on that state 
space. You can create these files from scratch using your text editor (see Box 4.2). 
For the GridWare File, I suggest opening one of the example GridWare Files that 
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come with the download of the program and edit it to fit your project (see below). 
The Trajectory Files may be easier to create in Excel or another program as well. 
As wtih any computer program, GridWare is relentlessly literal. Variable names and 
all other values must be exactly the same throughout. Make sure to be more vigilant 
than you think you should be and you should be fine.

Box 4.2: Editing Text  If you are not used to editing data files as a raw text, 
you should know it is not similar to word processing. In fact, the first thing 
you should know is: DO NOT USE WORD OR OTHER WORD PROCESS-
ING PROGRAMS to edit files related to GridWare. There are many format-
ting and other processes going on in the background that can render your 
“text” files useless for state space grid analyses. Instead, use only the text 
editors that come with your computer (e.g., Notepad or Wordpad on PCs and 
BBedit or Textedit on Macs) or one of the many text editors available from 
the internet. I have used TextPad (www.textpad.com) for 15 years and I can 
strongly recommend it. The advantage of a good text editor is being able 
to perform functions such as search-and-replace on multiple files simultane-
ously, selecting any subset of rows and columns, combining states, and many 
other features that make your efforts with text data much easier. I also find 
that manipulating data files with Excel macros is a powerful tool when first 
setting up a GridWare project.

Under the hood, as it were, there are several different types of encoding 
formats. By far, the most common is ASCII, but there is also Unicode and 
ANSI and others. By default, most of the time you will just be working with 
ASCII text and your editor will save files as ASCII. However, there are some 
programs and circumstances in which this may be altered. The important 
point is to double check that your text files are saved in an appropriate format.

All files in GridWare are tab-delimited text files. These are files that use a 
tab to delineate separations between columns of data. Thus, tab-delimited text 
is the most fluid way to move back and forth between software programs such 
as Excel, SPSS, and others. One advantage of tabs is that text within between 
tabs can include spaces, which can aid in using clear naming conventions for 
states, etc. (e.g., “Father Emotion Regulation Attempts” versus “FERA”). For 
the novice user, there are some things that may seem strange. The most obvi-
ous issue is that tabs do not form nice even columns when viewed in a text 
editor. This is because the number of characters between tabs can vary quite 
a bit. You can adjust for this in several ways. One is you can edit your files in 
Excel and then save them as tab-delimited text files again when you are done. 
This is cumbersome but functional. Alternatively, I suggest you find how to 
display the formatting symbols in your text editor (often this is indicated by 
the paragraph symbol: ¶). This will be really helpful for troubleshooting prob-
lems as well. Often the reason why a project would not open is because there 
is one space in a spot where a tab should be.
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All data for a project must be saved in the same directory, although this does 
not have to be the same folder as the GridWare program. The folder that contains 
the data (Trajectory Files) must be in the same directory as the GridWare File and 
named exactly by the combination of the GridWare File filename followed by “_
trjs”. For example, if the name of your GridWare File is “Cohort 1.gwf”, then the 
data to which “Cohort 1.gwf” refers must be in a folder named “Cohort 1_trjs”. 
Below I will describe the necessary features of Trajectory Files and the GridWare 
File in turn.

Trajectory Files

The structure of each Trajectory File must conform to the same format according to 
the following rules: (1) The first row contains the labels for each column; (2) There 
must be only one column for Onset (column 1), and at least 2 other columns of state 
variables; (3) Each row is a new event. For event-based data where each new row 
is not an onset time but a new event, Onset can be simply an ordered sequence of 
integers; (4) The final row must have only an Onset value, but no values or spaces 
for any other variable. That is, the last digit of the last onset time (end time) must be 
the end of the file. This value represents the Offset of the final event whose states 
are identified in the previous row; (5) Separation between columns must be tab 
delimited. Blank spaces are considered as the part of a single text label or value; (6) 
Onset times can be in one of several formats: decimal (…0000.000…), real time 
(hh:mm:ss), or a combination (mm:ss.00). All onsets will be converted to seconds, 
however, both within the onscreen display and in any file output, including when 
resaving trajectory files; (7) Missing events must be represented with a symbol that 
is consistent with the user-defined symbol set in the Preferences menu option (see 
Chap. 5 for recommendations for missing value symbols). For example, Fig. 4.3 
shows the short trajectory file (A1_1.trj) with three state variables that comes with 

Fig. 4.3   The trajectory file 
A1_1.trj from Example 1 Onset Variable 1 Variable 2 Variable 3

0.00 1 3 2 

1.65 1 3 3 

2.30 2 3 3 

4.10 1 3 3 

6.48 2 3 3 

8.60 2 4 3 

10.25 2 4 1 

12.82 2 1 1 

13.17 4 1 1 

15.00

4  Starting Your Own Project in GridWare

                  



63

the GridWare download in Example 1. In this file, the trajectory starts in Variable 
1 = 1, Variable 2 = 3, and Variable 3 = 2. The next event is 1.65 s later when Variable 
3 switches to 3, but the other two variables remain the same as before, so the display 
does not change. At 2.3 s, Variable 1 now shifts from category 1 to category 2. The 
trajectory ends at 15 s. Note, how this final offset does not have any values in the 
columns to the right. This is necessary for every Trajectory File and often a source 
of error for novice users who forget to arrange the data in that way.

Creating Trajectory Files can be tedious without some way to automate the 
process. Often, this will be easiest with some light programming via a scripting 
language or Excel macros using Visual Basic. I have begun to facilitate that by 
providing tools on the www.statespacegrids.org website. The GridWare File Con-
verter is another Java application that is in the beta-testing phase. With it, you can 
convert Noldus Observer Files (ODF files up to version 6.0) into a trajectory file 
format. Over the next few years there will be more options for file conversion. 
Once you have your project into trajectory files, the GridWare File Converter also 
allows you to modify state variables. This comes in handy for lagged analyses 
and combinations for three-dimensional state space grids. State variables in all 
of your trajectory files can be simultaneously concatenated, summed, subtracted, 
multiplied, deleted, renamed, lagged, or concatenated. This is a handy tool for 
even the novice user.

GridWare File

Figure 4.4 shows the GridWare File for Example 1. GridWare Files are configured 
in a similar way as an html file in that the start of a section is marked by a tag in 
arrow brackets (e.g., < GridWare > ) and the completion of that section is marked by 
the same thing with an added slash (e.g., < /GridWare > ). Do not change these as 
they are required for Java to run the program. There are two main sections, the con-
figuration section that defines the variables and preferences ( < config > to < /con-
fig > ) and the trajectories list section that defines which trajectories are included in 
the project ( < trajectories > to < /trajectories > ). Within these two main sections are 
four subsections that provide essential information specific to the project.

The first subsection is the declaration of the filter (aka trajectory) variables. 
These are the unique between-trajectory variables that identify each trajectory. 
You need at least one but can have as many as you want. The primary variable is 
usually some sort of identifying variable such as Subject ID #. In this example, 
it is Family. Across the versions of GridWare, there are several ways to declare 
these variables in the first column: trajectory, identifier, or attribute. All three are 
equally acceptable. The next column declares the type of variable: ordinal (or 
integer) or categorical. For ordinal filter variables it is necessary to declare the 
minimum and maximum so that the sliders that are created in GridWare have ac-
curate anchor points (e.g., variables wave and age in Fig. 4.4). Alternatively, filter 
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variables can be categorical. This just means that they will show up as a list in the 
filters window. Declaring categorical filter variables only requires the name of the 
variable to be declared.

The next subsection declares the state variables that are found in the trajectory 
files, which are always declared as state variables in the first column. The declara-
tion of ordinal versus categorical is slightly different than with filter variables. This 
is because we are declaring the axes of the state space now, and the categories have 
to be unambiguous. For categorical state variables, the name must be declared fol-
lowed by each of the possible values in the order in which you want them to appear 
on the grid dimensions (note that if you want to rearrange the grid categories this 
is one way you can do it quickly and simply). For ordinal state variables, you must 
declare the minimum and maximum followed by each discrete value. Note that 
these can also be declared as integer variables. There is really no functional differ-
ence between categorical or ordinal state variables. The difference is really about 
circumstances when your state variables in the Trajectory Files are numeric but you 
may want to re-label the numbers with text labels. This gives you the flexibility to 
rename your integer values in the GridWare File without having to change them in 
every Trajectory File.

Fig. 4.4   The GridWare file from Example 1

<GridWare>
<Config> 
identifier categorical family A1 B2 C3  
identifier integer wave 1 3  
attribute integer age 9 13  
attribute categorical gender male female  
state integer Variable 1 1 4 1 2 3 4 
state integer Variable 2 1 4 1 2 3 4 
state ordinal Variable 3 1 4 1 2 3 4 
MinReturns 2 
MaxReturnTime 10 
MaxReturnVisits 6 
MinEventDuration 0 
MinCellDuration 0 
MissingValueSymbol --
</Config> 
<Trajectories>
Family Wave Age GenderFilename
A1 1 11 male A1_1.trj 
A1 2 12 male A1_2.trj 
A1 3 13 male A1_3.trj 
B2 1 9 female B2_1.trj 
B2 2 10 female B2_2.trj
B2 3 11 female B2_3.trj 
C3 1 10 male C3_1.trj 
C3 2 11 male C3_2.trj 
C3 3 12 male C3_3.trj 
</Trajectories>
</GridWare>

Identifiers/Attributes = 

Filter or Trajectory Variables

State Variables

Trajectories List

   

Preferences
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The next subsection is the Preferences section. You actually do not need to in-
clude this section because GridWare will revert to the default values (the same val-
ues in Fig. 4.4). If you want to control these, then this is the best time to do so, as 
you are setting up your project. The implications of preferences are discussed with 
the measures in Chap. 5.

The final subsection is the trajectories list. This section is a matrix of variables 
and cases similar to a statistical spreadsheet. Every variable column in the trajec-
tories list—other than the Filename column—must be declared in the trajectory 
variables declaration at the top of the GridWare File (Fig. 4.4). No extra variables 
may be declared in either section. These filter variables can have missing values. 
However, these should be infrequent as it seems that having too many missing val-
ues for filter variables causes the program to react unexpectedly.

Opening a GridWare Project

To open a project, first open the program (double click GridWare 1.1b.exe or Grid-
Ware 1.15a.jar). Then browse to select the GridWare File (e.g., Example 1.gwf) for 
the project you want to open. When you first open a project, nothing is displayed 
on the grid. To display trajectories select the filters, the display nodes, and display 
transitions options.

Saving a Project

You can close down GridWare anytime you are finished with a project and do not 
need to save it. The GridWare File and Trajectory Files will remain just as you cre-
ated them. If, however, you want to save new state variable categories (because you 
altered them on the x-axis), the color of the nodes (because you recolored them), 
or the position of the nodes in the cells (because you rerandomized them), then 
select save. GridWare will save over the existing project unless you rename it to 
something else. I strongly recommend you save it as another project if you have 
made any of these changes. You never know when you might need to go back to 
the original.

Conclusions

With the steps in this chapter you will be able to create your own GridWare project. 
As suggested earlier, the best approach is to use preexisting GridWare projects as 
a template to edit rather than starting completely from scratch. A good text editor, 
attention to detail, and appropriate data, you should be fine. That being said, even I, 
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the de facto expert, have to go through several iterations of trial-and-error trouble-
shooting when starting new projects. The program will discover anomalies buried 
deep in one of the trajectories. Use the gridware_run_log.txt to decipher the error 
messages and fix any problems that arise (see the section “Run Log Window” in 
Chap. 3). Once the project is open, have fun exploring the data!
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Once you have successfully created your project in GridWare, there are now a range 
of analyses that you can execute. The analyses described in this chapter all pertain 
to analyses on the indices obtained within each grid, one for each case (row) in the 
trajectories list. In contrast, the next chapter, Chap. 6, will cover the analyses in 
which grids are compared with each other, most often to answer within-subjects 
developmental questions. With the basic understanding of these two chapters in this 
section, you will be well prepared to consider the more advanced analyses that can 
be conducted with state space grids described in Chap. 7.

Analyzing Exported Data

As described in Chap. 3, you can export any number of variables from GridWare as 
a tab-delimited text file. The cases (rows) will be the individual trajectories found in 
the rows of the trajectories list. The columns are the variables that you have selected 
for output, starting with the filter variables. These files are essentially text spread-
sheets that can be mostly imported into any database or statistics software program. 
Because of their widespread use and my experience, I will focus on the combined 
use of a text editor, Excel, and SPSS. In fact, in the preparation and analysis of proj-
ects in GridWare, I almost always have those three programs open simultaneously.

For the first set of analyses described below, it will be best to work together on 
an example. Open up the Example 1.gwf project that comes with the GridWare 
download. Select the four-cell region formed by the combination of category 1 and 
2 on Variable 1 and category 1 and 2 on Variable 2 so that it looks similar to the 
state space grid in Fig. 5.1. Next, export both whole-grid and region measures for 
each trajectory by selecting the export options as shown in Fig. 5.1. Once complete, 
open the exported file from wherever you saved it in your text editor. Now open 
the Example 1.gwf file in your text editor as well. Comparing the two, the first five 
columns of the exported data file should be exactly the same as the columns in the 
“Trajectories List” section of the GridWare File. All subsequent columns to the right 
are values calculated and exported by GridWare. Scroll to the right and you will see 
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numbers or the missing value symbols (−) for every case-variable (row–column) 
combination. You will also notice that the variable names continue on well beyond 
the data—this is simply due to the differing number of characters between the tabs. 
To make this file easier to read, import it into Excel.

By default, Excel will have the file type set to Excel files. You must change this 
to “All Files” or “Text Files” in order to see your exported data file. Once selected, 
Excel automatically brings you through the Text Import Wizard. Make sure that you 
select the following: Delimited button, Delimiters = Tab only, and General Format. 
Earlier versions may have the option for headers (variable names in the first row) 
and if so make sure that is selected as well. Now the exported data is in Excel for 
easy viewing. The first new variables to the right of the filter variables are num-
Trajs and gridCells (columns F and G), which are exported by default every time. 
With the export of all individual trajectories (rather than exporting trajectories as 
a group—the check box we deselected in the Export Options window), these vari-
ables are not very informative because they are constant. However, if you are doing 
a number of exports from the same project, the number of gridCells may be useful 
information. The next three columns are also only useful in a limited number of 
situations. The variable gridDuration gives the difference between the first onset 
and final offset—the total duration—for each trajectory, which in this example is 
the same for every trajectory. There are no missing data in this project, so the values 
of missingDuration and missingEvents are all zero. These variables can be very 

Fig. 5.1   GridWare window with a four-cell region selected and measures export dialogue box for 
Example 1 data export
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helpful if there are missing values, especially if the amount of missing is not yet 
known to you.

I strongly recommend saving files in each format (text, Excel, SpSS, etc.) as you 
prepare your analyses. It will save you time later if you have to go back and redo 
any step of the process. Save the Excel file now.

To import these data into SPSS, you will follow a similar but longer import pro-
cedure. You could, of course, just import the Excel file but for illustration purposes 
(and because you may want to skip the Excel step) we will import the text file di-
rectly. Before importing files in SPSS, you must make sure that neither the text nor 
Excel files are open in other programs. For SPSS, select the following in the Text 
Import Wizard: No predefined format, delimited, yes variable names are included 
(often need to change this one from default), first case on line 2, each line repre-
sents a case, import all cases, only tab—not space—appears as a delimiter between 
variables (often need to change this one from default), no text qualifier, click ok if it 
gives the error message that invalid variable names have been found (they are fine 
but we will cover this later), just click next for the variable specifications, and then 
finish. After checking the data view to make sure it all worked as expected, switch 
to the variable view. Here you will be able to detect any problems with your variable 
types. Specifically, those variables that are the result of division (DurationPerCell, 
DurationPerEvent, and DurationPerVisit) as well as region variables (especially 
ReturnTime an ReturnVisits) are most likely to have missing values. The division 
problem arises whenever there is a division by zero, resulting in a missing value. 
The other region measures are also affected by the lack of any visits to the selected 
region. Dispersion in a region, as you can see in the data file, is 0 if only one cell 
within the region is visited and missing if never visits. The return variables are fur-
ther constrained by settings in the Preferences, as described in Chap. 3.

The net result is that you must be very careful and conscious of the issues of 
missing values and variable types in your exported data. First, one of the most 
important things is to understand the difference between zero and missing. When 
possible, this distinction should be retained and GridWare exports have been de-
signed to facilitate that distinction whenever possible. Still, it may be better in some 
instances, for example, to recode all missing values for DurationPerVisit to zero 
as long as there was a valid value of zero Visits. First, Missing values should be 
exclusively for cases where there is no information. Second, carefully inspect your 
case counts ( n) in any analyses as a double check of the variables you are analyzing. 
Third, because the default missing value symbol is text, SPSS will automatically 
make that variable a string variable. This is a pain but there are several ways around 
it. I have found that the simplest way is to recode the missing value symbol earlier 
in the process. You could change the missing value symbol to a “.” or “99999” in 
GridWare preferences before exporting (SPSS uses the period for its system miss-
ing value symbol). However, if you take this step, it will also have to be consistent 
with the missing symbol in the Trajectory Files. If you edit the GridWare File file 
in a text editor, you will also have to change all of the individual Trajectory Files. 
If you change preferences from within the program, then it will change all of the 
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files for you. Alternatively, you can change the missing value symbol via search 
and replace options in your text editor or Excel. Search and replace is a powerful 
tool so be very careful. It is very easy to alter unintended values. The most cumber-
some solution is to recode the variables in SPSS. To do this, you would first have to 
recode the missing symbol to a number (e.g., 99999) and then convert the variable 
from string to numeric. With only a few variables, this is not a challenge, but with 
many variables and many cases, it can be daunting.

Exporting variables from GridWare for use in other programs is reasonably 
straightforward, but you need to be vigilant and systematic. Do not rush the pro-
cess and check the results of each step carefully. I cannot emphasize that enough. 
Impatience and lack of focus invariably lead to errors or, at the very least, detecting 
issues later in the process that can only be resolved by starting over from the begin-
ning. I also recommend that you do not stop in the middle of the process to finish at 
a later time. Go from GridWare to analyzing the descriptives in SPSS in one sitting. 
You have been warned….

Now we can consider different types of analyses that can be conducted. I will 
begin with the most basic and get progressively more elaborate as the sections prog-
ress. This set of analyses is not necessarily exhaustive (see Chap. 7) but it provides 
a good overview of the most central to state space grids.

Whole-Grid Analysis

Some research questions pertain to the overall pattern depicted on the state space. 
In general, the quantification of these patterns falls under the heading of variability 
with several different aspects of variability derived from the measures available. 
The primary measures of variability are cell range (mean and overall), dispersion, 
visits, duration per visit, and entropy. There are also simple calculations that can 
be made using the basic variables exported by GridWare such as Transitions per 
Minute and the Event/Visit ratio. Readers are encouraged to consult the studies that 
have used these measures in order to get a full understanding of their utility (Granic 
et al. 2003, 2007, 2012; Hollenstein 2007; Hollenstein et al. 2004; Hollenstein and 
Lewis 2006; Lunkenheimer et al. 2011; Martin et al. 2005). There is really nothing 
complicated about whole-grid analysis as it essentially amounts to exporting the 
values for use in statistical models. Here, I will just review some of the conceptual 
and computational properties of these measures that relate to their analytical inter-
pretation.

Cell Range

The count of the total number of cells occupied is perhaps the most basic measure 
to be derived from state space grids. It is also the most content driven and least dy-
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namic of all the whole-grid measures. A greater number of cells necessarily means 
a greater range of content. For this reason, the conceptual interpretation of the cell 
count is the range or repertoire of the system. Cell Range is a somewhat static snap-
shot because it provides none of the details of that frequency and duration informa-
tion can provide. Still, it correlates moderately with other variability measures and 
has shown convergent validity in several studies (Granic et al. 2003; Hollenstein 
et al. 2004). One variation on Cell Range is to divide by the total number of cells on 
the grid to get a proportion score. This proportion can be useful if there is a need to 
compare the Cell Range of two or more grids of unequal size.

Dispersion

Cell Range equates a single brief visit to a cell with long and/or repeated visits to 
a cell. Dispersion was devised in order to compensate for those kinds of biases in 
base rate durations. You can think of Dispersion as Cell Range controlling for pro-
portional durations in each cell. Thus, Dispersion is a relative value that depends on 
the number of cells in the state space grid as well as the general distribution of cell 
visits. For some projects, it may be most typical for any given trajectory to occupy 
only half of the cells; in other projects, each trajectory visits most or all of the cells 
at least once. Dispersion values would be higher in the latter case than in the former. 
For this reason, Dispersion comparisons between trajectories can reveal meaningful 
differences within a project, but comparison of Dispersion values across projects 
that differ in the dimension categories are not meaningful. With any project that has 
duration information for events, Dispersion is probably preferable to Cell Range 
and is why it has been used more consistently in more recent studies (e.g., Granic 
et al. 2007; Hollenstein and Lewis 2006; Lunkenheimer et al., 2011).

Visits and Transitions

Each trajectory begins in one cell and as time progresses tends to visit other cells 
on the grid. Thus, Visits are really a count of transitions but are always off from the 
actual number of transitions because the first event in the first cell is counted as a 
visit. Transitions are equivalent to the number of visits minus 1. Transitions are the 
most content-independent and dynamic measure of variability because transitions 
can occur between any number of cells regardless of content. For instance, a count 
of 40 transitions in a given trajectory could have occurred between two cells or 
across 39 cells. For this reason, it may be useful to conceptualize transitions as a 
measure of the propensity to switch states or dynamic flexibility (Hollenstein et al. 
2012).

Frequency-based measures such as Visits, Transitions, and Events are somewhat 
dependent on time. The longer the observation or time series, the more opportu-
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nities there are for new events and transitions. For example, in some studies the 
duration of parent-child discussions has varied by as much as a minute within a 
given task or as much as 5 min across tasks (e.g., short warm up followed by longer 
problem solving discussion). Therefore, I recommend that in all but the most con-
trolled instances (i.e., duration of each trajectory is exactly the same), that the fre-
quency measures be divided by the total duration of the trajectory. To date, this has 
most often resulted in the use of the variable Transitions Per Minute, calculated as 
(gridVisits – 1)/(gridDuration/60), for projects with seconds as the time units (Hol-
lenstein et al. 2004; Hollenstein and Lewis 2006). An alternative is to divide the 
trajectory into equal duration segments (e.g., four 2-min segments of a task lasting 
at least 8 min) and analyze accordingly (see Chap. 7).

Duration Per Visit (Average Mean Duration)

We can calculate a mean duration in each cell by taking the total duration in that 
cell and dividing by the frequency of visits to that cell. This gives an indication of 
how strongly the trajectory got “stuck” in that state. By extension, we can calculate 
the overall “stuckness” or rigidity of a trajectory by taking the average of all of the 
individual cell mean durations. This average mean duration is calculated simply 
by dividing the total duration by the number of visits. This rigidity is the converse 
of the dynamic flexibility of Transitions, reflected by the typically strong negative 
correlations between these measures. The difference is that Duration Per Visit is a 
duration-based measure and thus contains slightly different information.

Visits/Events (or Events/Visits) Ratio

One variation on the basic frequency of transitions derived from the Events variable 
is to calculate it in terms of the number of Visits. With no repeating events, this ratio 
is 1, with many repeating events this ratio approaches 0. This ratio was first used to 
compensate for a lack of duration information in an event-based project. Developed 
by Carol Martin, the composite index of 1—Visits/Events quantified the “sticki-
ness” of a cell or region for event-based data (Martin et al. 2005). Thus, it functions 
in the same way as Duration Per Visit as indicator of rigidity in projects where 
duration is not known. An alternate variation is the Events/Visits ratio. For this vari-
able, a ratio of 1 is the lowest possible value and reference point. In circumstances 
where repeating events are not possible, then by definition Visits will equal Events 
and this ratio is a useless measure because all trajectories will have a value of 1. 
With repeating events, however, the degree to which Events exceed Visits indicates 
“stuckness” or “rigidity.”
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Entropy

Entropy for state space grids was derived from early information theory (Shannon 
and Weaver 1949) as a way to quantify the orderliness or predictability of communi-
cation sequences. Tom Dishion added this measure to the state space grid toolbox in 
order to capture the predictability of deviant peer interactions (Dishion et al. 2004). 
One interpretation of Entropy with this formula is the number of “bits” of informa-
tion necessary to recreate the entire sequence of events. As a contrast, consider two 
extremes. For a sequence of events that alternate (e.g., ABABABAB), only one bit 
of information is needed to recreate the entire sequence; if you know A, then you 
know the entire sequence. This is an example of a completely ordered, maximally 
predictable trajectory (low Entropy). In contrast, a sequence of random events (e.g., 
ABAADCPZKB) would require all of the bits of the sequence in order to recreate 
it. This is a highly unpredictable, maximally entropic trajectory. Thus, what we ob-
tain from Visit Entropy is a direct measure of the unpredictability of the trajectory 
event-to-event sequence.

While Visit Entropy is based on the conditional probabilities of event-to-event 
transitions, Duration Entropy is calculated from the proportional durations or du-
ration probabilities (i.e., cell duration divided by total duration). While both use 
probability information within the same formula, Duration Entropy was included in 
GridWare simply as a logical extension of existing calculations performed by the 
software. Upon further testing over the past few years, it has become apparent that, 
in most cases, Duration Entropy and Dispersion are strongly and sometimes nearly 
perfectly correlated. There may be anomalous conditions for which this is not true, 
but my recommendation at this point is to stick with Dispersion rather than Duration 
Entropy. It is a more direct and interpretable measure.

I have consistently found that these whole-grid variables are normally distrib-
uted, lending themselves to mainstream linear statistical procedures. However, that 
does not mean you should not check these distributions before analyses. All of these 
measures are available for regions as well, but you should be cautious when exam-
ining the variability within a region. The variables will be censored in possible odd 
ways depending on how often the trajectory moves into or out of that region. The 
smaller the region, the more there will be issues.

Attractor Analysis

As described in Chap.  1, the three main dynamic systems (DS) concepts addressed 
by state space grid analysis are variability, attractors, and phase transitions. We 
have covered variability with the whole-grid variables described above. Now I will 
describe some ways to detect attractors and assess their strength. Note that I will 
only be describing one type of attractor, a point attractor. There are other kinds of 
attractors (e.g., cyclic, chaotic) that are not covered here. In general, attractor analy-
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sis should only be performed if there are a reasonably high number of events in the 
trajectories. Trajectories with only a few events cannot support reliable estimates of 
attractor location or strength.

There are two approaches to attractor analysis with state space grids. One ap-
proach is to identify attractors a priori based on theory. For example, major depres-
sion is episodic and its recurrence has led to the theoretical assertion that it is an 
attractor (Johnson and Nowak 2002). Similarly, Granic and Patterson (2006) pre-
dicted that coercive family processes are also attractors. Starting with the theoretical 
premise or prediction of an attractor, these can be modeled as cells or regions on a 
state space grid. Once identified, several of the region measures can be used to as-
sess attractor strength. For example, Granic et al. (2007) broke up the parent–child 
state space grid into several meaningful regions and analyzed the strength of those 
regions for each dyadic trajectory (Fig. 2.6).

The second is a bottom-up approach to detect attractors empirically on a grid-
by-grid basis. The basic rationale of this approach is that an attractor state should 
occur at least more often than by chance and certainly more often than most other 
states. There are other ways to identify attractors in a more computational fashion 
(e.g., null clines, see Gottman et al. 2002), but here I will only describe the methods 
relevant for state space grids. Once attractor cells or regions are identified, then 
the assessment of their strength follows the same process as with the theoretical 
attractor identification approach. Therefore, I will first describe the empirical iden-
tification approach before detailing the state space grid variables that can be used 
in either approach.

Empirically Derived Attractors

The most straightforward method of identifying an attractor state on the grid is to 
simply find the cell or cells with the highest mean durations, duration per visit, or 
visits. This is a coarse approximation casting a wide net, but it should correlate well 
with more rigorous methods of establishing which states are attractors. That is, with 
this approach you will get false positives but you should also identify most, if not 
all, actual attractors. I do not recommend using just these measures of frequency 
or duration for attractor identification (though for attractor strength these are fine). 
Instead, examining these measures can be a useful first step or you can report about 
these states as important, but not as attractors per se.

The more formal and compelling justification for an attractor state is that it is 
more probable than other states. Hence, we need some way of differentiating incon-
sequential variation from systematic variation reflecting the underlying structure 
of a system. With state space grid analysis, you can use the method described by 
Lewis et al. (1999) in the first state space grid application, the winnowing method. 
The procedure begins with all of the individual cell durations (or visits) and pro-
gresses in iterative fashion by eliminating the cell with the lowest duration in the 
set one-by-one in each step. Eventually, the cell or cells with the highest duration 
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remain based on a criterion heterogeneity score. Table 5.1 shows the steps of the 
winnowing technique in a small example with cell durations in a 2 × 6 state space 
grid. First, the null hypothesis is that all of the behavior on the state space is equally 
distributed such that each cell’s duration is the same. This may seem familiar to you 
as it is the basis of chi-square tests of independence. Thus, the Expected value in 
each cell is calculated as the total duration divided by the number of cells in that 
step. Next, each cell’s deviation from that expected value is squared (to eliminate 
negative values) and summed across cells. This sum is then divided by the number 
of cells to obtain the heterogeneity score:

where i is an index of the cell and j is an index of the current iteration. Thus, the 
heterogeneity score calculated at each iterative step in the winnowing process de-
creases as the number of cells included decrease.

Finally, to identify which cell or cells is an attractor, heterogeneity values are 
quantified as a proportion of the first heterogeneity value from the first iteration 
(Heterogeneityj/Heterogeneity1) and examined for scree, the value after the largest 
drop in proportions. If no large drop occurs (“large” was defined as approximately 
50 % or more in Lewis et al. 1999), then the scree value can be taken as the last 
drop to 0 for the final single-cell iteration. Thus, with two or more cells identified as 
an attractor, there must be a large drop (> 50 %), but if only one cell is an attractor, 
there may or may not be a large drop. Moreover, if more than one cell is identified as 
an attractor, then this could be one larger attractor region (if the cells are adjacent) 

Heterogeneityj =
�(Observedi − Expectedj )2/Expectedj

# of Cellsj

Table 5.1   Derivation of attractors with the heterogeneity score in a six-cell (2 × 3 grid) example. 
Cells x2y2 and x2y3 are identified as an attractor region
Step Duration # Cells 

( C)
Expected 
( D/C)x1y1 x1y2 x1y3 x2y1 x2y2 x2y3 Total ( D)

1 2 2 3 4 20 30 61 6 10.17
2 2 3 4 20 30 59 5 11.80
3 3 4 20 30 57 4 14.25
4 4 20 30 54 3 18.00
5 20 30 50 2 25.00
6 30 30 1 30.00

((Observed − expected)2)/expected Sum Cells H-score H-proportion
1 6.56 6.56 5.05 3.74 9.51 38.69 70.11 6 11.69 1.00
2 8.14 6.56 5.16 5.70 28.07 53.63 5 10.73 0.92
3 8.88 7.37 2.32 17.41 35.98 4 9.00 0.77
4 10.89 0.22 8.00 19.11 3 6.37 0.55
5 1.00 1.00 2.00 2 1.00 0.09
6 0.00 0.00 1 0.00 0.00

H heterogeneity
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or more than one attractor (if they are not adjacent). In the example in Table 5.1, the 
drop in the heterogeneity proportion (H-proportion) from 0.55 to 0.09 is the scree 
indicating that two cells in this example qualify as attractors. As these are two adja-
cent cells, the combination is identified as a single attractor region.

Several variations on this method can be useful as well. For instance, instead of 
cell durations, you could use visits or duration per visit. An interesting approach 
would be to use return time but then cells with longer return times would be elimi-
nated first and the goal would be to winnow down to those cells with the shortest 
return times. The expected value can be determined in other ways, depending on 
what is most logical for the states in the project. For instance, the null hypothesis 
may not be that behavior is equally distributed across all cells but that it should 
reach the sample mean.

A second way to empirically derive attractors is to use the return time vari-
able with constraints specified in the preferences window of GridWare. Attractors 
should be a relatively small subset of all the cells on a grid and therefore the criteria 
for identifying them should be restrictive. By increasing the minimum number of 
visits required to calculate return time, you can eliminate cells with only a few 
visits. Return time will then only be calculated for those few cells or trajectories 
that meet that minimum criterion. There are many possible ways to determine what 
this minimum value should be. One approach would be to use the total number of 
visits (transitions) and divide by the total number of cells (e.g., visits per cell). Any 
cell with more visits than the visits per cell value would have a return time value 
computed. However, the returns to that cell may not occur quickly enough to count 
as a return. By adjusting the maximum return time you can further limit the number 
of cells that would qualify as an attractor. Returns that exceed the maximum do not 
get counted in the calculation. This is not a precise method but it will allow you to 
home in on attractor states with a reasonable amount of certainty.

Attractor Strength Measures

Once a region on the state space is identified as an attractor, the relative strength, 
or pull that the attractor has on the trajectory, can be quantified in several ways. 
However, the method of deriving these attractor regions results in distinct analytical 
implications. Attractor strength for a priori attractors reveals individual differences 
relative to the same attractor for all trajectories. On the other hand, empirically de-
rived attractors are unique to each trajectory (attractor A for trajectory 1, attractor 
B for trajectory 2, and so on). Thus, comparisons across cases for idiosyncratic at-
tractors derived empirically require person-centered analytical approaches. This can 
be a case-by-case approach or simply interpreting attractors in an entirely structural 
way, independent of the content of the attractor states, as was done in the Lewis 
et al. (1999) study.

The most direct way to measure attractor strength is the return time or return 
visits measures. Shorter return times or visits reveal that it is difficult for the trajec-
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tory to extricate itself from the region. Longer return times or visits indicate a weak 
attractor or even that the region is not an attractor at all (see previous section). The 
return variables are sometimes difficult to work with if what you are looking for 
is a normally distributed variable for statistical analysis. Missing values are often 
the lion’s share of values for the return variables in the exported data files. Thus, 
return time and return visits are most often useful only after an attractor has been 
identified. That is, they are most naturally suited to person-centered and case-by-
case analysis. Exceptions include projects with trajectories that visit all of the cells 
on the grid frequently. This can be due to the overall length of the trajectories (e.g., 
family observations of several hours) or the relative frequency of transitions across 
most states.

Another method of analyzing attractors that can be more amenable to mainstream 
statistical assumptions is through the first entry and last exit variables. The logic is 
that an attractor state should occur relatively early in a trajectory and probably be 
the last or one of the last states at the end of the trajectory. That is, attractors should 
have low first entry values and high last exit values. Note that this can get compli-
cated if the trajectory never goes into the region (first entry would equal to the total 
duration and last exit would equal to 0), so use these variables cautiously. An ex-
ample of how this may be useful is with the problematic state of mutual negativity 
in interpersonal interactions. A couple, parent–child dyad, or family with low first 
entry values into mutual negativity would be relatively dysfunctional compared to 
those with higher first entry values. One metric of treatment success in these cases 
might be if the first entry value increases over measurement occasions.

To really establish a comprehensive sense of the attractor landscape revealed by 
the trajectory patterns on the state space grid, it may be best to use a combination of 
methods and variables. Strong attractors will have frequent visits, long mean dura-
tions, short return times and return visits, and low first entry values. A cautious ap-
proach might be to use these variables as multiple criteria for establishing a region 
as an attractor.

Attractors Over Time

The Lewis et  al. (1999) study tested the stability of attractors across a 4-month 
interval with correlations of attractor strength variables. One method of attractor 
analysis that has yet to be tried is to examine attractor change and stability over time 
on the state space. Using a variation on an existing study, I will illustrate this pos-
sibility. In the Lewis et al. (2004) study, each toddler had a trajectory at each month 
from 14 through 24 months of age. If attractor analyses were performed for each of 
those monthly trajectories, then the single strongest attractor cell could be identi-
fied. With the same 5 × 5 grids, then, a new trajectory can be made for each toddler 
such that each event is the x and y coordinates of the attractor for that month. In the 
trajectory files, onset values would start at 14 and end at 25 and there would be 11 
events in every trajectory. Toddlers with stable attractors would have most or all of 
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their nodes in one cell or cluster of cells. Toddlers with changing attractors would 
have more than one region where the nodes were plotted. In this way, one could 
conduct an examination of attractor stability as part of state space grid analyses.

Transition Analysis

Often researchers want to know information about the sequence of events, which 
states follow or precede other states. There is a long and rich history of lag sequen-
tial analysis using confusion matrices and conditional probabilities. These analyti-
cal techniques are quite complementary to state space grids and are discussed in 
more detail in Chap. 7. In this chapter, I will cover the transition analyses made 
possible by state space grids and unique to GridWare: Transition measures and lag 
grids.

In version 1.15a, GridWare provides a method for quantifying transitional pro-
pensities. These are the probabilities of transitioning from one region to another 
at any moment. In a sense, they are like traditional conditional probabilities—the 
probability of an A-to-B transition given the trajectory is in state A. However, these 
are different because the probabilities are calculated using time information as well. 
To do this, the time series is broken down into small time windows or bins. Transi-
tional propensities come from the bin-to-bin probabilities of transition from A-to-B, 
given A. Thus, these are typically small values but they have reasonable distribu-
tions when at least a few transitions occur in most trajectories. To obtain these 
measures, you first select the cell or cells that make up your origin region (i.e., the 
antecedent). Then select the cell or cells that make up the destination region (i.e., 
the consequence). To export, simply keep the Transitional Measures box checked. 
Once exported, you can analyze these variables as usual.

The interest in transitions often arises in the interpersonal dynamics literature. 
Researchers are interested in who is “driving” an interaction or what the responses 
are to a particular behavior. Transitional propensities provide a precise measure of 
those reactions. Often, it is useful to export several different transitional propensity 
variables based on different consequences for the same antecedent or based on re-
ciprocal antecedent-consequence combinations (e.g., parent to child and child to 
parent).

State space grids also offer another way to examine transitions between states 
through the use of lagged variables. In Chap. 4, I mentioned the lagged phase plot as 
an option for single state variable projects. These were just one example of a more 
general approach to have some state variables that are lagged relative to other state 
variables. This opens up a whole world of possibilities.

The basic idea is to take an existing state variable, copy all but the first value, 
and paste those values in the next available column just below the header row (see 
Fig. 4.2). Now the first event (row) in the trajectory file is a combination of the 
original variable at time t and the same variable at time t + 1. However, with state 
space grids you can have more than one state variable and therefore you can have 
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more than one lag variable. This means that that lagged and unlagged variable on 
the grid dimensions do not have to be variations of the same state variable. To make 
this process easier, the GridWare File Converter described in Chap. 4 can create 
new state variables from existing GridWare projects. Simply load in all of the tra-
jectory files, click Modify State Variables, and select the “Create Lagged Variable” 
option. The GWF file that is created is essentially blank, so I recommend just copy-
ing the contents of the original GWF file and adding the declarations for the lagged 
variables (only the names have changed).

As an example, I created three new lagged variables in the Example 1 project 
we have been using: Variable1LAG1, Variable2LAG1, and Variable3LAG1. Fig-
ure 5.2 shows two state space grids using Variable 1, Variable1LAG1, and Variable-
2LAG1 for the A1_1.trj trajectory. The first grid is a lagged phase plot as described 
in Chap. 4, with the original raw state variable Variable 1 on the x-dimension and its 
lag 1 counterpart on the y-dimension. Each node now represents a transition rather 
than a simultaneous state. So, just observing that the trajectory ends in the 2/4 cell 
tells you that the last transition was from category 2 to category 4, and this specific 
transition only occurred once in the sequence. A second key feature to note with 
these lagged grids is that in duration-based projects the size of the node denotes the 
duration of the antecedent. Finally, because the nodes (events) now depict transi-
tions, the transition lines actually extend to a second-order or lag 2 transition as 
well. For example, the transition from cell 2/1 to cell 1/2 in the left grid in Fig. 5.2 
can be interpreted as a three state sequence for Variable 1: 2, 1, 2. Combining this 
with the Transitional Measures available in version 1.15a—identifying origin and 
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Fig. 5.2   State space grids with lagged variables from Example 1. The grid on the left is a lagged 
phase plot of Variable 1 at time t on the x-dimension and Variable 1 at Lag 1 ( t + 1) on the y-dimen-
sion. The grid on the right is Variable 1 at time t on the x-dimension and Variable 2 at Lag 1 ( t + 1) 
on the y-dimension. Note that because this project has a third variable (not shown), there are 
repeating events for some visits
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destination cells—enables the quantification of the frequency of 3-state events. This 
can be expanded further to 4 or more states as described in Chap. 7.

The grid on the right in Fig.  5.2.should be compared with the grid shown in 
Fig. 3.6. These are the same data except that Variable 2 is at lag 1 in Fig. 5.2. To 
make this example less abstract, let us say Variable 1 is the parent behavior and 
Variable 2 is the child behavior and the values of 1–4 correspond to hostile, with-
drawn, neutral, and positive behaviors, respectively. With that in mind, the single 
event in cell 2/3 means that the parent was withdrawn and then the child was neu-
tral. If we follow the next transition, we now see that the parent’s next behavior was 
hostile. Using GridWare 1.15a, we could compute a Transitional Propensity that 
reflected the probability of the parent becoming hostile given the parent withdrawn 
to child neutral transition. The possibilities enabled by lagged state variables are 
vast, especially when combined with the collapsing dimensions technique described 
in Chap. 7.

Single-Dimension Analysis

Sometimes you will want to obtain measures based only on one of the dimensions 
of the state space grid but not the other. For example, with the dyadic grids used for 
parent–child and peer analyses, you may want a measure of just the parent’s mea-
sures or just the child’s measures. The way to do this is to make both dimensions of 
the state space grid display the same state variable. Using the axis selection menus 
( x-axis or y-axis), select the same variable for both dimensions. Now the trajectory 
or trajectories displayed only visit the cells along the diagonal—it is an n × 1 state 
space grid. It is impossible for nodes to occur anywhere else. Now you have iso-
lated the one state variable (e.g., child or mother) and can export measures based on 
this behavior. However, I strongly recommend that you select all of the cells of the 
diagonal and export the cell and region measures, even if you are interested in the 
whole-grid variability measures. You can still get all of the same measures for the 
diagonal region as you can for the whole-grid, but these will be based on the actual 
number of cells in the n × 1 state space at hand. This can have an impact on any of 
the measures that use division in their calculation, including Dispersion. Also, keep 
in mind that the number of events will be affected by the dimension or dimensions 
not shown, so events will not reflect only the one state variable but all of the vari-
ables in the system (i.e., in the trajectory file). Visits, however, is a great measure 
when using this uni-dimensional approach.

I must emphasize a word of caution with this approach. Sometimes, measures 
derived from these dimensions are useful (or requested by a reviewer) yet they do 
not adequately represent the system as you have defined it in state space. The rela-
tion between the individual dimensions and the two-dimensional state space is not 
additive. To quote the Gestalt mantra, “the whole is different than the sum of the 
parts.”
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Summary Grids

In Chap. 2, I described a variation on state space grids that exploited the features 
of GridWare to create summary grids (e.g., Lunkenheimer et al. 2011). These are 
visual matrices that have one plot point per cell centered in that cell which con-
note some value of that cell for the entire sample. Let us use Example 1 from the 
GridWare download to see how it this can be accomplished. Open Example 1 in 
GridWare 1.1b and export measures. In the Export Measures Export Option win-
dow, select only All Trajectories as Group, Individual Cell Measures, and Visits, 
leaving all other check boxes blank. This will save an export file with one case—the 
average number of visits in each cell for the entire sample. We are going to create 
a new project.

Open the new exported file with the cell visits in Excel. The first row is the 
header row and the second row has all the values. That is it. If you do not see that 
go back and export again. Note that after the few filter variables is a sequence of 
variables, x1y1Visits, x1y2Visits, etc. You should see the variable naming pattern—
y changes with each subsequent variable but the x value only changes after all the 
y values in that category have been accounted for. That is x changes slowly and y 
changes quickly. This is the standard format for all cell identifications. This is also 
a good reminder that you need to make note of which state variable was presented 
on the x-axis and which was presented on the y-axis at the time of export. Otherwise 
you will get confused about which cells you are analyzing.

The first thing we need to do is to make a cumulative series from those Visits val-
ues. In cell F3 type 0 and hit enter. Click in cell G3, just below the label x1y2Visits 
(G1) and 0.222 (G2), and type the following: = f3 + f2 and hit enter. The value in G3 
should now be 0.333. Click on cell G3 again and then hover your cursor over the 
square in the bottom right corner of that cell until it turns into a crosshair (+). Click 
and drag that crosshair to the right and stop when the last cell highlighted by the 
gray box is cell V3, one column past the last value, x4y4Visits. When you release 
the mouse button, you will see that Excel has updated the sequence in row 3 to a 
cumulative series ending with the value of 5.665 in cell V3.

The next step is to put these new values into a column. Highlight all of the cells 
from F3 through V3 with your mouse and copy them (Ctrl-C, right click and select 
Copy, or use Edit menu). Open a new worksheet in Excel, make cell A2 the active 
cell, and then select Paste Special from the menu at the top. In the Paste Special 
window, select Values and check the Transpose box at the bottom. Click OK and 
now you have a column of values in Column A. Now in cell A1 type “Onset”, in 
cell B1 type “Variable 1”, and in cell C1 type “Variable 2.” Now, type in the state 
space grid cell numbers in columns B and C that correspond to those values: B2 = 1, 
C2 = 1, B3 = 1, C3 = 2, B4 = 1, C4 = 3, etc. You should see the pattern because it is the 
same as the xy names in the sequence that they were exported. Leave cells B18 and 
C18 blank. Now save the worksheet as a tab-delimited text file: Example1summary.
trj (see Fig. 5.2). Save this file in a folder named “Example 1 Visits_trjs”.

Now we can make the GridWare project by editing the Example 1.gwf file. Open 
this file in your text editor and save it immediately as “Example 1 Visits.gwf” in 
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the same directory where you saved the Example 1 Visits_trjs folder. Now edit this 
file so it looks similar to the gwf file in Fig. 5.3. Now open up our new project in 
GridWare!

When you click on Show Nodes, you should immediately see that although the 
size of the node corresponds proportionally to the number of visits in that cell, the 
nodes are not centered. You could click each cell one by one and rerandomized un-
til it looked pretty much in the center. Alternatively, and more efficiently, you can 
save the project under a different name (use Save As from the File menu): Example 
1 Visits Centered. This will make a new folder in the working directory named 
“Example 1 Visits Centered_trjs.” Open that folder and then open the file Example-
1summary.trj in your text editor. Three new columns have been added: color, Vari-
able 1 POS, and Variable 2 POS (POS = position). The color column is the RGB 
number corresponding to the default blue of the nodes. The POS columns have the 
relative position along the cell axes ranging from 0 ( x left or y bottom) to 1 ( x right 
or y top). Change all of these values in both columns to 0.5. That will center every 
node in every cell. When you reopen the project in GridWare, Show Nodes, and 
select Unmark Start Node then your grid should look similar to the one in Fig. 5.4

In this example, we see that there were not many visits in the bottom right quad-
rant but there were many visits in all of the cells in category 3 of Variable 2. The 
trick with summary grids is to make the onset values equal to the progressive cumu-
lative sum of the values you want to display. These can be any value on any scale. 
You could make summary displays from values not even related to state space grid 
variables (e.g., population values on a 2 × 50 grid of states and gender).

The Special Case of Ordinal Time Series

When state variable categories are truly ordinal—an interval sequence of integers 
which correspond to units of constant size—there is at least one more way to an-
alyze the state space grid data. In this case, by ordinal I mean truly ordinal by 

Fig. 5.3   Trajectory file and GridWare file for grid summary of Example 1 Visits

Onset Variable 1 Variable 2
0 1 1 
0.333 1 2 
0.555 1 3 
1.333 1 4 
1.555 2 1 
2.111 2 2 
2.555 2 3 
3.444 2 4 
3.555 3 1 
3.666 3 2 
4.11 3 3 
4.554 3 4 
4.665 4 1 
4.776 4 2 
4.887 4 3 
5.443 4 4 
5.665

<GridWare>
<Config>
identifier categorical Sample  
state integer variable 1 1 4 1 2 3 4 
state integer variable 2 1 4 1 2 3 4 
MinReturns 2 
MaxReturnTime 10
MaxReturnVisits 6 
MinEventDuration 0 
MinCellDuration 0 
MissingValueSymbol --
</Config>
<Trajectories>
Sample Filename
Example 1 Example1summary.trj
</Trajectories>
</GridWare>
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measurement. In the Lewis et al. (1999) study, for example, the dimensions of the 
grid were ordinal categories of distress and attention. But while these categories 
were sequential in terms of relative differences to lower and higher values (e.g., 
1 > 2 > 3 > 4 > 5), the units themselves were somewhat arbitrary. They were applied 
by coders as a way of approximating ordinality. The magnitude of change between 
1 and 2 or 4 and 5 was not constant because the units were not measurement quanti-
ties. Thus, these ordinal variables are not the special case.

What is special is when the state variable categories reflect a measurement quan-
tity, like a count or a test score. For example, suppose that the axes of a grid were a 
state anxiety score and the grade on a series of quizzes administered once a week for 
an academic year. Each student’s trajectory on the grid would reflect the simultane-
ous variability in anxiety on the day of the quiz and the quiz score. With these state 
variables the difference from one category to the next would be a unit, a quantifi-
able magnitude reflecting some real world measurement. The change from 60 to 61 
would be equivalent to a change from 90 to 91. That is, now distance is meaningful. 
Each xy coordinate is exactly that, a coordinate, and can now be treated in the same 
way as physical coordinates in space. We can compute each transition as a distance 
in the same way as we compute the hypotenuse of a right triangle: the square root 
of (Δx2 + Δy2). That is, the length of each transition line is a computable value and 
the total distance that the trajectory travels through state space can be derived from 
the sum of these transitional distances: the greater the distance covered, the more 
variable the behavior of the system. While this computation was not provided in 
GridWare, it is easily computed in Excel on each trajectory file event-by-event. If 
columns B and C were our state variables of anxiety and quiz score, for example, 

Fig. 5.4   Example 1 summary 
of visits
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the formula in column D (starting at row 3) would be: = SQRT(((B3 − B2)^2) + ((C3 
− C2)^2)). Dragging that formula down the rest of the rows in column D would cre-
ate the distance of each event-to-event transition. The sum of that column D would 
be the total distance score, an index of total variability.

Filter or State Variable?

In some projects, it is possible to have variables that can function either as state 
variables or filter variables. For example, suppose you have 30 min of observational 
data on parents and children as they proceed through a series of 10-min activities: 
free play, discussion, and playing a game. Each dyad could have one long trajec-
tory file in which activity type is a category in the Activity state variable—a third 
variable after the Parent-Affect state variable and the Child-Affect state variable. 
The events in the first 10 min would all have the same value for Activity (play), the 
events in the second 10 min would have all the same value (talk), and the events in 
the final 10 min would all have the same value for Activity (game). With Activity 
as a state variable, it would be possible to analyze Child-Activity states or Parent-
Activity states by selecting them for display on the x and y dimensions. The dyadic 
Parent–child grid could also be color coded by activity to display how affected pat-
terns differed by activity. However, to derive dyadic measures with activity as well 
is not possible—if parent and child are the dimensions, then activity is not involved 
in any quantification.

One solution would be to create 3-dimensional state space (see Chap. 7). An-
other would be to export measures using the time window—each 10-min segment 
separately. This could work, but often the length of activities in laboratory research 
varies by even a few seconds making this a less optimal solution. A better solution 
in this case is to save each trajectory as three separate trajectories, one per activity. 
Now Activity is a filter variable that uniquely identifies each trajectory and is in-
cluded in the trajectories list in the GridWare File. The visual display will be virtu-
ally the same as before (except for the start node, if marked) when selecting across 
all three activities. However, when exporting, you will get a different value for each 
activity (each dyad-activity combination is a case).

For most state space grid projects, I usually have a few versions that vary in 
terms of the number of filter variables and/or state variables (e.g., lags). Especially, 
when first starting a new project, I find it helpful to “see” the data from different 
angles. In general, though, I find that projects with the shortest trajectories are more 
useful than those in which the data are in one long trajectory. This of course depends 
on the nature of the data and the research questions. It is up to you to work out what 
is the best approach.
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In this chapter, the basic analyses described in Chap.  5 are extended into com-
parisons across grids. These mostly person-centered analyses can be comparisons 
across different tasks or across measurement occasions as in a longitudinal study. 
The nature of these analyses often requires transforming the default stacked data 
format from the Gridware export into an unstacked format (see Box 6.1) and/or the 
exportation of individual cell measures (available only in version 1.1b, see Box 3.3). 
The fundamental question underlying these kinds of analyses can be stated as “how 
are the trajectories on two grids different from one another?” In this chapter, I will 
cover three ways that this has been done: profile analysis, intergrid distance scores, 
and cluster analysis.

Box 6.1 Stacked and Unstacked Data  GridWare exports measure in a data 
matrix based on the trajectories list. In most cases, this results in a stacked file 
in which each row (case) corresponds to a trajectory, with multiple rows for 
each primary case identifier, for example, with parent-child dyadic interaction 
data, there is often a set of two or more interaction tasks. With these tasks as 
filter variables, the primary case identifier, dyad ID, repeats on multiple rows, 
one for each interaction task. Thus, this is called “stacked” (or long or person-
period) data.

For statistical analyses, most often we want unstacked (or wide or person-
level) data where the different tasks are denoted by different variables and 
there is only one row of data for each primary case identifier. Fortunately, it 
has gotten a lot easier to switch back and forth between these data structures 
in SPSS. Using the data restructure wizard, you can take the stacked data 
file from GridWare and make it unstacked in SPSS. Here are a few tips for 
working with stacked GridWare exported data. First, you want to go from 
cases to variables, in SPSS parlance. Next, the identifier variable is the one 
(or ones) that you want to keep when there is only one row per case. Almost 
always this is some sort of ID variable (e.g., Fam1234). You can also include 
variables that are constant for that ID (e.g., gender). The index variables are 
those filter variables for which you want a separate variable per measure. So, 
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if in the stacked version you had three discussions (filter), one per row/case, 
for an export of the visits variable, in the unstacked version there would be 
one row/case with three visits variables, each corresponding to a discussion 
(e.g., visits.1, visits.2, visits.3). There are several other options to choose as 
you progress through the wizard but mostly the defaults work fine enough.

Profile Analysis

The most basic way to analyze changes between state space grids is to subject the 
measures derived from each to standard statistical comparisons. These can be mea-
sures of structure (i.e., whole-grid measures) or content (i.e., cell or region mea-
sures), for example, in the Hollenstein et al. (2004) study, we had 1 hour of coded 
observations of parent-child interactions on each of two occasions that occurred 
within the same month. This enabled the calculation of test-retest reliability of the 
state space grid variability measures (cell range, transitions per minute, and average 
mean durations) via correlations. These correlations were particularly strong for 
observational measures, ranging from 0.4 to 0.6 across observation sessions. Thus, 
whole-grid measures appear to be relatively stable over short periods of time.

It is most common, however, for state space grid research to focus on contextual 
task-to-task differences in system behavior, or on developmental changes in longi-
tudinal designs (i.e., micro, meso, and macro relations as in Fig. 1.1). In these cases, 
a repeated measures ANOVA is used for profile analyses to examine the grid-to-grid 
changes in the same measure. Figure 6.1 shows two examples of my own work, 
with tasks to test quadratic predictions of change in dyadic variability. Using an 
A-B-A design as described in Chap. 2, where B is a task designed to elicit negative 
emotions (e.g., conflict), the change in transitions and dispersion in the hypothe-
sized quadratic high-low-high form was the opposite shape of the negative emotion 
profiles (Hollenstein and Lewis 2006). Thus, the quadratic F-test indicated main 
effects for the variability measures and for the profile interaction with stress (top 
row of Fig. 6.1). These mother-daughter dyads participated in the same discussion 
sequence three more times, every 6 months (Hollenstein 2007). Because the girls all 
changed schools at wave 2 (grade 7), the hypothesized developmental phase tran-
sition was expected to occur during that year. As shown in Fig. 6.1 (bottom row), 
all dyads increased in negative affect but only the dyads with relatively low stress 
girls showed the hypothesized quadratic profile. Taken together, these two studies 
demonstrate the utility of profile analysis for testing DS hypotheses of change and 
stability at the meso and macro levels.

Another method to analyze grid-to-grid changes would be through multilevel 
modeling for repeated measures. With this approach, level 1 variables would be the 
measures obtained for each measurement occasion (e.g., task, longitudinal wave). 
Level 2 would correspond to between-subjects factors. The nested nature of mul-
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tilevel modeling also makes it correspond well to the model depicted in Fig. 1.1: 
microscale indices of variability can change across mesoscale contexts at level 1 
and these are all nested within the longitudinal macroscale repetitions at level 2. 
However, while constraining the parameters to nonlinear relations such as a qua-
dratic is possible with multilevel modeling, there would still be the need to interpret 
these effects with the aid of visualization of the profiles. Thus, a combination of 
procedures—as is common in multivariate analyses—is often preferable.

Profile and other statistical approaches to comparing trajectory behavior across 
grids function at the aggregate level. They necessarily look for significant group 
effects. However, most DS research questions are focused on processes that oc-
cur at the individual level, to capture the idiosyncratic behavior of each system, 
for example, trajectories on two grids could produce identical values for a whole-
grid measure (e.g., transitions) yet cover the state space in very different regions. 
Thus, to make grid-to-grid comparisons at the individual level, we must approach 
the problem differently. Next, I will describe two such solutions, intergrid distance 
scores and cluster analyses, developed to quantify qualitative differences across 
state space grids.

Intergrid Distance and Cluster Analyses

The intergrid distance score (IDS) and cluster analysis techniques were created to 
detect qualitative differences in trajectory patterns between grids. The attempt here 
is to combine the information revealed by the trajectory on the grid in a way that 
retains both content and structure at the same time with one quantitative (IDS) or 
qualitative (cluster) index. As described in Chap. 2, these techniques were devel-
oped for the Lewis et al. (2004) study to examine month-to-month change in in-
fant socioemotional behavior. These techniques can be used for any comparisons 
between two or more grids of the same order (i.e., both grids must have the same 
number of categories on the x-dimension and the same number of categories on 
the y-dimension) with trajectories of the same duration. The nature of the grids 
being compared depends entirely on the study design and research questions. Com-
parisons could be within or across individuals or dyads, task-to-task differences or 
the same task repeated two or more times, or they could even be used to compare 
subsets of trajectories (e.g., first half versus the second half of a parent-child inter-
action).

Intergrid Distance

IDS is based on a simple Euclidian distance premise (much like the total distance 
score for the special case of ordinal variables discussed in Chap. 5) to measure the 
net difference between two values. In this case, we have as many values as we have 
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cells (as few as four with the most basic 2 × 2 grid). The values in the cells can be 
any one of the values exported for individual cells in version 1.1, though my prefer-
ence is for duration per visit as this combines both duration and frequency informa-
tion into one mean duration value. Keep in mind that many cell variables can come 
up as missing values if there is division by zero (e.g., when visits = 0 for the duration 
per visit measure) or there is a criteria for calculation (e.g., minimum number of 
returns for return time). Recoding the missing to a value of zero is the solution in 
whatever program you use for computing IDS.

Figure 2.6 illustrates the general pattern of IDS comparisons. Each cell is sub-
tracted from the corresponding cell in the other grid. It might seem appealing that 
this simple subtraction of values retains directionality. Positive and negative values 
would reveal whether the values were higher or lower in one grid or the other. This 
is fine at the individual cell level, but if we are going to sum these values up to one 
index, then they would necessarily sum to zero (assuming both trajectories were 
of the same length or duration). To get around this directionality problem, the dif-
ferences can be squared to obtain positive values of zero or greater for every cell 
comparison. The squared differences for every cell can then be summed up into one 
IDS value:

where Ai is the value in cell i from one state space grid and Bi is the value in the 
corresponding cell i from the other state space grid. Thus, two identical trajectories 
would have an IDS value of zero and positive values reflect the degree to which 
two trajectories differ from one another because these values are dependent on the 
scale of measure used, the absolute magnitude of this value is not meaningful (much 
in the same way that statistical variance values are not meaningful as absolute val-
ues). The relative value in the context of other equivalent comparisons does have 
meaning, for example, as Lewis et al. (2004) showed, the highest month-to-month 
IDS values occurred during a developmental phase transition when behavior was 
expected to be more variable and less predictable.

Uneven trajectory lengths are a problem because the durations will necessarily 
be different between the two grids, for example, for grids based on tasks that are 
4 min and 8 min long, there is twice as much time in the latter. Cell durations are 
necessarily going to be higher in that second grid and an IDS score would not ac-
count for that. As a solution, a variation on the IDS procedure is to first re-express 
the cell values as within-grid standardized scores. Instead of using the raw dura-
tions or visits in each cell for the IDS calculations, standardizing would rescale the 
measures as standard deviations from the mean of that trajectory. The result within 
each grid is a set of values that are both positive and negative. Even with negative 
cell values, IDS can then be calculated as described above.

IDS =
# of Cells∑

i=1

(Ai − Bi)
2,
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Cluster Analyses

Cluster analyses have long been used to identify qualitative differences in a pattern 
of variable values. There are many variations but they all operate with the same 
underlying premise: minimize the differences within a cluster and maximize the 
differences between clusters . Because it is often desirable to discriminate trajectory 
patterns on state space grids, cluster analyses are useful tools for grouping sets of 
grids together as homogenous sets. In the old days, when first developing the state 
space grid technique, I would print out each grid and then visually try to match them 
together. Then, I looked for quantities that would differentiate these groups. Some 
of the whole-grid variables were developed this way. Of course, this is a cumber-
some process of a consummate state space grid geek and I do not recommend it. 
Instead, it is preferable to use one of the many clustering options out there.

The product of a cluster analysis is the identification of each case as a member 
of one and only one cluster. For state space grid analyses, cases are individual tra-
jectories. So, for example, in a sample using a 4 × 4 grid, there would be 16 values 
for each case corresponding to each trajectory’s value for a given measure (e.g., 
duration per visit). Note that, as with IDS, there are the same considerations about 
which individual cell measures to use. The cluster analysis would be run on these 16 
variables and each case would be assigned membership in one cluster. Trajectories 
within a cluster should look quite similar and trajectories that do not share the same 
cluster membership should look quite different from one another.

The big question is how many clusters in total are best. This is not an easy ques-
tion to answer and is a major limitation of cluster analyses. Until recently, most 
cluster solutions combined multiple analyses, reasonable but arbitrary criteria, and 
convergent validity. Recent advances in covariance matrix analyses (e.g., SEM) 
have opened up more empirically driven ways to decide on how many clusters fit 
best. In order to describe the cluster change score used in the Lewis et al. (2004) 
study, I will detail the “old school” clustering method employed for those analyses. 
At the end of this section, I will describe the newer covariance methods as a sugges-
tion for how these analyses may be conducted in the future.

Clustering techniques require that you prespecify how many clusters should be 
extracted. I typically repeat these analyses several times, starting with a 2-cluster 
solution and progressing up one at a time to six or more clusters per analysis. Each 
case (trajectory) gets a cluster number to indicate membership. The first thing to 
look for is the distribution across clusters. I prefer solutions with the highest number 
of clusters that have a sufficient number of cases per cluster. For statistical analyses, 
it is necessary to have at least five, preferably ten, cases per cluster. As the number 
of clusters increases, the more likely it is that one or more clusters will have fewer 
than five cases. It is possible that the cluster with only one member is an anomalous 
case, reflecting a significant deviance from the rest of the sample due to measure-
ment error or uncontrolled experimental conditions. It is also possible that this case 
is a real instance in the population but one that does not occur often. From a person-
centered perspective, this case must remain distinct rather than grouped with other 
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cases or dropped as a missing case. This is a difficult and uncertain choice. I recom-
mend consulting some of the fantastic work done by Magnusson and colleagues in 
thinking about categorizing individuals (Bergman et  al. 2003; Magnusson 1999, 
2003). The basic choice between the representativeness of odd cases and the prag-
matism of making inferences from statistical analyses is up to the analyst.

For state space grid analyses, there is the added benefit of visual examination of 
cluster groups. While this can help to resolve issues of clusters with a low number 
of cases, it is primarily a way to name or identify clusters for later analyses. Put 
these cluster membership categories in as filter variables in the trajectories list in the 
GridWare file and then explore in GridWare. This approach allows you to converge 
on an optimal solution of distinct and homogenous groups based on the pattern of 
behavior in state space. The final verification of cluster analyses, however, comes 
with convergent validity. Given the patterns that typify each cluster, group differ-
ences should conform to well-established measures that would be expected to vary 
by those groupings.

In the past decade, latent profile analysis (LPA) has emerged as a useful alterna-
tive to traditional cluster analyses (Muthén 2001). With LPA, the same goal—mini-
mal within-group differences and maximal between group differences—is executed 
using maximum likelihood algorithms. However, there are several means for estab-
lishing the optimal number of classes (clusters). Iterations begin with a one-class 
model, and subsequent classes are added one at a time until the addition of a class 
does not improve model fit. Model fit is assessed by the Bayesian information crite-
rion (BIC; Schwarz 1978), adjusted Bayesian information criterion (adjusted BIC; 
Sclove 1987), and Akaike information criterion (AIC; Akaike 1973). An increase 
of one class is considered a better fit if these information criteria are lower than the 
previous model with one fewer classes (Nylund et al. 2007). Entropy (similar to 
but not the same as the whole-grid measure) indicates how well a model classifies 
individuals into groups, with better classification indicated as values approach 1 
(Celeux and Soromenho 1996). Two significance tests can be used to compare mod-
els. Significant p-values on the Vuong–Lo–Mendell–Rubin (VLMR) likelihood ra-
tio test and the adjusted Lo–Mendell–Rubin (adjusted LMR) likelihood ratio test 
indicate that the estimated model provides a better fit to the data than a model with 
one fewer group (Nylund et al. 2007). Thus, with multiple indices, there is now a 
more standardized and reliable method for determining the best-fitting number of 
clusters or classes.

For this chapter, however, we are not concerned with stopping at the point of 
identifying clusters. We are interested in using cluster or class membership as a way 
of indicating grid-to-grid change. To create a cluster change score, you must put 
all of your trajectories into one overall cluster analysis. I emphasize all because it 
cannot be done by running the analyses separately by task or longitudinal wave. The 
best approach, provided you have all of your trajectories in one project, is to export 
the individual cell values from GridWare and to keep them in the stacked format 
(see Box 6.1) for computing the cluster membership. Once you have completed 
the range of cluster solutions, you can then unstack the data for the between grid 
analyses. In the end, you should have one variable column per cluster solution for 
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each task/wave. For example, if you converged on a 4-cluster solution and you have 
three longitudinal waves, then at this point you should have three variables: wave 1 
cluster, wave 2 cluster, and wave 3 cluster. There are four possible values for each of 
these variables corresponding to the membership for each case. Now you are ready 
to compute cluster change.

For each case, if two adjacent trajectories (e.g., wave 2 and wave 3) are members 
of the same cluster, then the cluster change score is 0. If, however, the two trajec-
tories are in different clusters, then the cluster change score is 1. Do this for each 
two-variable combination. In the previous example with three longitudinal waves, 
this would mean there would be two cluster change scores: one for wave 1 to wave 
2 change, and another for wave 2 to wave 3 change. In the Lewis et al. (2004) study, 
we had one trajectory per month per child from 14 to 24 months. Thus we computed 
change from 14 to 15 months, 15 to 16 months, and so on. The average change 
across trajectories, then, is a value between 0 (all trajectories remain in the same 
cluster) and 1 (all of the trajectories change clusters). Depending on the research 
question, changing clusters could be seen as an adaptive response to changing en-
vironmental demands or as a lack of stability in circumstances which should elicit 
similar patterns of responding.

Conclusions

The analysis of grid-to-grid change is rather open ended. It is limited only by the re-
search question and the nature of the measurements involved. Here I have described 
a few approaches to the types of questions that developmental scientists tend to ask. 
The utility of these approaches is, of course, not limited to developmental analyses 
but any research for which multiple trajectories per case exist.

At this point, this book could conclude and you would have all the informa-
tion you would need to conduct state space grid analyses. You have learned how 
to design measurements, format data, import and export data using GridWare, and 
conduct basic state space grid analyses. There are several important extensions of 
this technique that are worth considering, however, and I will cover these in the next 
chapter on advanced analysis.
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In this chapter, I will describe more advanced techniques for state space grid analy-
sis that go beyond what we have covered in Chaps. 5 and 6. These techniques are 
grouped in three main areas. First, there are many applications for which the limita-
tion of a two-dimensional state space is a critical problem. The good news is that 
there are ways to work around this limitation to conduct analyses on three or more 
dimensions. Next, the problem of continuous, rather than categorical, state vari-
ables is discussed with suggestions of how to work with these data. Finally, I will 
briefly review a set of analytical techniques that are quite complementary to state 
space grids. These are not exhaustive lists of possibilities, but they cover the range 
of extensions of state space grid analyses. As the second decade of state space grid 
analysis begins, I expect that these are the avenues that will show the most growth.

Beyond Two Dimensions

So far, we have only considered the two-dimensional state space. This is partly due 
to the fact that this is the most basic dimensionality with which to understand the 
concepts and analyses of state space grids. It is also partly due to the limitations 
of GridWare and the difficulty of visualizing (and conceptualizing) trajectories in 
three or more dimensions. Fret not. There are ways to solve the problems that arise 
beyond a two-dimensional state space ranging from the simple to the complex. Let 
us start with the simple.

Color for the Third Dimension

The most straightforward way to depict a third dimension on your two-dimen-
sional computer screen is through indicators of shape, size, or color. For Grid-
Ware, color is the exploratory option. Open the Example 1 data set that comes 
with the download of GridWare. You have probably noticed by now that this ex-
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ample project has a third state variable, Variable 3, which does not appear when 
you first open it in GridWare. To view this state variable, use one of the axis selec-
tion menus ( x-axis or y-axis) and select Variable 3. Let us suppose that Variable 1 
represents the child’s behavior, Variable 2 represents the Mother’s behavior, and 
Variable 3 represents the Father’s behavior. Hence, these data might correspond 
to a triadic family interaction. Let us further suppose that categories 1 through 4 
represent affective valence: hostile, withdrawn, neutral, and positive (remember, 
you can Alt-click on the axis labels to edit if you like). We cannot view all the 
three dimensions at once, only two, because of the way this project is formatted. 
So, if we were interested in how the father’s affect corresponded to the mother’s 
and the child’s, then we can color the father’s categories and display the two-
dimensional mother–child grid. While Variable 3 is displayed on the state space 
grid, color category 1 red, category 2 purple, and category 4 green (leave category 
3 as blue). Now, return to the display so that Variable 1 (child) is on the x-axis 
and Variable 2 (mother) is on the y-axis. Et voila! Three-dimensional! Selecting 
only trajectory A1_1 that we have seen before (Fig. 3.6), it should look similar to 
Fig. 7.1. Continuing with this hypothetical example, the mother (Variable 2) gets 
mutually hostile with the father (red) but the child (Variable 1) is simultaneously 
positive. We can also see that, because there are no green nodes, the father did not 
exhibit positive behavior.

The use of color in GridWare is purely visual. It facilitates exploratory analy-
ses and is helpful for creating images for presentations or manuscripts. However, 
the selection of color has no impact on any measures and so has important limita-

Fig. 7.1   Using color to 
analyze third dimension. 
Variable 3 (not displayed on 
an axis) has been colored to 
represent the four categories  
( 1 red; 2 purple; 3 blue; 
4 green)
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tions on the three-dimensional analyses. Fortunately, we have other tools at our 
disposal.

Collapsing Dimensions

The difference between a state that is a category of a state variable and a state that 
is a cell on a state space grid is a levels-of-analysis issue. Both are “states” but one 
is higher order and another is lower order. So, it is with a nested, hierarchical struc-
ture. When confronting the two-dimensional limitation, we can use multiple levels 
of states to our advantage. If the cells are states, then they could also be states of 
a state variable on a state space grid dimension. Let us walk through an example.

Open Example 1 again and display Variable 2 on the x-axis and Variable 3 on the 
y-axis. There are 16 cells and we can identify these by the traditional x/y naming 
convention. So the cell in the top left would be identified as cell 1/4 (or 14 for short) 
because it is a combination of state category 1 for Variable 2 and state category 4 
for Variable 3. In this way, each cell can be identified by the x/y combination. That 
is each cell can be represented by the concatenation or appending of the y-axis 
category after the x-axis category. This is a simple process using Excel or the Grid-
Ware File Converter (see Chap. 3). With a new 16-category state variable which is 
the combination of Variable 2 and Variable 3, Variable 23, we can now view our 
Example 1 data in three-dimensions (Fig. 7.2).

This remarkable advancement is really not so astounding once you break it down. 
As I mentioned in Chap. 2, the unit of analysis is always the cell. The arrangement 
of the cells, even if based on ordinal state variables, is arbitrary for calculations (ex-
cept for distance, as described in Chap. 5). Visually, a state space grid with random 
arranged axis categories would be difficult to interpret. Computationally, because 
adjacency of cells has no mathematical meaning, the cells can be arranged any way 

Fig. 7.2   Three dimensional state space grid for Example 1 data. Variable 2 and Variable 3 were 
concatenated to form state categories of a new Variable 23. The first digit in each x-axis category 
label corresponds to the value of Variable 2 and the second digit corresponds to the value of Vari-
able 3
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at all. Perhaps the best way to understand this is through another example. In our 
most recent study, Lavictoire et al. (2012), we examined triadic peer interactions of 
young children. For analytic purposes, there was one child deemed the target child 
and two peers, Peer 1 and Peer 2, and all were coded for affect with SPAFF (Gott-
man et al. 1996). State space grids were created for each dimension (Target, Peer 
1, and Peer 2) with four categories: aversive (AGGR), withdrawn (WITH), neutral 
(NEU), and positive (POS). Thus, we had a 4 × 4 × cube. Figure 7.3 shows how this 
cube of 64 cells can be conceptualized as a combination of three two-dimensional 
grids derived from the x, y, and z planes of the cube. In this example, the blue side 
represents the space formed by the intersection of the Target and Peer 1 axes (col-
lapsing across Peer 2), the red side represents the space formed by the intersection 
of the Target and Peer 2 (collapsing across Peer 1), and the yellow side represents 
the space formed by the intersection of Peer 1 and Peer 2 (collapsing across the 
Target). The bottom state space grid in Fig. 7.3 shows the result of concatenating 
the Peer 1 and Peer 2 affect categories to make an x-dimension of 16 categories. The 
trajectory displayed on all four of these grids is the same, just from different angles 
including different sets of cells.

Unlike the mother–father–child instance in Example 1 described above, the 
Lavictoire et al. (2012) study was not concerned with the differentiation of Peer 
1 and Peer 2. Thus, reciprocal states (e.g., withdrawn/positive and positive/with-
drawn) were functionally redundant. For this study, we were able to collapse these 
states as functionally equivalent in reference to the target and reduce the 4 ×16 state 
space grid to a 4 × 10 grid. This was a special case due to the nature of the extant 
data. Regardless of these circumstances, however, analysis of three-dimensional 
grids is pretty much the same as any other state space grid analysis previously de-
scribed. In the peer study, for example, we examined both whole-grid variability 
and specific content states related to the target child’s externalizing and internal-
izing problems.

Multidimensional Lag Transition Grids  As you come to understand the implica-
tions of representing more than two dimensions on state space grids, it may occur to 
you that, by extension, this collapsing dimensions idea could be accomplished mul-
tiple times. This is true, though there is likely a ceiling of interpretability after about 
two or three iterations of this process. Because the number of categories increases 
somewhat exponentially as you make cells into dimensional categories, it is best 
to have as few original states as possible. In one step, for example, a 3 × 3 grid can 
turn into a 9 × 9 grid and by the third step an 81 × 81 grid. In order to understand this 
process, it is best to work through an example together. To do so, let us start with a 
brand new project (Box 7.1). This is the last chapter so you should be able to start 
a new project with flawless expertise (note that no Preferences are declared in the 
GridWare File so the project will just run with the default values). Once you have 
opened this one-trajectory project, continue reading.

7  Advanced Analyses
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For this example, I created hypothetical data of two children getting into and out 
of a fight. Their behavior is coded as valence in numerical terms such that − 1 is 
negative behavior, + 1 is positive behavior, and 0 is neutral behavior. Thus, as is dis-
played in the grid that opens with the project (Fig. 7.4), we see the peer dyad move 
from mutual neutral to mutual negative to mutual positive in a series of ten steps. 
Visually, we can trace these steps and see quite clearly in this idealized example 
how Kid1 starts the fight but is also the first to move toward resolution. Quanti-
tatively, however, we need to extend beyond the simultaneous grid to lagged state 
space in order to capture these transitions (see Chap. 5 for description of how to lag 

Fig. 7.4   Original and cross-lag state space grids for the multilag example project. The top state 
space grid displays the original, simultaneous behavior of Kid1 and Kid2. The bottom state space 
grids display both cross-lagged grids
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variables). Thus, as shown in the lower part of Fig. 7.4, we first need to create lag 1 
variables for each child: Kid1lag1 and Kid2lag1 (Box 7.1). With these lagged grids, 
we can start to see the transitional pattern. For example, comparing the left column 
of the Kid1 with Kid2lag1 grid with the bottom row of the Kid1lag1 with Kid2 grid, 
we can see that Kid1 never followed Kid2’s negative behavior with negativity of 
his own, but Kid2 did (see cell − 1/− 1 in both lag grids in Fig. 7.4). Note that we 
can continue to lag beyond one step, as can be seen by the lag2 variables that come 
next in this trajectory file.

Now that we have the lagged variables for each child, we can proceed to the next 
step. Select the axes of the state space grid in GridWare so that the x-axis is Kid1 
and the y-axis is Kid1lag1—a within-variable lagged state space. Here you see the 
sequence of Kid1’s behavioral stream displayed as a lagged phase plot. Each cell 
denotes a one-step transition. The start node, for example, is in cell 0/− 1, reflecting 
the first transition from neutral to negative behavior. This cell can now be identified 
as the 0/− 1 state. In fact, all nine of the cells now can be identified that way. This 
is how the two variables in the new project, Kid1lag01Trans and Kid2lag01trans, 
were created. These are now nominal state variables with nine categories each.

There are (at least) two ways that these data might be analyzed. First, if there 
is an explicit direction that is of interest such as Kid2 is the older sibling and we 
are interested in how the younger sibling’s behavior follows, we would want to see 
Kid2’s behavior relative to Kid1’s transitions (Fig. 7.5). Here we can see that when 
Kid2, the older sibling, was negative, Kid1 transitioned into less negative states 
(− 1/0 and 0/1) or stayed positive (1/1, see bottom row of Fig. 7.5). With this grid, 
we can see the antecedents of both children and the behavior consequence of one 
of them. The second way we might want to analyze these data is to examine both 
the antecedent and consequence for both children, as shown in Fig. 7.6. This grid 
contains a lot of information. Through cell and region selection, we could identify 
any antecedent–consequence combination we wished. These selections might be 
specific, like the count of instances in which both the children were becoming more 
negative, or mismatched transitions of increasing positivity with increasing nega-

Beyond Two Dimensions

Fig. 7.5   Lag transition grid of lag1 transitions for Kid1 with Kid2 behavior
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tivity. Exported cell frequencies and durations from transition grids similar to the 
one displayed in Fig. 7.6 would provide all of the necessary information for any lag 
sequential analyses you wish to conduct.

Of course, this process can continue, with lag 2 and beyond. As you add these 
lags, you can identify multistep sequences. For example, if you create a new vari-
able of lag 1 to lag 2 transitions (e.g., Kid1lag12trans), you can create a grid which 
displays three-step sequences in each cell by combining the state variable for the 
lag 0–1 transition on one axis with the lag 1–2 transition on the other axis (Kid-
1lag12trans with Kid2lag01trans). A step further, you can create cells of four-step 
sequences from a single-state variable (Kid1lag01trans with Kid1lag23trans). Al-
though there are many instances in which this type of sequencing answers the re-
search question of interest, these approaches may be overwhelming at first or even 
a bit cumbersome. One way to reduce the complexity a bit is to make use of the or-
dinality of your states. In the example we created in this chapter, this ordinality can 
be used in two ways, to examine relative change or cumulative changes in behavior.

With ordinal state variables, the change from one value to another is an equiva-
lent quantitative change. Thus, we can say that a transition from 1 to 0 is equivalent 
to a change from 0 to − 1. Thus, similar to the lag transitions above, we can examine 
the transitions in terms of relative change. In our example, we have two variables 
that reflect this approach, Kid1relchange and Kid2relchange. The new value at time 
t was computed as the original value at time t minus the original value at time t − 1, 
beginning with the second event (the first event starts at zero). Essentially, this is a 
change score. Now, we have a sequence of incremental changes relative to the last 

Fig. 7.6   State space grid 
of lag 1 transitions for both 
Kid1 and Kid2
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state (Fig. 7.7). In Fig. 7.7, trajectories in the upper right quadrant would indicate 
escalating positive (or decreasing negative) behavior, whereas trajectories in the 
lower left quadrant would indicate escalating negative (or decreasing positive) be-
havior. In this way, we can use a two-dimensional space to depict transitions that 
were visually evident on the state space grids from the raw data but that were not 
quantifiable without expanding the dimensionality.

Finally, using this transitional approach to ordinal sequences, we can make two-
dimensional cumulative sum plots. Gottman et al. have used this approach to de-
pict ordinal escalations and descalations of conflict behavior (Gottman 1979, 1993; 
Gottman and Levenson 1992). Recently, this was attempted with parent–child in-
teractions as well (De Rubeis and Granic 2012). However, these approaches depict 
the time series in a traditional way, with time on the x-axis and a graph line moving 
left to right to depict each person’s cumulative behavioral valence. State space grids 
can be used for this approach instead. In our current example, I have included two 
cumulative sum variables calculated as the value at time t plus the value at time t − 1, 
Kid1cumchange and Kid2cumchange. This works because these are ordinal values 
and their addition retains the direction of the change. It also means that, unlike 
the relative change variables, sequences of repeating negative or positive changes 
compound. Figure 7.8 shows the cumulative sum plots in the traditional way as 
well as the corresponding state space grid. Visually, these are just two options for 
display. Computationally, however, displaying these cumulative sum plots in state 
space grids allows all sorts of analysis based on region selections and the exporting 
of measures from GridWare. For example, sometimes the final value is all that is 

Fig. 7.7   State space grid of 
relative changes in Kid1 and 
Kid2 behavior
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analyzed in cumulative sum studies. If so, simply move the time slider to get to the 
final state before exporting. The added bonus with cumulative sum state space grids 
is that the degree of coordination between the two trajectories can be detected. The 
state space grid plot in Fig. 7.8 shows the classic conflict-resolution pattern that is 
less easily detected in the upper plot.

Fig. 7.8   Cumulative sum plots of example data. The top plot is the traditional time series display 
and the bottom plot is the state space grid method with the same data
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The take home message from this section should be that the state space can 
be manipulated in many ways to create multidimensional space. The analyses this 
enables are more complex but often fit the hypotheses and research questions of 
interest to developmental psychologists. With this new example you just created, 
you should be able to see the possibilities for your own work.

Using Continuous Variables

State space grids necessarily require categorical variables, variables with a relatively 
small number of discrete values. This creates a problem with continuous variables 
because the number of discrete possible values can be quite large. If you have con-
tinuous data, you may want to consider using other dynamic analyses as these often 
presume data of a continuous nature. Sometimes, however, the dynamics of these 
variables relative to other categorical variables is of interest. For example, in my 
newer research, I examine the concordance between psychophysiological indicators 
of autonomic nervous system activity (e.g., heart rate) and behavior and cognitions 
during emotionally stressful situations. Two of these measurement domains produce 
continuous measures and thus require alterations in order to analyze the dynamics 
via state space grids. Heart rate is an irregular time series that changes values each 
time a new heart beat is recorded. Thus, even though it is measured in milliseconds, 
the value changes somewhat discretely in time and then remains at that value until 
the next beat. Visually, on a traditional time series graph this would look similar to 
a series of stair steps going up and down as the heart rate changes over time, left to 
right. The other variable is the self report of the participant obtained through the use 
of a lever. The farther the participant pushes the lever forward, the more distressed 
they are. This variable is recorded in milliseconds and ranges from 0 to 100 with 
different values at the 0.001 scale. As these two variables are good examples of dif-
ferent kinds of continuous measures, I will use them to cover the options.

The self-report measure is more straightforward, so let us start with that. Here, 
the scale is arbitrary. We could have made the lever location correspond to − 500 to 
1,000 or 0 to a million. The choice for us here is to determine what is a meaning-
ful amount of change. We could break up the 100 point scale into 100 categories, 
for example, one per unit. In this case, changes of .1 or less would not correspond 
to a change of event. That would give us a grid dimension of 100 categories. If 
whole-grid variability was the goal, then this arrangement would result in a high 
number of visits and transitions that may not be meaningful. At the other extreme, 
we could divide the 100 scale into three categories: low, medium, and high. This is 
the least complex and may better reflect the nature of the questions involved if all 
you are interested in are those times when self-reported distress is high. I suggest a 
compromise between those two extremes. Using ten categories (0–10, 10–20, etc.) 
still provides sufficient detail about the rates of changes and the similar but does not 
account for small-scale changes. However, with any new endeavor, it is best to ex-
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plore first. Therefore, I recommend creating two or three solutions (e.g., categories 
of 1, 5, or 10 units) and compare the results you get from each project.

With many continuous measures, the issue of individual differences in baseline 
or reporting biases can arise. For example, with the self-reported distress lever, it 
is possible that some people recorded within a smaller range than others who used 
the entire spectrum from 0 to 100. Experimenter instructions, demonstrations, and 
practice are attempts to minimize that in this case, but it is still possible for partici-
pants to anchor their behavior differently, even though their experiences are compa-
rable. For this reason, it is a possible benefit to rescale these continuous measures 
as within-subject standardized scores. Standardization of time series variables can 
be a useful technique in many situations. Essentially, this transformation rescales 
the series values into deviations from the mean of the series expressed in standard 
deviation units. The advantage of this approach is that now we can make categories 
that are interpretable but also on the same scale across subjects. Categories can be 
made from break points at 0.5 or 1 standard deviations, with the outer categories re-
flecting values of  ± 3 SD or greater. Thus, any continuous series can be broken into 
an eight-category state variable with values of − 3 (or less), − 3 to − 2, − 2 to − 1, − 1 
to 0, 0–1, 1–2, 2–3, and 3 (or more). Using units of 0.5 standard deviations would 
result in a 14-category state variable. Again, the choice of how many categories 
depends on the nature of the variable, how frequently and dramatically the values 
change, and how it relates to the other state variables of interest in your project.

With a standardization approach, because 68 % of the values must occur between 
− 1 and + 1, every trajectory is centered in the state space. This is neither bad nor 
good in and of itself, but it does warrant your careful consideration with respect to 
your data and research questions. In some cases, you may choose to use between-
subjects standardization for reasons that make sense for your data. The categoriza-
tion process would be the same as the within-subject standardization, just using 
different mean and standard deviation values to standardize each value in the series.

With the physiological data, individual differences in resting levels means that 
there is typically a baseline value to which changes must be compared. If my rest-
ing heart rate is 25 beats per minute lower than yours, then a change of 10 beats per 
minute is not equivalent for each of us and, more importantly, there is the problem 
of comparisons within the same state space. Without some compensation, my abso-
lute heart rate changes will be to the left of yours (if heart rate is the x-dimension), 
but this is only meaningful in the context of our different resting rates, not due to our 
different reactions to the task or event. There are several ways to adjust for baseline 
values with physiological data. One is a simple difference score, subtracting out 
baseline. Another is dividing that result by the baseline value to get a proportional 
change from baseline. Still, a third way is to standardize—within- or between-sub-
jects as described above—with or without using the baseline levels. My preference 
is to use the proportional percent change from baseline. This is the best way to 
ensure that a change of 10 beats per minute, for example, is a proportionally greater 
change for someone with a baseline heart rate of 50 beats per minute than for some-
one with a resting heart rate of 80 beats per minute.
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Putting these options together, consider the examples in Fig. 7.9. These are the 
data from participants who gave an unrehearsed speech in the laboratory. They rated 
their distress as a continuous measure that recorded the relative position of a lever 
from 0 to 100. The values in those time series were categorized in five groups of 
20 (0 = 0–20, 1 = 20–40, 2 = 40–60, 3 = 60–80, and 4 = 80–100). On the x-dimension 
are the percent deviations from baseline segmented into 15 categories of 10 % bins. 
The final bin category captured everything at 140  % deviation from baseline or 

Using Continuous Variables

Fig. 7.9   Three examples of continuous measures broken up into categories for state space grid 
analysis. For each grid, the x-dimension is made up of categories of heart rate percent devia-
tion from baseline; the y-dimension is the 0–100 self-report measure of distress in five 20-unit 
categories
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greater (which did not happen often). The three examples here show three distinct 
patterns. In the top state space grid, this person rated herself as not very distressed 
at all while her heart rate climbed to the highest possible levels. This may indicate a 
process of suppression or even perhaps providing an inaccurate report. The second 
example shows a person who seems quite concordant across both domains. The 
third example shows someone whose physiology does not show that dramatic of a 
change but does report being highly distressed. This may indicate the overreaction 
of a catastrophizer or someone with a blunted physiological response.

These examples also expose a feature of continuous variables that has implica-
tions for visualization and measurement. Because these measures are often taken at 
high rates (e.g., 200 Hz), they have many values that can occur within the categories 
you have made. Thus, a final step with categorization processing is to eliminate re-
dundant events (rows in the trajectory files). The squiggly nature of the trajectories 
plotted in Fig. 7.9 is due to this last step not yet being complete. That “squiggli-
ness” of a high number of events per visit can occur in other instances as well (e.g., 
projects with many state variables). Thus, it is sometimes useful to separate your 
projects into simple two-state-variable projects, collapse the repeating rows, and 
conduct analyses specific to that state space.

Complementary Analyses

State space grid analysis is just one technique out of a growing field of method-
ologies based on dynamic systems or just the analysis of categorical time series. 
State space grids are an important tool but often it takes many tools to complete the 
understanding of the phenomenon at hand. In this section, I briefly review some 
techniques that are very good complements to state space grid analysis. This is 
certainly not an exhaustive list as there are many approaches out there (e.g., Agresti 
2010; Valsiner et al. 2011), but the ones I describe below appear to hold the most 
immediate promise.

Continuous State Space Analysis

As described in this chapter, the analysis of continuous measures with state space 
grids is a compromise born out of the need to integrate categorical and continuous 
variables. Nonetheless, there is a wide range of tools that can analyze continuous 
dimensions of state space via mathematical formulae. Many of these are technically 
quite daunting for the average researcher in developmental psychology or many 
other areas of social science. They often require very long time series and a fidel-
ity of measurement not easily achieved. However, there are some techniques that 
are accessible methods. One promising avenue is hierarchical state space analysis 
(Lodewyckx et al. 2011) that enables the search for attractors and other analyses. It 
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is quite technical at this stage but the authors are preparing a user-friendly software 
application for general distribution. With this and other continuous state space tools, 
we can converge on a useful set of approaches to answer most any questions about 
system dynamics in psychology or other social sciences.

Sequential Analyses

Sequential analyses have been around for a long time and they are based on con-
ditional probabilities. The core question is “given a particular state A, what is the 
probability that B will occur?” I recommend two books in particular by Roger Bake-
man that provide an excellent introduction to the novice and clear explanation of the 
issues (Bakeman and Gottman 1997; Bakeman and Quera 1995). One of the reasons 
that state space grids initially held so much appeal for me was to overcome some 
of the limitations of these approaches. For one, the specification of a single-lagged 
event is required for the calculations, but often meaningful responses in interper-
sonal interactions are not immediate. Thus, the constraints of lag 1 relationships are 
relieved in state space grids. A second issue has to do with the enormous sensitivity 
of these conditional probabilities to the base rates of states and the length of the 
time series. This is one reason why transitional propensities, rather than conditional 
probabilities, are included in GridWare. Nevertheless, with lag grids, we return to 
some of the perennial constraints of sequential analysis and therefore it is recom-
mended that you learn about these approaches if you are going to analyze lag grids.

Inertia

Recently, Kuppens et al. (2010, 2011) have examined emotional dynamics through 
inertia—the resistance to changing emotional states (Sheeber et al. 2011). With this 
approach, inertia has been operationalized at the individual level computed as an 
autoregressive correlation. Higher inertia (autocorrelation) indicates a degree of 
emotional rigidity in that it reflects getting stuck in emotional states. Indeed, the 
results from the inertia studies indicate greater problems (e.g., depression) for those 
with higher emotional inertia. The overlap and distinctiveness between dyadic ri-
gidity and inertia is just starting to be explored and represents a fruitful avenue of 
exploration with state space grid analysis.

Identifying Multistep Sequences with T-Patterns

Magnusson and colleagues have been developing and advocating person-centered 
approaches for years. One analytical approach that is quite complementary to state 

Complementary Analyses
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space grids is the detection of hierarchical time patterns called T-patterns (Magnus-
son 2000). With this approach, a sequence of states is subjected to an algorithm to 
detect repeating sequences of length n, starting with the longest repeating sequence. 
It functions much like a hierarchical cluster analysis but incorporates time as well. 
In addition, it can test the occurrence of these repeating chains against chance to es-
tablish significance. In concert with state space grid analysis, T-patterns may reveal 
cyclic attractors of repeating sequences of events. The combination of these two 
approaches is a currently untapped potential.

Visualizing Simulation Data

To test the specific predictions of a theory, researchers often simulate data to model 
the processes and mechanisms hypothesized to underlie a phenomenon. With simu-
lations, you can create hundreds or thousands of data series and estimate the reli-
ability of theoretical assumptions. Sometimes these simulations result in data well 
suited for state space grids and can be visualized using GridWare. For example, in a 
study of peer interactions, Steenbeek and van Geert (2008) used agent-based model-
ing to derive play interaction patterns in dyads with children of rejected, average, 
and popular sociometric status. By selecting parameters of hypothesized variables, 
they created multiple simulations to demonstrate how observed patterns of peer 
behavior could arise. Some of the output variables included the emotions of the two 
children, and these could easily be input into state space grids for visualizing the 
interaction patterns. In general, any synchronized time series can be input for state 
space grid analyses and visualization, no matter how it is measured.

Recurrence Quantification Analysis

Many techniques are designed to detect the recurrence of events or sequence of 
events and thus have great potential for attractor analyses. In a variation of recur-
rence plots (e.g., Visual Recurrence Analysis), recurrence quantification analysis 
(RQA) is a robust method of quantifying the number and duration of recurrences 
in a dynamic system presented by its state space grid trajectory (Zbulit and Webber 
1992). There are various software packages for conducting RQA (for comparisons, 
see Belaire-Franch and Contreras 2002). This approach is only starting to be applied 
in the social sciences (Stephen et al. 2009) and is an ideal complement to state space 
analysis.

7  Advanced Analyses
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Event History Analysis

I saved the best for last. Event history analysis (EHA) is a variation on survival 
analyses in which the events of interest can repeat. It uses both time and event in-
formation in a way that may be best suited for attractor analysis. The null model is 
that the trajectory will transition into a state as a function of time—the longer it has 
been since the last event, the more likely it becomes over time (note that this is the 
source of transitional propensities as described in Chap. 5). The improbability of 
this recurrence then can be interpreted as an attractor state. Moreover, EHA allows 
for time-varying covariates, so that not only you can model the repeating event of 
interest but also include other states that are changing at the same time as predic-
tors of the repeating event. For example, Snyder et al. (2003) modeled children’s 
anger displays using EHA using parent’s anger as a time-varying covariate, reflect-
ing the degree to which the mother’s anger changed the transitional propensity of 
the child’s anger. Thus, EHA is a powerful tool to assess the dynamic recurrence 
of system states within the dynamic context of the system itself. Understandably, 
there is a growing interest in this technique and a few options for how to conduct 
these analyses in Mplus (Muthen and Masyn 2005), Splus (Stoolmiller and Snyder 
2006), and R (Mills 2011). The accessibility of these techniques will no doubt result 
in an increase in studies based on EHA and in concert with state space grid analysis.

Conclusions

The aim of this chapter was to give an idea of the range of possibilities for ad-
vanced state space grid analysis, from three-dimensional to EHA. The state space 
grid approach has only begun to be explored and these extensions represent the 
cutting-edge of this technique. To conclude, I have just a few more recommenda-
tions for how to approach these analyses. First, in most cases, I suggest doing what-
ever transformations or reformatting on one or two files first. Bring these files to the 
final arrangement and examine the result. This will save a lot of headaches because 
you will no doubt realize things in the final solution that will change the way you 
proceed from the beginning with the rest of the files. Second, get comfortable with 
some light “programming” such as Visual Basic macros. It is not that daunting 
anymore and just a little knowledge can go a long way. Of course, the alternative is 
to find a competent programmer to do it for you. But I still would advocate that, as 
the researcher, you understand the steps taken to transform your data. Third, when 
all your analyses are set up, go back to your source (e.g., observational video) and 
compare with what you see on the grids. It should make sense.

There are some remarkable discoveries ahead. In the next edition of this book, 
I expect this chapter to be twice as long. I look forward to including your results.

Conclusions
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Epilogue

State space grids began as a solution to a very immediate problem. As Marc Lewis 
and Alex Lamey brainstormed about ways to reveal attractors in infant socioemo-
tional behavior, they were simply trying to test a hypothesis on a small data set. Po-
etically, the state space grids idea self-organized and grew. It was a useful technique 
picked up by one person and then another. The reaction from venerable scholars 
and first year students was immediately positive and contagious. With the advent of 
GridWare, the technique became accessible to a large number of researchers. There 
were hundreds of software downloads within a short time. More and more studies 
were conducted using state space grids. Then came the requests for workshops and 
now there is a book to explain it all. From an immediate problem to a global solu-
tion, there is more growth ahead.

The range and quality of research presented here reflects the hard work of many 
people. Of course, the primary credit goes to Marc Lewis, Isabel Granic, and Alex 
Lamey who got this all started. They laid the groundwork that has made the quality 
and proliferation of state space grids possible. They made the ball, I just ran with it. 
Jerry Patterson and Mike Stoolmiller were early supporters who made supportive 
contributions to this work. Tom Dishion has been and continues to be one of the 
strongest supporters of state space grid analysis. Over the years, I have learned a 
great deal from those who invited me to do workshops—too many individuals to 
possibly list them all. Still, I would like to thank those at Arizona State, Wayne 
State, UCLA, York University and the universities of Michigan, Groningen, Pitts-
burgh, Arizona, Groningen, Utrecht, and Valle (Columbia). I have also been im-
pressed with the number and quality of Master’s and Doctoral theses using state 
space grids (e.g., Baetz 2003; Erickson 2010; Gardner 2004; Granic 2000; Guo 
2011; Hao 2006; Herbers 2011; Hogue 2010; Hollenstein 2005; Howerter 2010; 
Kear 2011; Lavictoire 2010; Lee 2011; Litteljohn 2004; McCutcheon 2005; Mur-
phy-Mills 2011; Rolling 2008; Sravish 2011; Williams 2008). This is the next gen-
eration of researchers who will take this technique further than I can currently imag-
ine. I would also like to thank my current collaborators who are pushing with me to 
make state space grid analysis reach its fuller potential, especially Erika Lunken-
heimer, Nick Allen, Peter Kuppens, Anna Lichtwarck-Aschoff, Meredith Chivers, 
and Emily Butler. Finally, various funding agencies made the state space research 
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I conducted possible, including the National Institute of Mental Health and the Tri-
council of Canada: Social Sciences and Humanities Research Council, Canadian 
Institutes of Health, and the Natural Sciences and Engineering Research Council.

It is February 2012 as I complete this book while on sabbatical in Melbourne, 
Australia. I began writing in a cabin among the fiery autumn foliage of Lac Bevan 
in the mountains of Quebec and completed most while under the dome in the State 
Library of Victoria; auspicious locations, to say the least. The completion of the 
book is much like an end to the first chapter of the state space grid story, covering 
a dozen years of contributions. The next installment covering the next dozen years 
will certainly be filled with new directions and new domains. If you are reading this, 
then you will probably be one of the people making an impact on the next chapter. 
I look forward to learning what you have discovered.

Epilogue
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